WO2020017854A1 - 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법 - Google Patents

구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법 Download PDF

Info

Publication number
WO2020017854A1
WO2020017854A1 PCT/KR2019/008742 KR2019008742W WO2020017854A1 WO 2020017854 A1 WO2020017854 A1 WO 2020017854A1 KR 2019008742 W KR2019008742 W KR 2019008742W WO 2020017854 A1 WO2020017854 A1 WO 2020017854A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light source
oral cavity
optical system
overlay
Prior art date
Application number
PCT/KR2019/008742
Other languages
English (en)
French (fr)
Inventor
문희종
Original Assignee
주식회사 아이원바이오
액츠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이원바이오, 액츠 주식회사 filed Critical 주식회사 아이원바이오
Priority to CN201980047568.XA priority Critical patent/CN112423654A/zh
Priority to US17/260,695 priority patent/US20210298582A1/en
Priority to EP19838203.8A priority patent/EP3824800A4/en
Publication of WO2020017854A1 publication Critical patent/WO2020017854A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • A61C9/006Optical means or methods, e.g. scanning the teeth by a laser or light beam projecting one or more stripes or patterns on the teeth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/104Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with scanning systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Definitions

  • the present invention relates to an oral scanner and a method for displaying a 3D overlay image using the same.
  • Creating a replica model that reproduces the appearance of the oral cavity is one of the most important processes in dental practice, and the process of accuracy and efficiency must be satisfied at the same time.
  • Most dental practices use traditional impression taking methods such as making plaster models to reproduce the oral cavity.
  • implant 30 is a fixture (fixture) fixed to the alveolar bone 24 deep (gingiva 22) ( 32), the abutment 34 and the prosthesis (crown) 36 is coupled to the upper portion of the fixture (32).
  • Fixture 32 acts as an artificial root
  • abutment 34 is bolted to fixture 32 and stabilizes gingival 22 and allows bacteria to enter into alveolar bone 24 and jawbone prior to joining the final prosthesis 36. To prevent penetration.
  • the dissected gingiva 22 is sutured and maintained for about 3 to 6 months, thereby maintaining the fixture 32 in the alveolar bone 24.
  • This is followed by a procedure for allowing bone fusion and then again cutting the sealed gingiva 22 to expose the fixture 32 to be joined to the abutment 34.
  • the patient suffers from excessive gingival (22) incision, the risk of secondary infection and the duration of treatment is increased.
  • the degree of gingival incision after the first procedure needs to be kept to a minimum, but the oral scanner known to date is limited to acquiring a three-dimensional replica model of the externally exposed oral surface. Because of this, there is a limit to apply to the implant site treatment.
  • An object of the present invention devised in view of the problems of the prior art, to provide an oral scanner that can irradiate the image of the gingiva inside the oral cavity in a small size and a three-dimensional overlay image display method using the same.
  • a projector for irradiating a source light source including a visible light source and an IR light source;
  • a camera for acquiring a three-dimensional image of the oral cavity surface and an IR image of the gingiva inside to detect the reflected light of the source light source;
  • an image processor for generating a 3D replica model by merging the IR image into a 3D image, wherein the IR image is irradiated in the oral cavity by the projector based on the 3D replica model.
  • Oral scanner for irradiating a source light source including a visible light source and an IR light source.
  • a position detecting unit for detecting the orientation of the oral cavity scanner, wherein the image processing unit corrects the 3D replica model based on the orientation information received from the position detecting unit. scanner.
  • the projector includes: a light source unit including a beam combiner and a visible light source and an IR light source disposed around the beam combiner; An illumination unit including a display panel and a TIR prism; And a projection lens unit.
  • the oral cavity scanner of (1) comprising: a projection lens unit;
  • the camera may include a focus lens unit to which reflected light is incident; And a detector including a beam splitter and a visual sensor and an IR sensor disposed around the beam splitter.
  • the irradiation optical system includes: a light source unit including a beam combiner and a visible light source and an IR light source disposed around the beam combiner; An illumination unit including a display panel and a TIR prism; And a projection lens unit.
  • the three-dimensional overlay image display method of (5) characterized in that it comprises a.
  • the sensing optical system includes: a focus lens unit to which reflected light is incident; And a sensing unit including a beam splitter, a visual sensor and an IR sensor disposed around the beam splitter, and the three-dimensional overlay image display method according to the above (8).
  • step (10) The method of displaying a 3D overlay image of (5), wherein step (d) is performed by being corrected according to the orientation of the 3D replication model.
  • the oral cavity scanner of the present invention after generating a three-dimensional replication model consisting of a three-dimensional image of the surface of the oral cavity and the IR image of the gingiva, the IR image in the oral cavity in real time with reference to the three-dimensional replication model
  • the overlay can be investigated and can be usefully used in dental care.
  • the gingival incision can be minimized at the pre-abutment assembly stage. The pain of the patient can be reduced and the side effects of the secondary contamination before and after the procedure can be minimized.
  • such an oral scanner can be combined with the irradiation optical system and the detection optical system required for the acquisition of three-dimensional image and IR image, it is advantageous in miniaturization of the product because it can utilize the irradiation optical system even when overlaying the IR image.
  • 1 is a cross-sectional structural view of the gingival inside implanted.
  • FIG. 2 is a block diagram of the oral cavity scanner in accordance with an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of displaying a 3D overlay image using the oral cavity scanner of FIG. 2.
  • FIG. 4 is a block diagram of a projector constituting the irradiation optical system according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a camera constituting a detection optical system according to an embodiment of the present invention.
  • Figure 6 is an operation when obtaining a three-dimensional image of the oral surface.
  • FIG. 8 is a cross-sectional view of the skin transmittance of IR light according to the wavelength.
  • FIG. 9 is a view showing a state in which the IR image is irradiated with the oral overlay.
  • the oral cavity scanner 10 has a projector 110, a camera 120, and an image processor 130 as a basic configuration, and may further include a position sensing unit 140.
  • the oral cavity scanner 10 may be connected to the external power supply device 160, the storage device 170, the display device 180, or the like through the interface 150.
  • 3 is a flowchart illustrating a 3D overlay image display method using the oral cavity scanner 10 of FIG. 2.
  • Method for displaying a three-dimensional overlay image corresponding to the operation of the oral cavity scanner 10, (a) obtaining a three-dimensional image of the surface in the oral cavity (S10); (b) acquiring an IR image of the inside of the gingiva (S20); (c) generating a 3D replication model (S30); And (d) irradiating the IR image with the intraoral overlay (S40).
  • the step (d) is corrected according to the orientation of the 3D replica model using the position sensing unit 140. Can be performed.
  • the projector 110 of FIG. 2 constitutes an irradiation optical system and is related to performing step (a) of FIG. 3, and preferably performing step (d).
  • the camera 120 of FIG. 2 forms a sensing optical system and is involved in performance in step (b) of FIG. 3.
  • the image processor 130 of FIG. 2 relates to performing step (c) of FIG. 3.
  • the position detecting unit 140 of FIG. 2 relates to the orientation correction of the oral cavity scanner 10 in step (d) of FIG. 3.
  • the present application ultimately generates a three-dimensional replica model by merging a three-dimensional image (hereinafter referred to as 'first image') and an IR image of a gingival inside (hereinafter referred to as 'second image') to generate a three-dimensional replica model.
  • 'first image' a three-dimensional image
  • 'second image' an IR image of a gingival inside
  • the present invention uses the same irradiation optical system and the detection optical system even when the source light source required for the acquisition of the 'first image' and 'second image' is different, and the irradiation optical system used to acquire the overlay image is also used. This reduces the product size of the oral scanner.
  • FIG. 4 shows a configuration diagram of a projector 110 constituting an irradiation optical system according to an embodiment of the present invention
  • FIG. 5 shows a configuration diagram of a camera 120 constituting a sensing optical system according to an embodiment of the present invention.
  • 6 and 7 illustrate a process of obtaining a 3D image and an IR image of the oral cavity surface by using the projector 110 and the camera 120, respectively.
  • each component of the oral cavity scanner 10 will be described sequentially.
  • the irradiation optical system may be understood as the projector 110, and the sensing optical system may be equivalent to the camera 120.
  • the projector 110 irradiates an intraoral overlay of the second image with the basic role of irradiating the source light source for acquiring the first image and the second image. It also serves as a role.
