WO2013062348A1 - 수술영상의 정합 방법 - Google Patents

수술영상의 정합 방법 Download PDF

Info

Publication number
WO2013062348A1
WO2013062348A1 PCT/KR2012/008848 KR2012008848W WO2013062348A1 WO 2013062348 A1 WO2013062348 A1 WO 2013062348A1 KR 2012008848 W KR2012008848 W KR 2012008848W WO 2013062348 A1 WO2013062348 A1 WO 2013062348A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
surgical site
matching
surgical
reference image
Prior art date
Application number
PCT/KR2012/008848
Other languages
English (en)
French (fr)
Inventor
이현기
양해용
권영식
마츠모토노조무
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to US14/001,793 priority Critical patent/US9105092B2/en
Priority to JP2013558801A priority patent/JP5902724B2/ja
Publication of WO2013062348A1 publication Critical patent/WO2013062348A1/ko

Links

Images

Classifications

    • G06T3/14
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0037Performing a preliminary scan, e.g. a prescan for identifying a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the present invention relates to a method of matching a surgical image, and more particularly, to a method of matching a surgical image that can obtain a precise matching result at a low cost in a short time.
  • the pre-recorded image includes a three-dimensional image, such as MRI, CT, etc., so that the three-dimensional image and the three-dimensional image of the patient taken in real time during surgery can be precisely registered with each other, Matching methods, for example, a method of mounting a marker on the skin surface, a method of using a template, a stamp (STAMP, Surface Template-Assisted Marker Position) method, and the like have been studied.
  • the problem to be solved by the present invention is to provide a matching method of the surgical image that can obtain a precise registration result at a low cost in a short time.
  • a three-dimensional reference image is obtained with respect to the surgical region of the patient before surgery.
  • grating pattern light is irradiated to the surgical site.
  • a first reflection image of the surgical site according to the grid pattern light is obtained.
  • a three-dimensional shape is measured by applying a bucket algorithm to the first reflection image of the acquired surgical site, and a first measurement image is obtained from the three-dimensional shape.
  • the obtained first measurement image and the previously obtained three-dimensional reference image are preliminarily registered with each other.
  • grating pattern light is irradiated to the bone corresponding to the surgical site.
  • a second reflection image of the bone corresponding to the surgical site according to the grid pattern light is obtained.
  • a 3D shape is measured by applying a bucket algorithm to the second reflection image of the bone corresponding to the obtained surgical site, and a second measurement image is obtained from the 3D shape.
  • the second measurement image and the obtained three-dimensional reference image are finely registered with each other based on the result of the pre-matching.
  • the matching result may be verified by checking whether the verification tool is in contact with the virtual screen generated by the precise matching.
  • the surgical site of the patient may include an ear site
  • the bone corresponding to the surgical site may include a bone located behind the ear of the patient.
  • a method of matching a surgical image may include obtaining a 3D reference image of a surgical site of a patient before surgery, and after the surgical site is cut, a grid is formed on the bone corresponding to the surgical site.
  • Irradiating pattern light acquiring a reflection image of a bone corresponding to the surgical site according to the grid pattern light, and applying a bucket algorithm to the reflection image of the bone corresponding to the obtained surgical site 3 Measuring a dimensional shape and acquiring a measurement image from the three-dimensional shape; receiving a pre-matching of the acquired measurement image and the previously obtained three-dimensional reference image from an operator; and measuring the measured image and the And precisely matching the obtained 3D reference images with each other using an iterative closest points (ICP) algorithm.
  • ICP iterative closest points
  • the obtained second measurement image and the previously obtained three-dimensional reference image are the result of the pre-matching.
  • the surgical site of the patient may include an ear site
  • the bone corresponding to the surgical site may include a bone located behind the ear of the patient.
  • the measured image is matched with the 3D reference image.
  • pre-alignment may be performed using the measured image measured before the incision of the surgical site, and precise registration may be performed using the measured image measured after the incision of the surgical site.
  • the measured image measured after the incision may be used.
  • the user can manually input the matching from the operator to perform a pre-matching and precise matching using the ICP algorithm.
  • the matching process can be performed quickly in the operating room without special preparation process, reducing the cost compared to other methods that require separate preparation
  • the matching time can be shortened.
  • FIG. 1 is a flowchart illustrating a method of registration of a surgical image according to an embodiment of the present invention.
  • FIG. 2 is a conceptual view illustrating a three-dimensional shape measuring apparatus for explaining a process of obtaining a measurement image by photographing a surgical part of a patient in FIG. 1.
  • FIG. 3 is a conceptual diagram illustrating a process of pre-matching in FIG. 1.
  • FIG. 4 is a conceptual diagram illustrating a process of precise matching in FIG. 1.
  • FIG. 5 is a conceptual diagram illustrating a process of verifying precision matching in FIG. 1.
  • FIG. 6 is a flowchart illustrating a method of registering a surgical image according to another exemplary embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a process of pre-matching in FIG. 6.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a flowchart illustrating a method of registration of a surgical image according to an embodiment of the present invention.
  • a 3D reference image is acquired beforehand for a surgical part of the patient, for example, the ear part of the patient.
  • the 3D reference image may include a computed tomography (CT) image which is generally obtained in a hospital for diagnosis and treatment.
  • CT computed tomography
  • the 3D reference image may include another 3D image such as MRI (magnetic resonance imaging).
  • a grid patterned light is irradiated to the surgical part to obtain a first measured image (S120).
  • a bucket algorithm to the first reflection image of the obtained surgical site algorithm to measure the three-dimensional shape, and obtains the first measurement image from the three-dimensional shape.
  • FIG. 2 is a conceptual view illustrating a three-dimensional shape measuring apparatus for explaining a process of obtaining a measurement image by photographing a surgical part of a patient in FIG. 1.
  • the three-dimensional shape measuring apparatus 100 for obtaining a first measurement image by irradiating grating pattern light on the surgical part includes a projection unit 110, an image capturing unit 120, and a central control unit (not shown). May not be used).
  • the projection unit 110 may be disposed to be inclined with respect to the surgical site 10, and irradiates the grid pattern light on the surgical site 10.
  • the projection unit 110 may include a light source unit, a grating unit, a grating transfer unit and a condenser lens to irradiate the grating pattern light.
  • the light source unit generates light.
  • the grating unit changes the light generated from the light source into the grating pattern light having a grating pattern.
  • the lattice transfer unit is connected to the lattice unit to transfer the lattice unit.
