CN111556776B - 用于放射疗法系统的增加的束输出和动态场成形 - Google Patents

用于放射疗法系统的增加的束输出和动态场成形 Download PDF

Info

Publication number
CN111556776B
CN111556776B CN201880085643.7A CN201880085643A CN111556776B CN 111556776 B CN111556776 B CN 111556776B CN 201880085643 A CN201880085643 A CN 201880085643A CN 111556776 B CN111556776 B CN 111556776B
Authority
CN
China
Prior art keywords
target
radiation therapy
electron beam
periodic
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880085643.7A
Other languages
English (en)
Other versions
CN111556776A (zh
Inventor
A·K·普瓦
D·E·康斯坦丁
J·E·克莱顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Medical Systems Inc filed Critical Varian Medical Systems Inc
Priority to CN202210876433.8A priority Critical patent/CN115282504A/zh
Publication of CN111556776A publication Critical patent/CN111556776A/zh
Application granted granted Critical
Publication of CN111556776B publication Critical patent/CN111556776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • A61N5/1044Scanning the radiation beam, e.g. spot scanning or raster scanning with multiple repetitions of the scanning pattern
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • A61N5/1047X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT with movement of the radiation head during application of radiation, e.g. for intensity modulated arc therapy or IMAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1078Fixed beam systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • A61N5/1082Rotating beam systems with a specific mechanical construction, e.g. gantries having multiple beam rotation axes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges

Abstract