  • the projector 110 includes a beam combiner 1122 (Beam Combiner), a light source unit 112 including a visible light source 1124 and an IR light source 1126 disposed around the beam combiner; An illumination unit 114 including a display panel 1142 and a TIR prism 1144; And a projection lens unit 116, wherein the visible light source 1124 and the IR light source 1126 of the light source unit 112 constitute a source light source.
  • Beam Combiner Beam Combiner
  • a light source unit 112 including a visible light source 1124 and an IR light source 1126 disposed around the beam combiner
  • An illumination unit 114 including a display panel 1142 and a TIR prism 1144
  • a projection lens unit 116 wherein the visible light source 1124 and the IR light source 1126 of the
  • the visible light source 1124 basically serves as a source light source for acquiring a 'first image'.
  • the visible light source 1124 is converted into a pattern by the display panel 1142 of the lighting unit 114 and irradiated.
  • the visible light source 1124 also serves as a source light source for visually confirming by overlaying a 'second image' related to the position of an artifact inside the gingiva, for example, the implantation position of the metal fixture during implantation, to the oral surface.
  • the visible light source 1124 may be configured as an LED light source, or may be configured as white light or as separate RGB light so as to extract a 3D image using chromatic aberration according to each wavelength.
  • the optical system having a large chromatic aberration is advantageous for extracting 3D information because the focal plane is different according to RGB light, that is, the projection distance is different depending on the wavelength.
  • the IR light source 1126 serves as a source light source required for the second image acquisition, and in this case, the wavelength of the IR light source 1126 may be controlled to penetrate deeply to the vicinity of the gingival hypodermis.
  • the IR light source 1126 has a large chromatic aberration range, which is advantageous for 3D image extraction.
  • the beam combiner 1122 serves to combine the visible light source 1124 and the IR light source 1126 with the same optical axis in order to simultaneously or sequentially use the same optical system except for the light source.
  • the beam combiner 1122 may be in the form of a plate using a prism or a coating treatment. In this case, the visible light source 1124 is reflected and the IR light source 1126 is transmitted through the dichroic coating process.
  • the display panel 1142 of the lighting unit 114 may be composed of, for example, a DMD and a micro device of Texas Instruments, which induces an angle change of light irradiated for each pixel according to the image information and transmits the angle change to the projection lens unit 116. Play a role.
  • the TIR prism 1144 of the lighting unit 114 does not have a large angular change and serves to control the light to match the total reflection condition in order to separate the incident and the exit in the same space.
  • the relay lens 118 interposed between the beam combiner 1122 and the lighting unit 114 has a TIR prism 1144 of the lighting unit 114 at a predetermined angle and illuminance of the light emitted from the beam combiner 1122. To guide the investigation.
  • the projection lens unit 116 serves to project the image information generated by the display panel 1142 of the lighting unit 114 in the oral cavity, and may generate chromatic aberration to enhance the 3D effect.
  • the camera 120 detects the reflected light of the source light source irradiated by the projector 110 and transmits the reflected light to the image processor 130.
  • the camera 120 may include a focus lens unit 122 to which reflected light is incident; And a sensing unit 124 including a beam splitter 1242 and a visual sensor 1244 and an IR sensor 1246 disposed around the beam splitter 1242.
  • the reflected light of the visible light source 1124 and the IR light source 1126 passes through the focus lens unit 122 and is incident to the sensing unit 124.
  • the reflected light for the visible light source 1124 and the IR light source 1126 incident to the detector 124 is separated by the beam splitter 1242, and then detected by the visual sensor 1244 and the IR sensor 1246 to be image information. Is obtained.
  • the image processor 130 generates 3D data for the 'first image' and the 'second image', and generates a 3D replica model based on the 3D data.
  • the 3D replica model is 3D data in which the 'first image' and 'second image' are merged, and become a reference in the process of irradiating the 'second image' in the oral cavity.
  • the position sensing unit 140 serves to detect the orientation of the oral cavity scanner 10.
  • the orientation information of the oral cavity scanner 10 measured by the position detection unit 140 is transmitted to the image processing unit 130, and the image processing unit 130 corrects the 3D replica model based on the orientation information. Since the intraoral overlay irradiation is performed on the second image based on the three-dimensional replica model corrected in real time according to the movement of the oral cavity scanner 10, the intraoral overlay even if the oral scanner 10 is moved during the procedure.
  • the irradiation position of the second image may be kept constant.
  • the position sensing unit 140 may be implemented by hardware or software means.
  • a hardware means for example, an acceleration sensor, a geomagnetic sensor, or a GPS sensor is used to detect the coordinate position and angle information of ⁇ in the XYZ to detect the orientation information of the oral cavity scanner 10, or as a software means, for example, the camera.
  • the orientation information of the oral cavity scanner 10 may be sensed by detecting image information in real time detected through the detection optical system of 120 and comparing the image information with the previously obtained image information.
  • FIG. 6 illustrates an operation diagram of a first image acquisition process (S10 of FIG. 3) by the irradiation optical system of the projector 110 and the sensing optical system of the camera 120.
  • Arabic numerals shown in the drawings indicate a path through which visible light undergoing irradiation and reflection passes sequentially through respective optical elements constituting the projector 110 and the camera 120.
  • the white light irradiated simultaneously to the visible light source 1124 or the sequentially irradiated RGB light is determined by the beam combiner 1122 according to the wavelength.
  • the light which is illuminated on the display panel 1142 by the TIR prism 1144 via the relay lens 118 and converted into light in the form of a pattern by the display panel 1142 is the projection lens unit 116. Irradiated to the oral surface.
  • the RGB pattern light reflected from the oral cavity surface is introduced through the focus lens unit 122, and then, to the beam splitter 1242.
  • the visual sensor 1244 is acquired as a 'first image' and transmitted to the image processor 130.
  • FIG. 7 is a flowchart illustrating an operation of acquiring a 'second image' by the irradiation optical system of the projector 110 and the sensing optical system of the camera 120 (S20 of FIG. 3).
  • Arabic numerals shown in the figure indicate a path through which the irradiated and reflected IR light sequentially passes through each optical element constituting the projector 110 and the camera 120 similarly to FIG. 6.
  • the IR light emitted from the IR light source 1126 is reflected or transmitted according to the wavelength by the beam combiner 1122, and then The light, which is illuminated on the display panel 1142 by the TIR prism 1144 via the relay lens 118, and is converted into light in the form of a pattern by the display panel 1142, is irradiated through the projection lens unit 116 and gingival. Penetrates inside.
  • the sensing optical system of the camera 120 the IR pattern light reflected after the skin penetration is introduced through the focus lens unit 122, and then, by the beam splitter 1242.
  • the second image is acquired by the IR sensor 1246 and transferred to the image processor 130.
  • the wavelength of the IR light source 1126 is controlled in the range of 750 nm to 950 nm, so that it is sufficient to the vicinity of the hypodermis in which an artifact such as an implant fixture is placed. IR light can penetrate.
  • the 'first image' After generating the 3D replication model by merging the 'first image' according to FIG. 6 and the 'second image' according to FIG. 7 (S30 of FIG. 3), the 'first image' The overlay irradiation process (S40 of FIG. 3) to the intraoral surface of the second image ′ is performed according to the operation contents of the irradiation optical system of the projector 110 according to FIG. 6A.
  • a visible light source 1124 for displaying the placement position of the fixture according to the 'second image' is used as the source light source to be irradiated.
  • FIG. 9 shows a state where the placement position T of the fixture 32 according to the 'second image' is irradiated with the overlay in the oral cavity 20 using the oral cavity scanner 10 according to the present invention.
  • the oral cavity scanner 10 of the present invention after generating a three-dimensional replication model consisting of a three-dimensional image of the surface of the oral cavity 20 and the IR image of the inside of the gingiva 22, the reference to the three-dimensional replication model By overlaying the IR image in real time in the oral cavity 20 can be usefully used during dental practice.
  • the oral cavity scanner 10 may use a combination of an irradiation optical system and a sensing optical system for acquiring a 3D image and an IR image, and may also utilize the irradiation optical system even when overlaying an IR image, which is advantageous in miniaturizing a product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Endoscopes (AREA)