  • the lattice transfer unit may employ one of a piezoelectric (PZT) transfer unit and a fine linear transfer unit.
  • the condenser lens is disposed under the grating unit to condense the grating pattern light passing through the grating unit to the surgical site 10.
  • the projection unit 110 when the grid transfer unit is irradiated N grid pattern light to the surgical site 10 while moving the grid unit N times in sequence the image capturing unit to be described later 120 may sequentially photograph the N grid pattern lights reflected from the surgical region 10 to photograph N pattern images.
  • N is a natural number, for example, may be 3 or 4.
  • the projection unit 110 may employ an analog pattern scanning device using a PZT transfer unit as described above, or alternatively, may employ a digital pattern scanning device using a digital micromirror device (DMD).
  • DMD digital micromirror device
  • the projection unit 110 may be a plurality.
  • the grid pattern light irradiated to the surgical site 10 is irradiated from various directions, so that various kinds of pattern images may be photographed, and the shadow area or light generated darkly by the shape of the surgical site 10 is bright. Errors due to shiny saturation areas can be prevented.
  • three projection units 110 are arranged in an equilateral triangle shape around the image capturing unit 120
  • three grid pattern lights may be applied to the surgical region 10 in different directions.
  • the four projection parts 110 are arranged in a square shape around the image capturing part 120, four grid pattern lights may be applied to the surgical part 10 in different directions.
  • the projection unit 110 may be one.
  • an error may occur in part due to the shadow area or the saturation area, but an error enough to damage the necessary amount for the matching to be described later. May not occur.
  • the image capturing unit 120 is disposed above the surgical site 10 and receives the light reflected from the surgical site 10 to take an image of the surgical site 10. That is, the image capturing unit 120 receives the light emitted from the projection unit 110 and reflected from the surgical site 10 to take a plane image of the surgical site 10.
  • the image capturing unit 120 may include a camera, an imaging lens, and a filter.
  • the camera receives the light reflected from the surgical site 10 to take a planar image of the surgical site 10.
  • a CCD camera or a CMOS camera may be employed.
  • the imaging lens is disposed under the camera to image light reflected from the surgical site 10 in the camera.
  • the filter is disposed under the imaging lens to filter the light reflected from the surgical site 10 to the imaging lens, and may include any one of a frequency filter, a color filter, and a light intensity control filter. Can be.
  • the controller is connected to the projection unit 110 and the image capturing unit 120 to control operations of the projection unit 110 and the image capturing unit 120, and is captured by the image capturing unit 120.
  • the 3D shape of the surgical site 10 is measured and calculated using the pattern image.
  • the three-dimensional shape measuring apparatus 100 may further include a jig for fixing the above configuration.
  • the 3D shape measuring apparatus 100 adjusts the spot of the laser to the center of the camera by using an offset-axis laser when an analog pattern scanning apparatus is employed to accurately focus.
  • the spot may be directly scanned by the projection unit 110 to adjust the spot to be at the center of the camera.
  • This primary match is a pre-match that is performed before the precise match, which will be described later, and corresponds to coarse matching.
  • FIG. 3 is a conceptual diagram illustrating a process of pre-matching in FIG. 1.
  • a first measurement image 10a of the ear part obtained by irradiating grating pattern light on the ear part and a CT obtained before surgery
  • the 3D reference image 15a of the ear region which is an image, is pre-registered.
  • second grating images are obtained by irradiating grating pattern light onto the bone (S140).
  • the grid pattern light is irradiated to the bone corresponding to the surgical site 10, and for the bone corresponding to the surgical site according to the grid pattern light
  • a bucket algorithm is applied to the second reflection image of the bone corresponding to the acquired surgical site to measure a three-dimensional shape, and a second measurement image is obtained from the three-dimensional shape.
  • the process of acquiring the second measurement image may include obtaining a first measurement image described in FIG. 2, except that the measurement target is a bone corresponding to the surgery site 10 after the surgery site 10 is incised. Since the process is substantially the same, overlapping detailed description is omitted.
  • step (S140) to obtain a second measurement image by irradiating a grid pattern light on the bone corresponding to the surgical site (10) Secondly, the 3D reference image acquired in operation S110 is matched. This secondary match corresponds to fine matching.
  • FIG. 4 is a conceptual diagram illustrating a process of precise matching in FIG. 1.
  • a second measurement image 10b of a bone corresponding to the ear part obtained by cutting the ear part and irradiating grating pattern light is obtained.
  • the 3D reference image 15b of the bone corresponding to the ear region which is a CT image obtained before surgery, are precisely matched.
  • the matching result according to the precision matching may be verified (S160).
  • the verification tool (tool) to the bone corresponding to the surgical site 10
  • FIG. 5 is a conceptual diagram illustrating a process of verifying precision matching in FIG. 1.
  • the surgical site 10 is an ear site
  • the ear is a CT image obtained before surgery. It is verified whether the verification tool 20 normally appears in contact with the 3D reference image 15b for the bone corresponding to the site 15c.
  • FIG. 6 is a flowchart illustrating a method of registering a surgical image according to another exemplary embodiment of the present invention.
  • this step is substantially the same as the step (S110) of acquiring the 3D reference image before surgery described in FIG. 1, detailed descriptions thereof will be omitted.
  • the grid image light is irradiated to the bone to obtain a measurement image (S220).
  • this step is substantially the same as the step (S140) of acquiring the second measurement image described in FIG. 1, detailed descriptions thereof will be omitted.
  • the measurement image and the three-dimensional reference image is pre-matched (S230).
  • FIG. 7 is a conceptual diagram illustrating a process of pre-matching in FIG. 6.
  • a measurement image 10b of a bone corresponding to the ear part obtained by cutting the ear part and irradiating grating pattern light and While pre-aligning the three-dimensional reference image (15b) for the bone corresponding to the ear region, which is a CT image obtained before surgery, the registration is received from the operator.
  • the measured image and the 3D reference image are precisely matched using an iterative closest points (ICP) algorithm based on a pre-matching result (S240).
  • ICP iterative closest points
  • the ICP algorithm is a known algorithm that is used in various applications as an algorithm for matching 3D scenes, a detailed description thereof will be omitted.
  • the matching result according to the precision matching may be verified (S250).
  • the measured image is matched with the 3D reference image.
  • pre-alignment may be performed using the measured image measured before the incision of the surgical site, and precise registration may be performed using the measured image measured after the incision of the surgical site.
  • the measured image measured after the incision may be used.
  • the user can manually input the matching from the operator to perform a pre-matching and precise matching using the ICP algorithm.