本发明的实施例描述了用于通过将电子束聚焦在靶标(例如,钨板)上以产生具有改进的场成形的高产x射线输出来提供放射疗法治疗的系统和方法。采用修改的电子束空间分布来扫描靶标,诸如2D周期性束路径,其与典型的紧凑型束空间分布相比有利地降低了x射线靶标温度。因此,在不牺牲x射线靶标寿命期限的情况下,x射线靶标可以产生高产输出。与现有技术相比,2D周期性束路径的使用允许更冷的靶标功能机制,使得可以在短时间内施加更多剂量。

Description

用于放射疗法系统的增加的束输出和动态场成形
相关申请的交叉引用
本申请要求2017年11月16日递交的名称为“INCREASED BEAM OUTPUT ANDDYNAMIC FIELD SHAPING(增加的束输出和动态场成形)”的美国临时专利申请号62/587,331的优先权,其通过引用并入于此。
技术领域
本发明的实施例总体上涉及放射疗法领域。更具体地,本发明的实施例涉及用于增加放射疗法系统的束输出和对其进行成形的技术。
背景技术
放射疗法治疗的基本目标是在最小化健康组织中吸收的辐射量的同时照射靶标体积。对电子束进行成形是最小化健康组织和关键结构中吸收的剂量的重要方式。传统的准直器钳口被用于对矩形治疗区域进行成形。但是,由于治疗体积通常不是矩形的,因此需要附加的成形。在线性加速器上,铅块或单独制造的塞罗本德 (Cerrobend)块附接到标准准直系统下的治疗头上。另一选项是使用多叶准直器(MLC)。多叶准直器正成为线性加速器上用于x射线束成形的主要工具。在放射疗法治疗的准备和执行中,这是一种简单且有用的系统。
多叶准直器是可靠的,因为多叶准直器的制造方为其精度、控制和可靠性开发了各种机制,并减少了通过叶以及叶之间的辐射的泄漏和传输。如今,已知多叶准直器是一种非常有用的用于简单的场成形的临床系统,但是在动态放射疗法中,随着叶在照射过程中移动,其使用变得越来越重要。这支持在被治疗的体积的任何部分上的精确剂量递送。体积调制的弧形疗法(VMAT),一种未来的疗法,是基于MLC的动态使用。
使用MLC作为场成形设备的问题在于,它们相对较慢地改变形状,并且因此相对较慢地改变患者的场形状,例如治疗体积。提供一种具有更快的场成形响应时间的系统将是有利的,这可能会减少对患者的总体治疗时间。
此外,采用MLC设备的辐射治疗系统通常使用聚焦的电子束,其被引导到钨靶标以生成x射线。聚焦的电子束会在靶标上产生必须被消散和管理的大量热量。这通常意味着必须降低入射电子束功率/剂量率,使得可以延长靶标的寿命。提供一种可以供应更高剂量率同时仍保持钨靶标的延长寿命的辐射治疗系统将是有利的。
发明内容
本发明的实施例描述了用于通过将电子束聚焦在靶标(例如,钨板)上以产生具有改进的场成形的高产x射线输出来提供放射疗法治疗的系统和方法。采用修改的电子束空间分布来扫描靶标,例如在二维(2D)周期性路径中,其与典型的紧凑型束空间分布相比有利地降低了x射线靶标温度。因此,在不牺牲x射线靶标寿命期限的情况下,x射线靶标可以产生高产输出。与现有技术相比,2D 周期性束路径的使用允许更冷的靶标功能机制,使得可以在短时间内施加更多剂量。
除了减少靶标上的热量问题之外,靶标上的环形束分布产生x 射线场,可以被用来向患者提供定制的剂量施加,其中剂量施加可以比通过使用多叶准直器来提供的或可能的更快地改变形状和剂量分布。因此,本发明的实施例以更快的持续时间,例如减少的治疗时间来提供放射疗法。应当理解,多叶准直器(和块)可以与经由本发明的环形束分布所生成的x射线场结合使用,以进一步对患者的剂量施加进行成形。
根据一个实施例,公开了一种放射疗法治疗系统,其包括:计算机系统;用于产生和发射电子束的电子发射设备;靶标;用于在垂直方向上提供磁场以用于使电子束向靶标转向的多个转向线圈,其中靶标响应于与电子束的相互作用而生成x射线;以及被配置为被放置在靶标与患者之间的束成形设备,该束成形设备可操作以对x 射线的治疗体积进行成形。该计算机系统包括指令,该指令在被执行时使该计算机系统控制多个转向线圈在2D周期性路径中扫描电子束遍及靶标,以对x射线的分布进行成形。
根据一个实施例,电子发射设备包括电子枪和线性加速器,该线性加速器被耦合以从电子枪接收电子并且可操作以产生从电子发射设备发射的电子束。
根据一个实施例,与束成形设备的物理配置和取向相结合的2D 周期性路径的形状限定被暴露给患者的x射线的所得治疗体积。