Abstract

본 발명은 환자의 구강 내에 삽입되어 비접촉식으로 스캐닝하여 3차원 모델을 생성하기 위한 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법에 관한 것이다. 상기 구강 스캐너는 가시광원 및 IR광원을 포함하는 소스 광원을 조사하기 위한 프로젝터; 상기 소스 광원에 대한 반사광을 감지하기 구강 표면에 대한 3차원 영상 및 치은 내부에 대한 IR 영상을 획득하기 위한 카메라; 및 상기 IR 영상을 3차원 영상에 병합하여 3차원 복제 모델을 생성하는 영상처리부;를 포함하고, 상기 IR 영상은 상기 3차원 복제 모델에 기초해 상기 프로젝터에 의해 구강 내 오버레이 조사되는 것을 특징으로 한다. 본 발명의 구강 스캐너에 따르면, 구강 내 표면에 대한 3차원 영상과 치은 내부에 대한 IR 영상으로 이루어진 3차원 복제 모델을 생성한 후, 해당 3차원 복제 모델을 참조하여 구강 내에 상기 IR 영상을 실시간으로 오버레이 조사할 수 있어 치과 진료시 유용하게 활용될 수 있다.

Description

구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법
본 발명은 환자의 구강 내에 삽입되어 비접촉식으로 스캐닝하여 3차원 모델을 생성하기 위한 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법에 관한 것이다.
구강 내의 모습을 재현하는 복제모델을 만드는 것은 치과 진료에서 가장 중요한 과정 중 하나이며, 정확성과 효율성이 동시에 만족되어야 하는 과정이다. 대부분의 치과 진료에서는 구강 내 모습을 재현할 때 석고 모형을 제작하는 것과 같은 전통적인 인상채득(impression taking) 방법을 사용하고 있다.
최근 디지털 기술이 적용되면서 치과 진료에서도 기존의 방법을 대체하는 디지털화된 임상방법이 개발되어 적용되고 있고, 그 일환으로 환자의 구강 내에 삽입되어 비접촉식으로 스캐닝하여 2차원 영상 데이터를 획득하고 이러한 2차원 영상 데이터을 처리하여 3차원 복제 모델을 생성함으로써 인상채득 과정을 수행하는 구강 스캐너가 도입되어 있다.
이러한 구강 스캐너는 치아삭제를 제외하고 인상채득, 모델 또는 보철물 제작 등과 같은 대부분의 치과 진료에 도입되어 활용되고 있으며 현장 시술 분야에까지 그 적용분야가 확대되고 있는 추세이다. 특히 치과 진료 중 임플란트 시술은 상실된 치아의 기능을 대체하기 위한 대표적인 시술 중 하나이며, 도 1에 도시된 바와 같이 임플란트(30)는 치은(22) 깊숙히 치조골(24)에 고정되는 픽스처(fixture)(32), 상기 픽스처(32) 상부에 결합되는 지대주(abutment)(34) 및 보철물(crown)(36)으로 구성된다. 픽스처(32)는 인공 치근 역할을 하며, 지대주(34)는 픽스처(32)에 볼트 체결되며 치은(22)을 안정화시키고 최종 보철물(36)을 결합하기 전 치조골(24) 및 턱뼈 내부로 세균이 침투하는 것을 방지한다.
한편 현장 임플란트 시술 과정에는, 픽스처(32)를 치조골(24)에 식립하는 1차 시술 후 절개된 치은(22)을 봉합하고 대략 3 ~ 6개월 동안 유지하여 픽스처(32)가 치조골(24)에 골융합되도록 한 다음, 지대주(34)에 결합될 픽스처(32)를 노출시키기 위해 봉합된 치은(22)을 재차 절개하는 과정이 수반된다. 이 경우 과도한 치은(22) 절개시 환자의 고통, 이차 감염의 위험성 및 치료기간이 증가되는 문제가 있다.
이러한 문제를 해소하기 위해서는 1차 시술 후 치은(22) 절개의 정도는 최소한으로 억제될 필요가 있지만, 현재까지 알려지 구강 스캐너는 외부에 노출된 구강 표면에 대한 3차원 복제 모델만을 획득하는 것에 제한되어 있기 때문에 임플란트 현장 시술에 적용되는데 한계를 갖고 있는 실정이다.
상기한 종래기술의 문제점에 착안하여 안출된 본 발명의 목적은, 소형 사이즈로 치은 내부에 대한 영상을 구강 내 오버레이 조사할 수 있는 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법을 제공하는 것이다.
본 발명은 전술한 과제를 해결하기 위하여 예의 검토한 결과 이루어진 것으로, 그 요지는 특허청구범위에 기재한 바와 동일한 아래의 내용이다.
(1) 가시광원 및 IR광원을 포함하는 소스 광원을 조사하기 위한 프로젝터; 상기 소스 광원에 대한 반사광을 감지하기 구강 표면에 대한 3차원 영상 및 치은 내부에 대한 IR 영상을 획득하기 위한 카메라; 및 상기 IR 영상을 3차원 영상에 병합하여 3차원 복제 모델을 생성하는 영상처리부;를 포함하고, 상기 IR 영상은 상기 3차원 복제 모델에 기초해 상기 프로젝터에 의해 구강 내 오버레이 조사되는 것을 특징으로 하는 구강 스캐너.
(2) 구강 스캐너의 방위를 감지하기 위한 위치감지부를 더 포함하고, 상기 영상처리부는 위치 감지부에서 수신되는 방위 정보에 기초해 3차원 복제 모델을 보정하는 것을 특징으로 하는 상기 (1)의 구강 스캐너.
(3) 상기 프로젝터는, 빔컴바이너와, 그 주변에 배치되는 가시광원 및 IR 광원을 포함하는 광원부; 디스플레이 패널 및 TIR 프리즘을 포함하는 조명부; 및 투사렌즈부;를 포함하는 것을 특징으로 하는 상기 (1)의 구강 스캐너.
(4) 상기 케메라는, 반사광이 입사되는 초점렌즈부; 및 빔스플리터와, 그 주변에 배치되는 비쥬얼 센서 및 IR 센서를 포함하는 감지부;를 포함하는 것을 특징으로 하는 상기 (1)의 구강 스캐너.