Abstract

수술영상을 정합하기 위하여, 먼저 수술 전에 환자의 수술부위에 대하여 3차원 기준영상을 획득한다. 이어서, 수술부위에 격자패턴광을 조사하여 제1 측정영상을 획득한다. 다음으로, 획득된 제1 측정영상 및 기 획득된 3차원 기준영상을 서로 사전 정합한다. 이어서, 수술부위가 절개된 후, 수술부위에 대응하는 뼈에 격자패턴광을 조사하여 제2 측정영상을 획득한다. 다음으로, 획득된 제2 측정영상 및 기 획득된 3차원 기준영상을 사전 정합의 결과를 기초로 서로 정밀 정합한다. 이에 따라, 짧은 시간에 적은 비용으로 정확한 정합 결과를 획득할 수 있다.

Description

수술영상의 정합 방법
본 발명은 수술영상의 정합 방법에 관한 것으로, 더욱 상세하게는 짧은 시간에 적은 비용으로 정확한 정합 결과를 획득할 수 있는 수술영상의 정합 방법에 관한 것이다.
최근 환자의 환부를 치료하는 수술에 있어서 기 촬영된 영상을 이용한 수술이 많이 활용되고 있다. 특히, 이비인후과 수술의 경우, 환자 신체내의 중요한 신경과 주요 장기들을 회피하면서 수술을 진행하여야 하므로, 기 촬영된 영상을 기반으로 하여 높은 정확도를 갖는 수술을 진행할 것이 요구된다.
일반적으로, 기 촬영된 영상은 MRI 촬영, CT 촬영 등의 3차원 영상을 포함하며, 이러한 3차원 영상과 수술시 실시간으로 촬영되는 환자의 3차원 영상을 서로 정확히 정합(registration)할 수 있도록, 다양한 정합 방법들, 예를 들면, 피부 표면에 마커(marker)를 장착하는 방법, 템플릿(template)을 이용하는 방법, 스탬프(STAMP, Surface Template-Assisted Marker Position) 방법 등이 연구되어 왔다.
그러나, 상기와 같은 종래의 방법들은, 마커를 피부에 부착함으로 야기되는 피부 변화에 따른 오차, 수술 전에 스탬프를 제작하여야 하는 번거로움과 제작에 소요되는 많은 비용, 정합을 위한 많은 시간 소요 등과 같은 여러 가지 문제점이 있었다.
따라서, 종래와는 다르게, 보다 짧은 시간에 적은 비용으로 정확한 정합 결과를 획득할 수 있는 정합 방법의 개발이 요청된다.
따라서, 본 발명이 해결하고자 하는 과제는 짧은 시간에 적은 비용으로 정확한 정합 결과를 획득할 수 있는 수술영상의 정합 방법을 제공하는 것이다.
본 발명의 예시적인 일 실시예에 따라 수술영상을 정합하기 위하여, 먼저 수술 전에 환자의 수술부위에 대하여 3차원 기준영상을 획득한다. 이어서, 상기 수술부위에 격자패턴광을 조사한다. 다음으로, 상기 격자패턴광에 따른 상기 수술부위에 대한 제1 반사이미지를 획득한다. 이어서, 상기 획득된 수술부위에 대한 제1 반사이미지에 버킷 알고리즘(bucket algorithm)을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 제1 측정영상을 획득한다. 다음으로, 상기 획득된 제1 측정영상 및 상기 기 획득된 3차원 기준영상을 서로 사전 정합(preliminary registration)한다. 이어서, 상기 수술부위가 절개된 후, 상기 수술부위에 대응하는 뼈에 격자패턴광을 조사한다. 다음으로, 상기 격자패턴광에 따른 상기 수술부위에 대응하는 뼈에 대한 제2 반사이미지를 획득한다. 이어서, 획득된 상기 수술부위에 대응하는 뼈에 대한 상기 제2 반사이미지에 버킷 알고리즘을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 제2 측정영상을 획득한다. 다음으로, 획득된 상기 제2 측정영상 및 기 획득된 상기 3차원 기준영상을 상기 사전 정합의 결과를 기초로 서로 정밀 정합(fine registration)한다.
획득된 상기 제2 측정영상 및 기 획득된 상기 3차원 기준영상을 상기 사전 정합의 결과를 기초로 서로 정밀 정합한 이후에, 상기 수술부위에 대응하는 뼈에 검증툴(tool)을 접촉시킨 후, 상기 정밀 정합에 의해 생성된 가상 화면에서 상기 검증툴이 접촉되어 있는지 체크하여 정합 결과를 검증할 수 있다.
일 실시예로, 상기 환자의 수술부위는 귀 부위를 포함할 수 있고, 상기 수술부위에 대응하는 뼈는 상기 환자의 귀의 뒷부분에 위치한 뼈를 포함할 수 있다.
본 발명의 예시적인 일 실시예에 따른 수술영상의 정합 방법은 수술 전에 환자의 수술부위에 대하여 3차원 기준영상을 획득하는 단계, 상기 수술부위가 절개된 후, 상기 수술부위에 대응하는 뼈에 격자패턴광을 조사하는 단계, 상기 격자패턴광에 따른 상기 수술부위에 대응하는 뼈에 대한 반사이미지를 획득하는 단계, 획득된 상기 수술부위에 대응하는 뼈에 대한 상기 반사이미지에 버킷 알고리즘을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 측정영상을 획득하는 단계, 획득된 상기 측정영상 및 기 획득된 상기 3차원 기준영상의 사전 정합을 작업자로부터 입력받는 단계 및 상기 측정된 상기 측정영상 및 기 획득된 상기 3차원 기준영상을 ICP(iterative closest points) 알고리즘을 이용하여 서로 정밀 정합하는 단계를 포함한다.