根据另一实施例,公开了一种放射疗法治疗系统。该放射疗法治疗系统包括:电子发射设备,用于产生和发射电子束;靶标;多个转向线圈,用于在垂直方向上提供磁场以用于使电子束向靶标转向,其中靶标响应于与电子束的相互作用而生成x射线;与多个转向线圈耦合的控制设备;以及包括多叶准直器的束成形设备。束成形设备被配置为被放置在靶标和患者之间,并且束成形设备可操作以对x射线的治疗体积进行成形。控制设备可操作以控制多个转向线圈的磁场,以使电子束在2D周期性路径中扫描遍及靶标,以产生 x射线,并且其中进一步地,与束成形设备的物理配置和取向相结合的2D周期性路径的形状限定被暴露给患者的x射线的所得治疗体积。
根据一个实施例,电子发射设备包括电子枪和线性加速器,该线性加速器被耦合以从电子枪接收电子,并且可操作以产生电子束,其中电子束约为200至300MeV。
根据一个实施例,2D周期性路径包括利萨如(Lissajous)类型路径。
根据一个实施例,2D周期性路径包括基于球形谐波的形状。
根据一个实施例,基于球形谐波的形状包括s波形状、p波形状和d波形状的线性组合。
根据不同的实施例,公开了一种使用放射疗法治疗系统生成x 射线治疗体积的方法。该方法包括:使用电子发射设备生成和发射电子束,使电子束转向到靶标上并且在2D周期性路径中动态地扫描电子束遍及靶标,经由靶标并且响应于与根据2D周期性路径在该靶标上扫描的电子束的相互作用而产生x射线的2D周期性分布,以及通过使用束成形设备对x射线的2D周期性分布进行成形来产生x射线的所得治疗体积,其中与束成形设备的物理配置和取向相结合的 2D周期性路径的形状限定x射线的所得治疗体积。
根据一些实施例,该方法还包括调节多个转向线圈上的电压和电流中的至少一项,以在2D周期性路径中扫描电子束遍及靶标。
根据一些实施例,2D周期性路径包括凸包。
附图说明
附图图示了本公开的实施例,并且与说明书一起用于解释本公开的原理,附图被并入在本说明书中并形成本说明书的一部分,在附图中,相同的附图标记描绘相同的元件。
图1描绘了根据本发明实施例的示例性放射疗法系统,其用于在靶标上扫描2D周期性电子束路径以产生x射线场。
图2描绘了根据本发明实施例的示例性放射疗法系统,其用于在靶标上生成2D周期性电子束路径,以产生使用束成形设备成形的 x射线。
图3描绘了根据本发明实施例的示例性放射疗法系统,其用于生成2D周期性电子束路径以产生x射线场,与块或楔相结合地使用 MLC进一步对x射线场进行成形。
图4描绘了根据本发明实施例的用于生成患者治疗计划以使用x 射线的2D周期性分布执行放射疗法的示例性断层摄影患者成像会话。
图5描绘了根据本发明实施例的使用一对转向线圈所生成的示例性圆形(2D周期性)束路径。
图6描绘了根据本发明实施例的使用一对转向线圈所生成的示例性椭圆(2D周期性)束路径。
图7描绘了根据本发明实施例的使用一对转向线圈所生成的示例性八字形(2D周期性)束路径。
图8描绘了根据本发明实施例的示例性放射疗法治疗系统的框图和数据流图,该示例性放射疗法治疗系统用于使用2D周期性电子束路径来生成x射线的2D周期性场或分布以产生治疗体积。
图9是描绘了根据本发明实施例的计算机实现的步骤的示例性序列的流程图,其用于在放射疗法系统中使用2D周期性电子束路径来自动产生x射线的2D周期性分布。
图10是描绘了根据本发明实施例的计算机实现的步骤的示例性序列的流程图,其用于使用放射疗法系统从2D周期性电子束路径来自动产生x射线的2D周期性分布。
图11示出了根据本公开的各种实施例的可以在其上实现本文描述的一个或多个各种实施例的计算系统的示例的框图。
具体实施方式
现在将对若干实施例进行详细参考。尽管将结合备选实施例来描述主题,但是应当理解,备选实施例并不旨在将所要求保护的主题限于这些实施例。相反,所要求保护的主题旨在覆盖备选方案、修改方案和等同方案,其可以被包括在由所附权利要求限定的要求保护的主题的精神和范围内。