(5) (a) 가시광원을 패턴 조사하여 그 반사광을 감지함으로써 구강 내 표면에 대한 3차원 영상을 획득하는 단계; (b) IR 광원을 조사하여 그 반사광을 감지함으로써 치은 내부에 대한 IR 영상을 획득하는 단계; (c) 상기 3차원 영상과 IR 영상을 병합하여 3차원 복제 모델을 생성하는 단계; 및 (d) 상기 3차원 복제 모델을 참조하여 상기 IR 영상을 구강 내 오버레이 조사하는 단계;를 포함하는 3차원 오버레이 영상 표시방법.
(6) 상기 (a) 단계, (b) 단계 및 (d) 단계에서 광원 조사는 동일한 조사광학계를 이용해 수행되는 것을 특징으로 하는 상기 (5)의 3D 오버레이 영상 표시방법.
(7) 상기 조사광학계는, 빔컴바이너와, 그 주변에 배치되는 가시광원 및 IR 광원을 포함하는 광원부; 디스플레이 패널 및 TIR 프리즘을 포함하는 조명부; 및 투사렌즈부;를 포함하는 것을 특징으로 하는 상기 (5)의 3차원 오버레이 영상 표시방법.
(8) 상기 (a) 및 (b) 단계에서 반사광 감지는 동일한 감지광학계를 이용해 수행되는 것을 특징으로 하는 상기 (5)의 3차원 오버레이 영상 표시방법.
(9) 상기 감지광학계는, 반사광이 입사되는 초점렌즈부; 및 빔스플리터와, 그 주변에 배치되는 비쥬얼 센서 및 IR 센서를 포함하는 감지부;를 포함하는 것을 특징으로 하는 상기 (8)의 3차원 오버레이 영상 표시방법.
(10) 상기 (d) 단계는 상기 3차원 복제 모델의 방위에 따라 보정되어 수행되는 것을 특징으로 하는 상기 (5)의 3차원 오버레이 영상 표시방법.
본 발명의 구강 스캐너에 따르면, 구강 내 표면에 대한 3차원 영상과 치은 내부에 대한 IR 영상으로 이루어진 3차원 복제 모델을 생성한 후, 해당 3차원 복제 모델을 참조하여 구강 내에 상기 IR 영상을 실시간으로 오버레이 조사할 수 있어 치과 진료시 유용하게 활용될 수 있다. 특히, 현장 임플란트 시술시 구강 내 오버레이 조사된 IR 영상에 기초하여 픽스처의 식립 위치가 정확히 확인될 수 있기 때문에, 지대주(abutment) 조립 전단계에서 단순 천공만으로 치은 절개가 최소화될 수 있고 이에 따라 시술 과정에서 환자의 고통을 경감시킴과 동시에 시술 전후 2차 오염에 따른 시술 부작용을 최소할 수 있다. 또한 이러한 구강 스캐너는 3차원 영상 및 IR 영상의 획득에 필요한 조사광학계 및 감지광학계를 겸용할 수 있고, IR 영상을 오버레이 조사하는 경우에도 해당 조사광학계를 활용할 수 있어 제품 소형화에 유리하다.
도 1은 임플란트 시술된 치은 내부의 단면 구조도.
도 2은 본 발명의 실시예에 따른 구강 스캐너의 구성도.
도 3은 도 2의 구강 스캐너를 이용한 3차원 오버레이 영상 표시방법에 관한 플로우차트.
도 4는 본 발명의 실시예에 따른 조사광학계를 이루는 프로젝터의 구성도.
도 5은 본 발명의 실시예에 따른 감지광학계를 이루는 카메라의 구성도.
도 6은 구강 표면에 대한 3차원 영상 획득시 동작도.
도 7은 치은 내부에 대한 IR 영상 획득시 동작도.
도 8은 파장에 따른 IR 광의 피부 투과도에 관한 단면도.
도 9는 IR 영상이 구강 내 오버레이 조사된 상태를 나타낸 도면.
이하, 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명의 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있는 것으로 이해되어야 한다. 한편, 도면에서 동일 또는 균등물에 대해서는 동일 또는 유사한 참조번호를 부여하였으며, 또한 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다.
도 2는 본 발명의 실시예에 따른 구강 스캐너(10)의 구성도를 나타낸다. 구강 스캐너(10)는 프로젝터(110), 카메라(120), 영상처리부(130)를 기본 구성으로 하며, 위치감지부(140)를 선택적으로 더 포함할 수 있다. 구강 스캐너(10)는 인터페이스(150)를 통해 외부 전원장치(160), 저장장치(170) 또는 디스플레이장치(180) 등과 연결될 수 있다. 도 3은 도 2의 구강 스캐너(10)를 이용한 3차원 오버레이 영상 표시방법에 관한 플로우차트를 나타낸다. 3차원 오버레이 영상 표시방법은, 구강 스캐너(10)의 동작 내용에 해당되며, (a) 구강 내 표면에 대한 3차원 영상을 획득하는 단계(S10); (b) 치은 내부에 대한 IR 영상을 획득하는 단계(S20); (c) 3차원 복제 모델을 생성하는 단계(S30); 및 (d) IR 영상을 구강 내 오버레이 조사하는 단계(S40);를 통해 수행되며, 선택적으로 상기 (d) 단계는 상기 위치감지부(140)를 이용하여 상기 3차원 복제 모델의 방위에 따라 보정되어 수행될 수 있다.
도 2 및 도 3을 참조할 때, 도 2의 프로젝터(110)는 조사광학계를 이루며 도 3의 (a) 단계 수행에 관계되고, 바람직하게는 (d) 단계 수행에 관계된다. 도 2의 카메라(120)는 감지광학계를 이루며 도 3의 (b) 단계에 수행에 관계된다. 도 2의 영상처리부(130)는 도 3의 (c) 단계 수행에 관계된다. 도 2의 위치감지부(140)는 도 3의 (d) 단계에서 구강 스캐너(10)의 방위 보정에 관계된다. 본원은 궁극적으로 구강 내 표면에 대한 3차원 영상(이하, '제1 영상') 및 치은 내부에 대한 IR 영상(이하, '제2 영상')을 병합하여 3차원 복제 모델을 생성한 후, 이러한 3차원 복제 모델을 참조하여 '제2 영상'만을 상기 프로젝터(110)를 통해 오버레이 조사함으로써 임플란트 현장 시술을 용이하게 하는 것이다. 또한 본 발명은 '제1 영상' 및 '제2 영상'의 획득에 필요한 소스광원을 달리하는 경우라도 동일한 조사광학계 및 감지광학계를 사용함과 동시에 오버레이 영상의 조사도 영상 획득에 사용되었던 조사광학계를 사용함으로써 구강 스케너의 제품 사이즈를 줄이는 것이다.