상기 측정된 상기 측정영상 및 기 획득된 상기 3차원 기준영상을 ICP 알고리즘을 이용하여 서로 정밀 정합한 이후에, 획득된 상기 제2 측정영상 및 기 획득된 상기 3차원 기준영상을 상기 사전 정합의 결과를 기초로 서로 정밀 정합한 이후에, 상기 수술부위에 대응하는 뼈에 검증툴(tool)을 접촉시킨 후, 상기 정밀 정합에 의해 생성된 가상 화면에서 상기 검증툴이 접촉되어 있는지 체크하여 정합 결과를 검증할 수 있다.
일 실시예로, 상기 환자의 수술부위는 귀 부위를 포함할 수 있고, 상기 수술부위에 대응하는 뼈는 상기 환자의 귀의 뒷부분에 위치한 뼈를 포함할 수 있다.
본 발명에 따르면, 수술 전에 환자의 수술부위에 대하여 CT와 같은 3차원 기준영상을 미리 획득한 후, 격자패턴광에 따른 패턴영상을 이용한 버킷 알고리즘을 적용하여 수술부위의 3차원 형상을 측정한 후, 측정된 영상을 3차원 기준영상과 정합한다. 이때, 수술부위의 절개 전에 측정된 측정영상을 이용하여 사전 정합을, 수술부위의 절개 후에 측정된 측정영상을 이용하여 정밀 정합을 할 수 있고, 이와는 다르게 수술부위의 절개 후에 측정된 측정영상을 이용하되, 작업자로부터 정합을 수동으로 입력받아 사전 정합을, ICP 알고리즘을 이용하여 정밀 정합을 할 수 있다.
이로써, 측정영상과 기준영상을 사전 정합과 정밀 정합의 2단계에 걸쳐 실시함으로써 보다 정확한 정합 결과를 획득할 수 있다.
또한, 격자패턴광에 따른 패턴영상을 이용한 버킷 알고리즘을 적용하여 측정영상을 획득하되, 특별한 준비과정 없이 수술실 내에서 신속히 정합 과정이 수행될 수 있으므로, 별도의 준비를 요하는 타 방법 대비 비용을 절감할 수 있고, 정합 시간을 단축할 수 있다.
또한, 별도의 검증 과정을 거치는 경우, 보다 정확한 정합 결과를 획득할 수 있다.
도 1은 본 발명의 일 실시예에 따른 수술영상의 정합 방법을 나타낸 흐름도이다.
도 2는 도 1에서 환자의 수술부위를 촬영하여 측정영상을 획득하는 과정을 설명하기 위한 3차원 형상 측정장치의 개념도이다.
도 3은 도 1에서 사전 정합하는 과정을 설명하기 위한 개념도이다.
도 4는 도 1에서 정밀 정합하는 과정을 설명하기 위한 개념도이다.
도 5는 도 1에서 정밀 정합을 검증하는 과정을 설명하기 위한 개념도이다.
도 6은 본 발명의 다른 실시예에 따른 수술영상의 정합 방법을 나타낸 흐름도이다.
도 7은 도 6에서 사전 정합하는 과정을 설명하기 위한 개념도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 수술영상의 정합 방법을 나타낸 흐름도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따라 수술영상의 정합을 하기 위하여, 먼저 수술 전 3차원 기준영상을 획득한다(S110).
구체적으로, 수술 전에 미리 환자의 수술부위, 예를 들면, 환자의 귀 부위에 대하여 3차원 기준영상을 획득한다. 상기 3차원 기준영상은 진단 및 치료를 위하여 병원에서 일반적으로 획득하는 CT(컴퓨터 단층촬영, computed tomography) 영상을 포함할 수 있다. 이와는 다르게, 상기 3차원 기준영상은 MRI(자기공명영상, magnetic resonance imaging) 등과 같은 다른 3차원 영상을 포함할 수 있다.
이어서, 상기 수술부위에 격자패턴광을 조사하여 제1 측정영상을 획득한다(S120).
구체적으로, 상기 수술부위에 격자패턴광을 조사하고, 상기 격자패턴광에 따른 상기 수술부위에 대한 제1 반사이미지를 획득한 후, 상기 획득된 수술부위에 대한 제1 반사이미지에 버킷 알고리즘(bucket algorithm)을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 제1 측정영상을 획득한다.
도 2는 도 1에서 환자의 수술부위를 촬영하여 측정영상을 획득하는 과정을 설명하기 위한 3차원 형상 측정장치의 개념도이다.
도 2를 참조하면, 상기 수술부위에 격자패턴광을 조사하여 제1 측정영상을 획득하기 위한 3차원 형상 측정장치(100)는 투영부(110), 영상 촬영부(120) 및 중앙 제어부(도시되지 않음)를 포함할 수 있다.
상기 투영부(110)는 상기 수술부위(10)에 대하여 경사지게 배치될 수 있으며, 상기 수술부위(10)에 격자패턴광을 조사한다. 일 실시예로, 상기 투영부(110)는 상기 격자패턴광을 조사하기 위하여, 광원유닛, 격자유닛, 격자이송유닛 및 집광렌즈를 포함할 수 있다. 상기 광원유닛은 광을 발생시킨다. 상기 격자유닛은 상기 광원으로부터 발생된 광을 격자패턴을 갖는 상기 격자패턴광으로 변경시킨다. 상기 격자이송유닛은 상기 격자유닛과 연결되어 상기 격자유닛을 이송시키고, 일례로 PZT(Piezoelectric) 이송유닛이나 미세직선 이송유닛 중 어느 하나를 채용할 수 있다. 상기 집광렌즈는 상기 격자유닛의 하부에 배치되어 상기 격자유닛을 통과한 상기 격자패턴광을 상기 수술부위(10)로 집광시킨다.
일 실시예로, 상기 투영부(110)는 상기 격자이송유닛이 상기 격자유닛을 N번 순차적으로 이동하면서 상기 수술부위(10)로 N개의 격자패턴광들을 조사할 때, 후술될 상기 영상 촬영부(120)는 상기 수술부위(10)에서 반사된 상기 N개의 격자패턴광들을 순차적으로 인가받아 N개의 패턴영상들을 촬영할 수 있다. 상기 N은 자연수로, 일 예로 3 또는 4일 수 있다.