此外,在以下详细描述中,阐述了许多具体细节以提供对所要求保护的主题的透彻理解。然而,本领域技术人员将认识到,可以在没有这些具体细节或其等同物的情况下实践实施例。在其他情形中,没有详细描述公知的方法、过程、部件和电路,以免不必要地使主题的各方面和特征模糊。
根据方法来呈现和讨论以下详细描述的各部分。尽管在描述该方法的操作的本发明的附图中(例如,图9和图10)中公开了其步骤和顺序,但是这些步骤和顺序是示例性的。实施例非常适合于执行本文的附图的流程图中所记载的各种其他步骤或步骤的变体,并且是以不同于本文所描绘和描述的顺序来执行。
根据可以在计算机存储器上执行的对数据位的操作的过程、步骤、逻辑块、处理和其他符号表示来呈现详细描述的一些部分。这些描述和表示是数据处理领域的技术人员用来将其工作的实质最有效地传达给本领域其他技术人员的手段。在本文中,将过程、计算机执行的步骤、逻辑块、过程等等总体视为引起所需结果的步骤或指令的自洽序列。这些步骤是需要对物理量进行物理操纵的步骤。通常,尽管不是必须的,这些量采取能够在计算机系统中存储、传送、组合、比较和以其他方式操纵的电或磁信号的形式。主要出于通用的原因,已经证明,有时将这些信号称为位、值、元素、符号、字符、项、数字等等是方便的。
然而,应当牢记,所有这些和类似的术语都要与适当的物理量相关联,并且仅仅是被应用于这些量的方便标签。除非从以下讨论中明显看出另有明确说明,否则应当理解,使用诸如“访问”、“显示”、“写入”、“包括”、“存储”、“绘制”、“传输”、“指令”、“关联”、“标识”、“捕获”、“控制”、“编码”、“解码”、“监测”等等术语的整个讨论指的是计算机系统或类似计算设备的动作和过程,其将被表示为计算机系统的寄存器和存储器内的物理(电子)量的数据操纵并转换为被类似地表示为计算机系统存储器或寄存器或其他此类信息存储、传输或显示设备内的物理量的其他数据。
使用2D周期性电子束路径的增加的束输出和动态场成形
本发明的实施例描述了用于使用电子发射设备提供放射疗法治疗的系统和方法,该电子发射设备产生聚焦在靶标(例如,钨板) 上的电子束,以生成具有改进的场成形的高产x射线输出。高产x 射线输出和改进的场成形最小化健康组织所接收的辐射,提高了治疗的剂量率/通量,并提高了钨靶标的使用寿命期。
与典型的紧凑型束空间分布相比,根据本发明的实施例使用修改的电子束空间分布,诸如2D周期性束分布,以降低x射线靶标温度。相对于紧凑的束轮廓,由于电子束的2D周期性路径,靶标的温度被降低,例如,由电子束生成的热量根据电子束路径而被散布在靶标内。因此,可以在不牺牲x射线靶标寿命期限的情况下增加电子束输出。与现有技术相比,2D周期性电子束分布的使用允许更冷的靶标功能机制(regime),使得可以在短时间内施加更多剂量。此外,钨靶标的使用寿命增加。
根据本发明的一些实施例,在由诸如Lissajous路径或基于球形谐波的形状(例如s波、p波、d波等)之类的一个或多个预定基本形状所限定的一个或多个2D周期性路径中扫描电子束,以增加输出并对电子束轮廓进行成形。2D周期性路径可以被快速动态地更改。与被用于多叶准直器(MLC)的笛卡尔式基本集相比,基本形状可以构成新的基本集。通过对靶标处的电子场进行动态地成形,可以比MLC更快地生成适合于肿瘤的束通量。MLC仍可以被用于在场的边缘处阻止泄漏,而不是用于初级束成形。
在一些实施例中,使用由特别设计的线圈所生成的外部磁场来改变电子束配置。在其他实施例中,使用生成2D周期性束的空心阴极,并且设计线性加速器使得沿着加速器保留2D周期性分布。在其他实施例中,现有的转向线圈被用来以高于200kHz的频率执行束的扫描圆形运动,以确保一个脉冲在一圈中被涂抹在靶标表面上。
关于图1,根据本发明的实施例描绘了用于生成到靶标的2D周期性电子束的示例性放射疗法系统100。电子发射设备105(例如,电子枪组件)生成电子束,并且波导110将电子束运送到聚焦线圈 115以使用磁场来聚焦电子束。根据一些实施例,电子发射设备105生成例如约30kV的电子束。根据公知的技术和装备,可以通过线性加速器(未图示出)将电子束加速至约200-300MeV。