도 4는 본 발명의 실시예에 따른 조사광학계를 이루는 프로젝터(110)의 구성도를 나타내고, 도 5은 본 발명의 실시예에 따른 감지광학계를 이루는 카메라(120)의 구성도를 나타낸다. 도 6 및 도 7은 상기 프로젝터(110) 및 카메라(120)를 이용하여 구강 표면에 대한 3차원 영상 및 IR 영상을 획득하는 과정을 각각 나타낸다. 이하, 구강 스캐너(10)의 구성 각부에 대해 순차적으로 설명한다. 아래 설명에서 조사광학계는 프로젝터(110)에, 감지광학계는 카메라(120)와 동등 개념으로 각각 이해될 수 있다.
상기 프로젝터(110)는, 도 4를 참조할 때, '제1 영상' 및 '제2 영상' 획득을 위한 소스광원을 조사하는 기본적인 역할과 함께 최종적으로 '제2 영상'을 구강 내 오버레이 조사하는 역할을 겸한다. 상기 프로젝터(110)는 빔컴바이너(1122)(Beam Combiner)와, 그 주변에 배치되는 가시광원(1124) 및 IR 광원(1126)을 포함하는 광원부(112); 디스플레이 패널(1142) 및 TIR 프리즘(1144)을 포함하는 조명부(114); 및 투사렌즈부(116);를 포함하며, 상기 광원부(112)의 가시광원(1124)과 IR 광원(1126)이 소스광원을 구성한다.
상기 가시광원(1124)은 기본적으로 '제1 영상' 획득에 필요한 소스광원 역할을 한다. 이 경우 가시광원(1124)은 조명부(114)의 디스플레이 패널(1142)에 의해 패턴 형태로 전화되어 조사된다. 또한 상기 가시광원(1124)은 치은 내부의 인공물의 위치, 예컨대 임플란트 시술시 금속 픽스처(fixture)의 식립 위치와 관련된 '제2 영상'을 구강 표면에 오버레이 조사하여 육안으로 확인시키기 위한 소스광원 역할도 수행한다. 가시광원(1124)은 LED 광원으로 구성될 수 있으며, 백색광으로 구성되거나 또는 경우에 따라 각 파장에 따른 색수차를 이용해 3D 영상을 추출할 수 있도록 별도의 RGB 광으로 구성될 수 있다. 색수차가 큰 광학계는 RGB 광에 따라 초점면이 달라지므로, 즉 파장에 따른 투사 거리가 다르기 때문에 3D 정보를 추출하기에 유리하다.
상기 IR 광원(1126)은 제2 영상 획득에 필요한 소스광원 역할을 하며, 이 경우 IR 광원(1126)의 파장은 치은 내부 하피(hypodermis) 근방까지 깊숙히 침투할 수 있도록 제어되는 것이 바람직하다. 이러한 IR 광원(1126)은 색수차 범위가 커서 3D 영상 추출에 유리하다.
상기 빔컴바이너(1122)는 광원을 제외하고 동일한 광학계를 동시 혹은 순차적으로 사용하기 위해 가시광원(1124)과 IR 광원(1126)을 같은 광축으로 결합시키는 역할을 수행한다. 빔컴바이너(1122)는 프리즘(Prism)이 사용되거나 코팅 처리가 된 플레이트 형태일 수 있다. 이 경우 다이코로익 코팅(Dichroic Coating) 처리시 가시광원(1124)은 반사하고 IR 광원(1126)은 투과하도록 설계되어 있다.
상기 조명부(114)의 디스플레이 패널(1142)은 예컨대 텍사스인스트루먼트社의 DMD와 마이크로 소자로 구성될 수 있으며, 영상정보에 따라 픽셀별로 조사되는 광의 각도변화를 유인하여 투사렌즈부(116)로 전달하는 역할을 한다. 이 과정에서, 상기 조명부(114)의 TIR 프리즘(1144)은 각도 변화가 크지 않고 동일한 공간에서 입사와 출사를 분리하기 위해서 전반사 조건에 맞도록 빛을 제어하는 역할을 수행한다.
한편 상기 빔컴바이너(1122)와 조명부(114) 사이에 개재된 릴레이렌즈(118)는 빔컴바이너(1122)로부터 출사된 광이 소정의 각도와 조도로 조명부(114)의 TIR 프리즘(1144)에 조사되도록 유도하는 역할을 수행한다.
상기 투사렌즈부(116)는 조명부(114)의 디스플레이 패널(1142)에 의해 생성된 영상정보를 구강 내 투사하는 역할을 수행하며, 3D 효과를 높이기 위해 색수차를 발생시킬 수 있다.
상기 카메라(120)는, 도 5를 참조할 때, 프로젝터(110)에 의해 조사된 소스광원에 대한 반사광을 감지하여 영상처리부(130)로 전달하는 역할을 수행한다. 구체적으로 카메라(120)는, 반사광이 입사되는 초점렌즈부(122); 및 빔스플리터(1242)와, 그 주변에 배치되는 비쥬얼 센서(1244) 및 IR 센서(1246)를 포함하는 감지부(124);를 포함한다. 가시광원(1124) 및 IR 광원(1126)에 대한 반사광은 상기 초점렌즈부(122)를 통과하여 감지부(124)에 입사된다. 감지부(124)로 입사된 가시광원(1124) 및 IR 광원(1126)에 대한 반사광은 빔스플리터(1242)에 분리된 후, 비쥬얼 센서(1244) 및 IR 센서(1246)에 의해 감지되어 영상정보가 획득된다.
상기 영상처리부(130)는 '제1 영상' 및 '제2 영상'에 대한 3D 데이터를 생성하고, 이에 기초해 3차원 복제 모델을 생성한다. 3차원 복제 모델은 '제1 영상' 및 '제2 영상'이 병합된 3D 데이터이고 '제2 영상'을 구강 내 오버레이 조사하는 과정에서 기준이 된다.
상기 위치감지부(140)는 구강 스캐너(10)의 방위를 감지하는 역할을 한다. 위치감지부(140)에서 측정된 구강 스캐너(10)의 방위 정보는 영상처리부(130)에 전송되고, 영상처리부(130)는 이러한 방위 정보에 기초해 3차원 복제 모델을 보정하게 된다. 구강 스캐너(10)의 움직임에 따라 실시간으로 보정된 3차원 복제 모델에 기초해 제2 영상에 대한 구강 내 오버레이 조사가 이루어지기 때문에, 시술 과정에 구강 스캐너(10)의 움직임이 있다 하더라도 구강 내 오버레이되는 제2 영상의 조사 위치는 일정하게 유지될 수 있다.