상기 투영부(110)는 상기와 같이 PZT 이송유닛을 이용한 아날로그 패턴 주사 장치를 채용할 수도 있으며, 이와는 다르게, DMD(digital micromirror device)를 이용한 디지털 패턴 주사 장치를 채용할 수도 있다.
상기 투영부(110)는 복수일 수 있다. 이 경우, 상기 수술부위(10)로 조사되는 격자패턴광이 다양한 방향에서 조사되어, 다양한 종류의 패턴영상들이 촬영될 수 있으며, 상기 수술부위(10)의 형상에 의하여 어둡게 발생하는 그림자 영역이나 밝게 빛나는 포화 영역에 의한 오류를 방지할 수 있다. 예를 들어, 3개의 투영부(110)들이 상기 영상 촬영부(120)를 중심으로 정삼각형 형태로 배치될 경우, 3개의 격자패턴광들이 서로 다른 방향에서 상기 수술부위(10)로 인가될 수 있고, 4개의 투영부(110)들이 상기 영상 촬영부(120)를 중심으로 정사각형 형태로 배치될 경우, 4개의 격자패턴광들이 서로 다른 방향에서 상기 수술부위(10)로 인가될 수 있다.
이와는 다르게, 상기 투영부(110)는 하나일 수 있다. 이 경우, 상기 수술부위(10)로 조사되는 격자패턴광은 일 방향에서 조사되므로, 그림자 영역이나 포화 영역에 의하여 일부분에서 오류가 발생할 수 있지만, 후술하는 정합을 위하여 필요한 만큼을 훼손할 정도의 오류는 발생하지 않을 수 있다.
상기 영상 촬영부(120)는 상기 수술부위(10)의 상부에 배치되어, 상기 수술부위(10)로부터 반사된 광을 인가받아 상기 수술부위(10)에 대한 영상을 촬영한다. 즉, 상기 영상 촬영부(120)는 상기 투영부(110)에서 출사되어 상기 수술부위(10)에서 반사된 광을 인가받아, 상기 수술부위(10)의 평면영상을 촬영한다.
일 실시예로, 상기 영상 촬영부(120)는 카메라, 결상렌즈 및 필터를 포함할 수 있다. 상기 카메라는 상기 수술부위(10)로부터 반사되는 광을 인가받아 상기 수술부위(10)의 평면영상을 촬영하며, 일례로 CCD 카메라나 CMOS 카메라 중 어느 하나가 채용될 수 있다. 상기 결상렌즈는 상기 카메라의 하부에 배치되어, 상기 수술부위(10)에서 반사되는 광을 상기 카메라에서 결상시킨다. 상기 필터는 상기 결상렌즈의 하부에 배치되어, 상기 수술부위(10)에서 반사되는 광을 여과시켜 상기 결상렌즈로 제공하고, 일례로 주파수 필터, 컬러필터 및 광세기 조절필터 중 어느 하나를 포함할 수 있다.
상기 제어부는 상기 투영부(110) 및 상기 영상 촬영부(120)와 연결되어 상기 투영부(110) 및 상기 영상 촬영부(120)의 동작을 제어하며, 상기 영상 촬영부(120)로부터 촬영된 패턴영상을 이용하여 상기 수술부위(10)의 3차원 형상을 측정, 산출한다.
한편, 도시되지 않았지만, 상기 3차원 형상 측정장치(100)는 상기한 구성을 고정하기 위한 지그부를 더 포함할 수 있다.
또한, 상기 3차원 형상 측정장치(100)는 정확한 초점을 맞추기 위하여, 아날로그 패턴 주사 장치를 채용하는 경우 오프셋 레이저(offset-axis laser)를 사용하여 레이저의 스팟(spot)이 카메라의 중심에 오도록 조정할 수 있으며, 디지털 패턴 주사 장치를 채용하는 경우 상기 투영부(110)에서 직접 스팟을 주사하여 상기 스팟이 카메라의 중심에 오도록 조정할 수 있다.
다시 도 1을 참조하면, 다음으로, 제1 측정영상 및 3차원 기준영상을 사전 정합(preliminary registration)한다(S130).
구체적으로, 상기 수술부위(10)에 격자패턴광을 조사하여 제1 측정영상을 획득 하는 단계(S120)에서 획득된 상기 제1 측정영상과 상기 수술 전 3차원 기준영상을 획득하는 단계(S110)에서 획득된 상기 3차원 기준영상을 1차적으로 정합한다. 이러한 1차적인 정합은 후술될 정밀 정합 이전에 수행되는 사전 정합으로서, 대략적인 매칭(coarse matching)에 해당한다.
도 3은 도 1에서 사전 정합하는 과정을 설명하기 위한 개념도이다.
도 3을 참조하면, 일 예로 상기 수술부위(10)가 귀 부위인 경우, 상기 귀 부위에 격자패턴광을 조사하여 획득한 상기 귀 부위에 대한 제1 측정영상(10a)과 수술 전 획득한 CT 영상인 상기 귀 부위에 대한 3차원 기준영상(15a)을 사전 정합한다.
다시 도 1을 참조하면, 이어서, 뼈에 격자패턴광을 조사하여 제2 측정영상 획득한다(S140).
구체적으로, 수술을 위하여 상기 수술부위(10)가 절개된 후, 상기 수술부위(10)에 대응하는 뼈에 격자패턴광을 조사하고, 상기 격자패턴광에 따른 상기 수술부위에 대응하는 뼈에 대한 제2 반사이미지를 획득한 후, 상기 획득된 수술부위에 대응하는 뼈에 대한 제2 반사이미지에 버킷 알고리즘을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 제2 측정영상을 획득한다.
상기 제2 측정영상을 획득하는 과정은, 측정대상이 상기 수술부위(10)가 절개된 후 상기 수술부위(10)에 대응하는 뼈인 점을 제외하면, 도 2에서 설명된 제1 측정영상을 획득하는 과정과 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
다시 도 1을 참조하면, 다음으로, 제2 측정영상 및 3차원 기준영상을 사전 정합 결과를 기초로 정밀 정합(fine registration)한다(S150).
구체적으로, 상기 수술부위(10)에 대응하는 뼈에 격자패턴광을 조사하여 제2 측정영상을 획득 하는 단계(S140)에서 획득된 상기 제2 측정영상과 상기 수술 전 3차원 기준영상을 획득하는 단계(S110)에서 획득된 상기 3차원 기준영상을 2차적으로 정합한다. 이러한 2차적인 정합은 정밀한 매칭(fine matching)에 해당한다.
도 4는 도 1에서 정밀 정합하는 과정을 설명하기 위한 개념도이다.
도 4를 참조하면, 일 예로 상기 수술부위(10)가 귀 부위인 경우, 상기 귀 부위를 절개한 후 격자패턴광을 조사하여 획득한 상기 귀 부위에 대응하는 뼈에 대한 제2 측정영상(10b)과 수술 전 획득한 CT 영상인 상기 귀 부위에 대응하는 뼈에 대한 3차원 기준영상(15b)을 정밀 정합한다.
다시 도 1을 참조하면, 선택적으로 상기 정밀 정합에 따른 정합 결과를 검증할 수 있다(S160).
구체적으로, 상기 수술부위(10)에 대응하는 뼈에 검증툴(tool)을 접촉시킨 후, 상기 정밀 정합에 의해 생성된 가상 화면에서 상기 검증툴이 접촉되어 있는지 체크(check)할 수 있다. 이때, 상기 가상 화면에서 상기 검증툴이 정상적으로 접촉된 것으로 나타나면, 상기 정합이 유효한 것으로 판단할 수 있다.
도 5는 도 1에서 정밀 정합을 검증하는 과정을 설명하기 위한 개념도이다.
도 5를 참조하면, 일 예로 상기 수술부위(10)가 귀 부위인 경우, 상기 귀 부위에 대응하는 뼈에 검증툴(20)을 접촉시킨 후(10c), 수술 전 획득한 CT 영상인 상기 귀 부위에 대응하는 뼈에 대한 3차원 기준영상(15b)에 검증툴(20)이 정상적으로 접촉되어 나타나는지(15c) 검증한다.
도 6은 본 발명의 다른 실시예에 따른 수술영상의 정합 방법을 나타낸 흐름도이다.
도 6을 참조하면, 본 발명의 다른 실시예에 따라 수술영상의 정합을 하기 위하여, 먼저 수술 전 3차원 기준영상을 획득한다(S210).
본 단계는 도 1에서 설명된 수술 전 3차원 기준영상을 획득하는 단계(S110)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.
이어서, 뼈에 격자패턴광을 조사하여 측정영상을 획득한다(S220).
본 단계는 도 1에서 설명된 제2 측정영상을 획득하는 단계(S140)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.
다음으로, 측정영상 및 3차원 기준영상을 사전 정합한다(S230).
구체적으로, 상기 수술부위(10)에 대응하는 뼈에 격자패턴광을 조사하여 상기 측정영상을 획득 하는 단계(S220)에서 획득된 상기 측정영상과 상기 수술 전 3차원 기준영상을 획득하는 단계(S210)에서 획득된 상기 3차원 기준영상을 1차적으로 정합하되, 상기 정합을 작업자로부터 입력받는다. 이러한 1차적인 정합은 대략적인 매칭에 해당한다.
도 7은 도 6에서 사전 정합하는 과정을 설명하기 위한 개념도이다.
도 7을 참조하면, 일 예로 상기 수술부위(10)가 귀 부위인 경우, 상기 귀 부위를 절개한 후 격자패턴광을 조사하여 획득한 상기 귀 부위에 대응하는 뼈에 대한 측정영상(10b)과 수술 전 획득한 CT 영상인 상기 귀 부위에 대응하는 뼈에 대한 3차원 기준영상(15b)을 사전 정합하되, 상기 정합을 작업자로부터 입력받는다.
다시 도 6을 참조하면, 이어서, 측정영상 및 3차원 기준영상을 사전 정합 결과를 기초로 ICP(iterative closest points) 알고리즘을 이용하여 정밀 정합한다(S240).
상기 ICP 알고리즘은 3차원 장면의 정합을 위한 알고리즘으로 여러 응용분야에서 활용되는 것으로 공지의 알고리즘이므로, 구체적인 설명은 생략한다.
다음으로, 선택적으로 상기 정밀 정합에 따른 정합 결과를 검증할 수 있다(S250).
본 단계는 도 1에서 설명된 정밀 정합에 따른 정합 결과를 검증하는 단계(S160)와 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.
상기와 같은 본 발명에 따르면, 수술 전에 환자의 수술부위에 대하여 CT와 같은 3차원 기준영상을 미리 획득한 후, 격자패턴광에 따른 패턴영상을 이용한 버킷 알고리즘을 적용하여 수술부위의 3차원 형상을 측정한 후, 측정된 영상을 3차원 기준영상과 정합한다. 이때, 수술부위의 절개 전에 측정된 측정영상을 이용하여 사전 정합을, 수술부위의 절개 후에 측정된 측정영상을 이용하여 정밀 정합을 할 수 있고, 이와는 다르게 수술부위의 절개 후에 측정된 측정영상을 이용하되, 작업자로부터 정합을 수동으로 입력받아 사전 정합을, ICP 알고리즘을 이용하여 정밀 정합을 할 수 있다.
이로써, 측정영상과 기준영상을 사전 정합과 정밀 정합의 2단계에 걸쳐 실시함으로써 보다 정확한 정합 결과를 획득할 수 있다.
또한, 격자패턴광에 따른 패턴영상을 이용한 버킷 알고리즘을 적용하여 측정영상을 획득하되, 특별한 준비과정 없이 수술실 내에서 신속히 수행될 수 있으므로, 별도의 준비를 요하는 타 방법 대비 비용을 절감할 수 있고, 정합 시간을 단축할 수 있다.
또한, 별도의 검증 과정을 거치는 경우, 보다 정확한 정합 결과를 획득할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다.  따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어야 한다.