이러한 위치감지부(140)는 하드웨어 또는 소프트웨어적인 수단으로 구현될 수 있다. 하드웨어적인 수단으로서 예컨대 가속도 센서, 지자계 센서 또는 GPS 센서 등을 사용하여 XYZ에 좌표 위치 및 αβγ의 각도 정보를 감지하여 구강 스캐너(10)의 방위 정보를 감지하거나, 또는 소프트웨어적인 수단으로서 예컨대 상기 카메라(120)의 감지광학계를 통해 감지되는 실시간의 영상 정보를 감지하여 기존에 획득된 영상 정보와 비교하여 구강 스캐너(10)의 방위 정보를 감지할 수 있다.
도 6은 상기 프로젝터(110)의 조사광학계와 상기 카메라(120)의 감지광학계에 의한 제1 영상 획득 과정(도 3의 S10)에 관한 동작도를 나타낸다. 도면에 표시된 아라비아 숫자는 조사 및 반사과정 있는 가시광이 프로젝터(110) 및 카메라(120)를 구성하는 각각의 광학 소자를 순차적으로 통과하는 경로를 나타낸다. 도 6의 (a)를 참조할 때 먼저 프로젝터(110)의 조사광학계에 따르면, 가시광원(1124)에 동시에 조사된 백색광 또는 순차적으로 조사된 RGB광은 빔컴바이너(1122)에 의해 파장에 따라 반사 또는 투과된 후, 릴레이렌즈(118)를 거쳐 TIR 프리즘(1144)에 의해 디스플레이 패널(1142)에 조명되고, 디스플레이 패널(1142)에 의해 패턴 형태의 광으로 전환된 광은 투사렌즈부(116)를 통해 구강 내 표면에 조사된다. 도 6의 (b)를 참조할 때, 다음으로 카메라(120)의 감지광학계에 따르면, 구강 표면에서 반사된 RGB 패턴 광은 초점렌즈부(122)를 통해 도입된 후, 빔스플리터(1242)에 의해 비쥬얼 센서(1244)에 '제1 영상'으로 획득되어 영상처리부(130)로 전달된다.
도 7은 상기 프로젝터(110)의 조사광학계와 상기 카메라(120)의 감지광학계에 의한 '제2 영상' 획득 과정(도 3의 S20)에 관한 동작도를 나타낸다. 도면에 표시된 아라비아 숫자는, 도 6과 유사하게 조사 및 반사과정 있는 IR 광이 프로젝터(110) 및 카메라(120)를 구성하는 각각의 광학 소자를 순차적으로 통과하는 경로를 나타낸다. 도 7의 (a)를 참조할 때, 먼저 프로젝터(110)의 조사광학계에 따르면, IR 광원(1126)에서 조사된 IR광은 빔컴바이너(1122)에 의해 파장에 따라 반사 또는 투과된 후, 릴레이렌즈(118)를 거쳐 TIR 프리즘(1144)에 의해 디스플레이 패널(1142)에 조명되고, 디스플레이 패널(1142)에 의해 패턴 형태의 광으로 전환된 광은 투사렌즈부(116)를 통해 조사되어 치은 내부로 침투된다. 도 7의 (b)를 참조할 때 다음으로 카메라(120)의 감지광학계에 따르면, 피부 침투 후 반사된 IR 패턴 광은 초점렌즈부(122)를 통해 도입된 후, 빔스플리터(1242)에 의해 IR 센서(1246)에 제2 영상으로 획득되어 영상처리부(130)로 전달된다. 이 경우, 파장에 따른 IR 광의 피부 투과도를 나타는 도 8 에 따르면 IR 광원(1126)의 파장을 750nm ~ 950nm의 범위에서 제어함으로써 임플란트의 픽스처와 같은 인공물이 식립되어 있는 하피(hypodermis) 근방까지 충분한 IR 광이 침투될 수 있다.
한편, 상기 도 6에 따른'제1 영상' 및 도 7에 따른 '제2 영상'을 병합하여 3차원 복제 모델을 생성한 후(도 3의 S30), 이러한 3차원 복제 모델에 기초해 '제2 영상'에 대한 구강 내 표면으로의 오버레이 조사 과정(도 3의 S40)은 상기 도 6의 (a)에 따른 프로젝터(110)의 조사광학계의 동작 내용에 따라 수행된다. 이 경우, 조사되는 소스광원은 '제2 영상'에 따른 픽스처의 식립 위치를 표시하기 위한 가시광원(1124)이 이용된다.
도 9는 본 발명에 따른 구강 스캐너(10)를 이용해 '제2 영상'에 따른 픽스처(32)의 식립 위치(T)가 이 구강(20) 내 오버레이 조사된 모습을 나타낸다. 본 발명의 구강 스캐너(10)에 따르면, 구강(20) 내 표면에 대한 3차원 영상과 치은(22) 내부에 대한 IR 영상으로 이루어진 3차원 복제 모델을 생성한 후, 해당 3차원 복제 모델을 참조하여 구강(20) 내에 상기 IR 영상을 실시간으로 오버레이 조사할 수 있어 치과 진료시 유용하게 활용될 수 있다. 특히, 현장 임플란트 시술시 구강 내 오버레이 조사된 IR 영상에 기초하여 픽스처의 식립 위치(T)가 정확히 확인될 수 있기 때문에, 지대주(abutment) 조립 전단계에서 단순 천공만으로 치은(22) 절개가 최소화될 수 있고 이에 따라 시술 과정에서 환자의 고통을 경감시킴과 동시에 시술 전후 2차 오염에 따른 시술 부작용을 최소할 수 있다. 또한 이러한 구강 스캐너(10)는 3차원 영상 및 IR 영상의 획득에 필요한 조사광학계 및 감지광학계를 겸용할 수 있고, IR 영상을 오버레이 조사하는 경우에도 해당 조사광학계를 활용할 수 있어 제품 소형화에 유리하다.
이상의 설명은 본 발명의 구체적인 실시예에 관한 것이다. 본 발명에 따른 상기 실시예는 설명의 목적으로 개시된 사항이나 본 발명의 범위를 제한하는 것으로 이해되지는 않으며, 해당 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질을 벗어나지 아니하고 다양한 변경 및 수정이 가능한 것으로 이해되어야 한다. 따라서, 이러한 모든 수정과 변경은 특허청구범위에 개시된 발명의 범위 또는 이들의 균등물에 해당하는 것으로 이해될 수 있다.