Claims (6)

  1. 수술 전에 환자의 수술부위에 대하여 3차원 기준영상을 획득하는 단계;
    상기 수술부위에 격자패턴광을 조사하는 단계;
    상기 격자패턴광에 따른 상기 수술부위에 대한 제1 반사이미지를 획득하는 단계;
    상기 획득된 수술부위에 대한 제1 반사이미지에 버킷 알고리즘(bucket algorithm)을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 제1 측정영상을 획득하는 단계;
    상기 획득된 제1 측정영상 및 상기 기 획득된 3차원 기준영상을 서로 사전 정합(preliminary registration)하는 단계;
    상기 수술부위가 절개된 후, 상기 수술부위에 대응하는 뼈에 격자패턴광을 조사하는 단계;
    상기 격자패턴광에 따른 상기 수술부위에 대응하는 뼈에 대한 제2 반사이미지를 획득하는 단계;
    획득된 상기 수술부위에 대응하는 뼈에 대한 상기 제2 반사이미지에 버킷 알고리즘을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 제2 측정영상을 획득하는 단계; 및
    획득된 상기 제2 측정영상 및 기 획득된 상기 3차원 기준영상을 상기 사전 정합의 결과를 기초로 서로 정밀 정합(fine registration)하는 단계를 포함하는 수술영상의 정합 방법.
  2. 제1항에 있어서,
    획득된 상기 제2 측정영상 및 기 획득된 상기 3차원 기준영상을 상기 사전 정합의 결과를 기초로 서로 정밀 정합하는 단계 이후에,
    상기 수술부위에 대응하는 뼈에 검증툴(tool)을 접촉시키는 단계; 및
    상기 정밀 정합에 의해 생성된 가상 화면에서 상기 검증툴이 접촉되어 있는지 체크하는 단계를 더 포함하는 것을 특징으로 하는 수술영상의 정합 방법.
  3. 제1항에 있어서,
    상기 환자의 수술부위는 귀 부위를 포함하고,
    상기 수술부위에 대응하는 뼈는 상기 환자의 귀의 뒷부분에 위치한 뼈를 포함하는 것을 특징으로 하는 수술영상의 정합 방법.
  4. 수술 전에 환자의 수술부위에 대하여 3차원 기준영상을 획득하는 단계;
    상기 수술부위가 절개된 후, 상기 수술부위에 대응하는 뼈에 격자패턴광을 조사하는 단계;
    상기 격자패턴광에 따른 상기 수술부위에 대응하는 뼈에 대한 반사이미지를 획득하는 단계;
    획득된 상기 수술부위에 대응하는 뼈에 대한 상기 반사이미지에 버킷 알고리즘을 적용하여 3차원 형상을 측정하고, 상기 3차원 형상으로부터 측정영상을 획득하는 단계;
    획득된 상기 측정영상 및 기 획득된 상기 3차원 기준영상의 사전 정합을 작업자로부터 입력받는 단계; 및
    상기 측정된 상기 측정영상 및 기 획득된 상기 3차원 기준영상을 ICP(iterative closest points) 알고리즘을 이용하여 서로 정밀 정합하는 단계를 포함하는 수술영상의 정합 방법.
  5. 제4항에 있어서,
    상기 측정된 상기 측정영상 및 기 획득된 상기 3차원 기준영상을 ICP 알고리즘을 이용하여 서로 정밀 정합하는 단계 이후에,
    상기 수술부위에 대응하는 뼈에 검증툴(tool)을 접촉시키는 단계; 및
    상기 정밀 정합에 의해 생성된 가상 화면에서 상기 검증툴이 접촉되어 있는지 체크하는 단계를 더 포함하는 것을 특징으로 하는 수술영상의 정합 방법.
  6. 제4항에 있어서,
    상기 환자의 수술부위는 귀 부위를 포함하고, 상기 수술부위에 대응하는 뼈는 상기 환자의 귀의 뒷부분에 위치한 뼈를 포함하는 것을 특징으로 하는 수술영상의 정합 방법.
PCT/KR2012/008848 2011-10-26 2012-10-26 수술영상의 정합 방법 WO2013062348A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/001,793 US9105092B2 (en) 2011-10-26 2012-10-26 Registration method of images for surgery
JP2013558801A JP5902724B2 (ja) 2011-10-26 2012-10-26 手術画像の整合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0110189 2011-10-26
KR1020110110189A KR101307944B1 (ko) 2011-10-26 2011-10-26 수술영상의 정합 방법

Publications (1)

Publication Number Publication Date
WO2013062348A1 true WO2013062348A1 (ko) 2013-05-02

Family

ID=48168091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008848 WO2013062348A1 (ko) 2011-10-26 2012-10-26 수술영상의 정합 방법

Country Status (4)