Claims (10)

  1. 가사광원 및 IR광원을 포함하는 소스 광원을 조사하기 위한 프로젝터; 상기 소스 광원에 대한 반사광을 감지하기 구강 표면에 대한 3차원 영상 및 치은 내부에 대한 IR 영상을 획득하기 위한 카메라; 및 상기 IR 영상을 3차원 영상에 병합하여 3차원 복제 모델을 생성하는 영상처리부;를 포함하고, 상기 IR 영상은 상기 3차원 복제 모델에 기초해 상기 프로젝터에 의해 구강 내 오버레이 조사되는 것을 특징으로 하는 구강 스캐너.
  2. 제1항에 있어서, 구강 스캐너의 방위를 감지하기 위한 위치감지부를 더 포함하고, 상기 영상처리부는 위치 감지부에서 수신되는 방위 정보에 기초해 3차원 복제 모델을 보정하는 것을 특징으로 하는 구강 스캐너.
  3. 제1항에 있어서, 상기 프로젝터는,
    빔컴바이너와, 그 주변에 배치되는 가시광원 및 IR 광원을 포함하는 광원부; 디스플레이 패널 및 TIR 프리즘을 포함하는 조명부; 및 투사렌즈부;를 포함하는 것을 특징으로 하는 구강 스캐너.
  4. 제1항에 있어서, 상기 케메라는,
    반사광이 입사되는 초점렌즈부; 및 빔스플리터와, 그 주변에 배치되는 비쥬얼 센서 및 IR 센서를 포함하는 감지부;를 포함하는 것을 특징으로 하는 구강 스캐너.
  5. (a) 가시광원을 패턴 조사하여 그 반사광을 감지함으로써 구강 내 표면에 대한 3차원 영상을 획득하는 단계;
    (b) IR 광원을 조사하여 그 반사광을 감지함으로써 치은 내부에 대한 IR 영상을 획득하는 단계;
    (c) 상기 3차원 영상과 IR 영상을 병합하여 3차원 복제 모델을 생성하는 단계; 및
    (d) 상기 3차원 복제 모델을 참조하여 상기 IR 영상을 구강 내 오버레이 조사하는 단계;
    를 포함하는 3차원 오버레이 영상 표시방법.
  6. 제5항에 있어서, 상기 (a) 단계, (b) 단계 및 (d) 단계에서 광원 조사는 동일한 조사광학계를 이용해 수행되는 것을 특징으로 하는 3D 오버레이 영상 표시방법.
  7. 제6항에 있어서, 상기 조사광학계는, 빔컴바이너와, 그 주변에 배치되는 가시광원 및 IR 광원을 포함하는 광원부; 디스플레이 패널 및 TIR 프리즘을 포함하는 조명부; 및 투사렌즈부;를 포함하는 것을 특징으로 하는 3차원 오버레이 영상 표시방법.
  8. 제5항에 있어서, 상기 (a) 및 (b) 단계에서 반사광 감지는 동일한 감지광학계를 이용해 수행되는 것을 특징으로 하는 3차원 오버레이 영상 표시방법.
  9. 제8항에 있어서, 상기 감지광학계는, 반사광이 입사되는 초점렌즈부; 및 빔스플리터와, 그 주변에 배치되는 비쥬얼 센서 및 IR 센서를 포함하는 감지부;를 포함하는 것을 특징으로 하는 3차원 오버레이 영상 표시방법.
  10. 제5항에 있어서, 상기 (d) 단계는 상기 3차원 복제 모델의 방위에 따라 보정되어 수행되는 것을 특징으로 하는 3차원 오버레이 영상 표시방법.
PCT/KR2019/008742 2018-07-17 2019-07-16 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법 WO2020017854A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980047568.XA CN112423654A (zh) 2018-07-17 2019-07-16 口腔扫描仪及利用其的三维覆盖影像显示方法
US17/260,695 US20210298582A1 (en) 2018-07-17 2019-07-16 Oral scanner and 3d overlay image display method using same
EP19838203.8A EP3824800A4 (en) 2018-07-17 2019-07-16 ORAL SCANNING DEVICE AND 3D OVERLAY IMAGE DISPLAY METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180082794A KR20200008749A (ko) 2018-07-17 2018-07-17 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법
KR10-2018-0082794 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017854A1 true WO2020017854A1 (ko) 2020-01-23