Country Link
US (1) US9105092B2 (ko)
JP (1) JP5902724B2 (ko)
KR (1) KR101307944B1 (ko)
WO (1) WO2013062348A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307944B1 (ko) * 2011-10-26 2013-09-12 주식회사 고영테크놀러지 수술영상의 정합 방법
KR101572487B1 (ko) 2013-08-13 2015-12-02 한국과학기술연구원 환자와 3차원 의료영상의 비침습 정합 시스템 및 방법
KR20160074885A (ko) * 2014-12-19 2016-06-29 주식회사 고영테크놀러지 수술 결과 표시 방법 및 이를 이용한 수술 결과 표시 시스템
KR101687934B1 (ko) 2016-04-27 2016-12-20 (주)메가메디칼 스프린트를 이용한 전자식 수술 내비게이션 시스템 및 방법
KR200487320Y1 (ko) 2016-10-31 2018-09-05 (주)메가메디칼 틸팅 가능한 헤드부를 구비한 수술 내비게이션 시스템
US10924670B2 (en) 2017-04-14 2021-02-16 Yang Liu System and apparatus for co-registration and correlation between multi-modal imagery and method for same
US11710249B2 (en) 2019-12-20 2023-07-25 Unify Medical, Inc. Generation of three-dimensional scans for intraoperative imaging
BR112022024142A2 (pt) 2020-05-26 2023-02-14 Unify Medical Sistema e método para gerar imagens tridimensionais
EP4348582A2 (en) 2021-05-24 2024-04-10 Stryker Corporation Systems and methods for generating three-dimensional measurements using endoscopic video data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004074A (ko) * 2004-03-30 2007-01-05 고쿠리츠다이가쿠호진 하마마츠이카다이가쿠 수술 지원 장치, 방법 및 프로그램
KR20080032612A (ko) * 2006-10-09 2008-04-15 바이오센스 웹스터 인코포레이티드 장기 외부의 해부학적 특징부를 사용한 장기의 이미지의정합
JP2008264520A (ja) * 2007-03-20 2008-11-06 National Univ Corp Shizuoka Univ 手術支援情報表示装置、手術支援情報表示方法及び手術支援情報表示プログラム
KR100961661B1 (ko) * 2009-02-12 2010-06-09 주식회사 래보 수술용 항법 장치 및 그 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999840A (en) * 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US6560354B1 (en) * 1999-02-16 2003-05-06 University Of Rochester Apparatus and method for registration of images to physical space using a weighted combination of points and surfaces
DE10015826A1 (de) * 2000-03-30 2001-10-11 Siemens Ag System und Verfahren zur Erzeugung eines Bildes
US6584339B2 (en) * 2001-06-27 2003-06-24 Vanderbilt University Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery
JP2003088508A (ja) 2001-09-18 2003-03-25 Hitachi Medical Corp 手術支援システム
US8126241B2 (en) * 2001-10-15 2012-02-28 Michael Zarkh Method and apparatus for positioning a device in a tubular organ
GB0504172D0 (en) * 2005-03-01 2005-04-06 King S College London Surgical planning
US8295577B2 (en) * 2005-03-31 2012-10-23 Michael Zarkh Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
US7756563B2 (en) * 2005-05-23 2010-07-13 The Penn State Research Foundation Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy
US7545512B2 (en) * 2006-01-26 2009-06-09 Koh Young Technology Inc. Method for automated measurement of three-dimensional shape of circuit boards
US8301226B2 (en) * 2007-04-24 2012-10-30 Medtronic, Inc. Method and apparatus for performing a navigated procedure
DE102007019328A1 (de) * 2007-04-24 2008-11-06 Siemens Ag Verfahren zur hochauflösenden Darstellung filigraner Gefäßimplantate in angiographischen Aufnahmen
US7693256B2 (en) * 2008-03-19 2010-04-06 C-Rad Innovation Ab Phase-contrast X-ray imaging
US8260030B2 (en) * 2009-03-30 2012-09-04 Koh Young Technology Inc. Inspection method
KR101307944B1 (ko) * 2011-10-26 2013-09-12 주식회사 고영테크놀러지 수술영상의 정합 방법
US10945801B2 (en) * 2012-05-22 2021-03-16 Mako Surgical Corp. Soft tissue cutting instrument and method of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004074A (ko) * 2004-03-30 2007-01-05 고쿠리츠다이가쿠호진 하마마츠이카다이가쿠 수술 지원 장치, 방법 및 프로그램
KR20080032612A (ko) * 2006-10-09 2008-04-15 바이오센스 웹스터 인코포레이티드 장기 외부의 해부학적 특징부를 사용한 장기의 이미지의정합
JP2008264520A (ja) * 2007-03-20 2008-11-06 National Univ Corp Shizuoka Univ 手術支援情報表示装置、手術支援情報表示方法及び手術支援情報表示プログラム
KR100961661B1 (ko) * 2009-02-12 2010-06-09 주식회사 래보 수술용 항법 장치 및 그 방법

Also Published As

Publication number Publication date
JP2014522244A (ja) 2014-09-04
KR20130045774A (ko) 2013-05-06
US20140226886A1 (en) 2014-08-14
JP5902724B2 (ja) 2016-04-13
US9105092B2 (en) 2015-08-11
KR101307944B1 (ko) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2013062348A1 (ko) 수술영상의 정합 방법
US11863733B2 (en) Targets, fixtures, and workflows for calibrating an endoscopic camera
WO2016200096A1 (ko) 3차원 형상 측정장치
WO2013165111A1 (ko) 수술영상의 정합에 대한 검증방법 및 보상방법
CN107875524B (zh) 放射治疗系统、模体以及等中心校准方法
KR20140048207A (ko) 위치 추적 시스템을 포함하는 골을 조작하기 위한 조립체
CN1715945A (zh) 利用磁共振设备测量检查区域的方法
SG161097A1 (en) Iris pattern recognition and alignment
US20100069746A1 (en) Fiducial marker placement
WO2019225795A1 (ko) 골절 정복 시술장치
WO2013162218A1 (ko) 방사선투시시스템
WO2013176482A1 (ko) 3차원 형상 측정장치의 높이 측정 방법
TW200307180A (en) Projection exposure apparatus, alignment apparatus and alignment method of position
TW201821030A (zh) 提供光學對準特徵的牙齒影像收集裝置以及相關系統及方法
JP2020129175A (ja) 3次元情報生成装置、生体認証装置および3次元画像生成装置
WO2024058497A1 (ko) 초음파 뇌 치료를 위한 치료정보 표시방법
He et al. A novel bone registration method using impression molding and structured‐light 3D scanning technology
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
WO2013100223A1 (ko) 기판 검사장치의 높이정보 생성 방법
WO2020017854A1 (ko) 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법
CN110603006A (zh) 牙科护理单元
WO2017090994A1 (ko) 삼차원 안면 광학 영상과 세팔로 x선 영상을 획득할 수 있는 세팔로 x선 영상 획득 장치
JP4125511B2 (ja) X線診断装置
WO2024085549A1 (ko) 3차원 컴퓨터 단층 촬영 방법 및 장치
KR101923927B1 (ko) 사용자 신체 맞춤형 트래커를 이용한 영상 정합 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14001793

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013558801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844528

Country of ref document: EP

Kind code of ref document: A1