Family

ID=69164116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008742 WO2020017854A1 (ko) 2018-07-17 2019-07-16 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법

Country Status (5)

Country Link
US (1) US20210298582A1 (ko)
EP (1) EP3824800A4 (ko)
KR (1) KR20200008749A (ko)
CN (1) CN112423654A (ko)
WO (1) WO2020017854A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382517B2 (en) * 2019-03-11 2022-07-12 D4D Technologies, Llc Intra-oral scanning device with integrated optical coherence tomography (OCT)
CN116077031A (zh) * 2023-04-11 2023-05-09 广州华飞迪通医疗科技有限公司 基于dlp的激光口腔扫描仪及其成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680816B1 (ko) * 2003-01-14 2007-02-08 가부시키가이샤 모리타 세이사쿠쇼 진단용 촬영기
KR20090113324A (ko) * 2007-02-14 2009-10-29 루미네트엑스 코포레이션 피하구조물을 물체 표면에 투사하는 장치와 방법
KR20140077380A (ko) * 2012-12-14 2014-06-24 라파바이오 주식회사 구강용 3차원 스캐너
KR101444727B1 (ko) * 2014-03-18 2014-09-26 주식회사 디오 임플란트용 가이드 스탠트 제조방법
KR20160041632A (ko) * 2014-10-08 2016-04-18 주식회사 굿닥터스 다목적 의료용 카메라 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468287B2 (ja) * 2014-06-05 2019-02-13 株式会社ニコン 走査型投影装置、投影方法、走査装置、及び手術支援システム
KR101709975B1 (ko) 2014-09-30 2017-02-27 전자부품연구원 무구동 광학계를 구비하는 구강 스캐너 및 이를 이용한 구강 스캐닝 방법
US10426351B2 (en) * 2015-11-10 2019-10-01 Quantum Dental Technologies Inc. Systems and methods for spatial positioning of diagnostic and or treatment probe based on surface profile detection
BR112018011227B1 (pt) * 2015-12-04 2021-07-20 3Shape A/S Método para preencher um gráfico dentário digital com informações de condição dentária para os dentes de um paciente
WO2017144934A1 (en) * 2016-02-26 2017-08-31 Trophy Guided surgery apparatus and method
EP3578131B1 (en) * 2016-07-27 2020-12-09 Align Technology, Inc. Intraoral scanner with dental diagnostics capabilities
KR101852834B1 (ko) 2016-09-12 2018-04-27 주식회사 디디에스 3차원 구강 스캐너

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680816B1 (ko) * 2003-01-14 2007-02-08 가부시키가이샤 모리타 세이사쿠쇼 진단용 촬영기
KR20090113324A (ko) * 2007-02-14 2009-10-29 루미네트엑스 코포레이션 피하구조물을 물체 표면에 투사하는 장치와 방법
KR20140077380A (ko) * 2012-12-14 2014-06-24 라파바이오 주식회사 구강용 3차원 스캐너
KR101444727B1 (ko) * 2014-03-18 2014-09-26 주식회사 디오 임플란트용 가이드 스탠트 제조방법
KR20160041632A (ko) * 2014-10-08 2016-04-18 주식회사 굿닥터스 다목적 의료용 카메라 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3824800A4 *

Also Published As

Publication number Publication date
KR20200008749A (ko) 2020-01-29
EP3824800A4 (en) 2022-04-20
CN112423654A (zh) 2021-02-26
EP3824800A1 (en) 2021-05-26
US20210298582A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6586211B2 (ja) プロジェクションマッピング装置
US10238472B2 (en) Estimating a surface texture of a tooth
Hack et al. Evaluation of the accuracy of six intraoral scanning devices: an in-vitro investigation
US10495881B2 (en) Eyeglasses having at least one partially transparent screen, and method for operation of eyeglasses
EP3485841A1 (en) Three-dimensional scanner and apparatus for processing artificial object using same
JP2019517864A (ja) 統合されたカメラを有する歯科ミラーおよびそのアプリケーション
EP2428764A1 (en) System and method for processing and displaying intra-oral measurement data
JP2002528832A (ja) 双方向歯科治療ネットワーク
JP2010502300A (ja) 双方向歯科修復ネットワーク
WO2020017854A1 (ko) 구강 스캐너 및 이를 이용한 3차원 오버레이 영상 표시방법
JP2009523552A (ja) 三次元データ取得の視覚化
JP2006102110A (ja) 血管位置提示装置
JP2002529122A (ja) 歯のシェードを解析するシステムならびに方法
Erozan et al. Evaluation of the precision of different intraoral scanner-Computer Aided Design (CAD) software combinations in digital dentistry
US20200060798A1 (en) Color Selection Aid For Target Objects Such As Dental Objects
JP6750812B2 (ja) 治療支援システム、治療支援装置、治療支援方法、及びコンピュータプログラム
Revilla-León et al. Accuracy of the 3-dimensional virtual patient representation obtained by using 4 different techniques: An in vitro study
US20120236135A1 (en) Intraoral Occlusion Measurement and Registration
US20240081960A1 (en) Method for sub-gingival intraoral scanning
EP4250248A1 (en) Identification apparatus, identification method, and identification program
JP2019141261A (ja) 情報表示装置、情報表示システム、情報表示方法、及び情報表示プログラム
EP1849411A2 (en) Method for providing data associated with the intraoral cavity
WO2019124845A1 (ko) 임플란트 진단용 영상 생성 시스템 및 그 생성방법
CN113660914A (zh) 用于牙科护理的操作灯
WO2021133086A2 (ko) 3차원 스캐너의 데이터 통합 방법 및 이를 이용한 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019838203

Country of ref document: EP

Effective date: 20210217