在一个实施例中,使用一对磁性转向线圈120根据x射线靶标表面125上的预定路径使电子束偏转,实现了x射线的2D周期性分布。x射线靶标表面125可以是例如钨板或钨楔式的高产靶标表面。如下面更详细地描述的,可以动态地控制转向线圈120以使电子束沿着靶标125上的2D周期性路径偏转。与集中的束分布相比,2D 周期性束分布的使用通过在较宽的表面区域上动态移动该束而允许更冷的靶标功能机制。由此,可以在不牺牲靶标125的寿命期限的情况下充分增加靶标输出场130。动态束扫描可以被用来实现2D周期性束空间分布,并且还可以通过使用广义曲线改变扫描路径而用于动态场成形。
转向线圈120可以包括一对或多对转向线圈,其在垂直方向上动态地产生磁场,以用于使靶标表面125上的电子束转向。转向线圈120产生的磁场可以由计算机系统135(例如,图11中所描绘的计算机系统1100)例如通过调节跨转向线圈120的电压和/或电流来控制。可以通过改变被施加到转向线圈120的电压或电流来生成2D 周期性束分布,组合地产生预定的基本形状,例如Lissajous路径或基于球形谐波的形状(例如,s波、p波、d波等)或其线性组合,以增加输出并对束轮廓进行成形。在靶标125上的扫描的2D周期性束路径使x射线输出场或分布130被生成。有利地,通过转向线圈 120的对应动态调节,可以动态地改变该分布130。
根据一些备选实施例,靶标表面125不被使用并且放射疗法系统100被用来执行电子疗法。
在图2的示例中,根据本发明的实施例描绘了示例性放射疗法系统200,该示例性放射疗法系统200用于生成2D周期性电子束以产生使用束成形设备(例如MLC 220)成形的x射线。电子枪组件 205生成电子束,并且使用生成相反B场的一对转向线圈210实现x 射线的2D周期性分布,以使电子束在x射线靶标表面215上、在2D周期性路径上偏转。与现有技术相比,2D周期性束分布的使用允许更冷的靶标功能机制,使得可以在短时间内施加更多剂量。MLC 220可以被用来对从靶标215输出的x射线分布进行进一步成形。以这种方式,MLC220可以被用于在输出场的边缘处阻止泄漏(而不是初级束成形)。在该实施例中,成形的场输出225通过转向线圈 210和MLC 220的组合而被成形,并且例如根据治疗计划被递送到患者230的靶标区域。在该实施例中,通过动态地改变到转向线圈 210的信号以及MLC 220的重新配置,可以改变对患者的剂量施加。实际上,MLC 220可以提供粗略成形,并且转向线圈210可以提供精细成形等等,反之亦然。
在图3的实施例中,根据本发明的实施例描述了一种用于使用以下来生成成形的x射线分布的示例性放射疗法系统300:1)靶标 315上的2D周期性电子束路径;以及2)与块或楔(例如,铅块或塞罗本德块)组合的MLC 320。电子枪组件305生成电子束,并且使用一对转向线圈310实现x射线的2D周期性分布,以在x射线靶标表面315上的圆形路径上移动电子束。除了MLC 320之外,块335 还可以被用来执行场成形。由转向线圈310、块335和MLC 320进行成形的所得的成形的束输出325例如根据治疗计划被递送到患者 330的靶标区域。
关于图4,根据本发明的实施例描绘了用于使用2D周期性束路径生成患者治疗计划(例如,放射疗法治疗计划)的示例性患者成像会话400。患者405被定位在中心处并且在计算机断层摄影(CT) 扫描上发射辐射,该计算机断层摄影(CT)扫描被配置为组合围绕患者405在不同角度(例如,Θ18)上执行的一系列x射线暴露410。计算机系统控制(例如,图1-图3的)疗法系统以在不同位置处辐射患者。
图5描绘了根据本发明实施例的使用如本文所述的一对转向线圈所生成的示例性2D周期性束路径510。在生成用于提供放射疗法治疗的x射线场的靶标上扫描束路径510。在此示例中,2D周期性束路径大致为圆形或环形。
图6描绘了根据本发明实施例的使用如本文所述的一对转向线圈所生成的示例性椭圆束路径610。在生成用于提供放射疗法治疗的 x射线场的靶标上扫描束路径610。
图7描绘了根据本发明实施例的使用如本文所述的一对转向线圈所生成的示例性八字形束路径710。在生成用于提供放射疗法治疗的x射线场的靶标上扫描束路径710。
根据一些实施例,电子信号或命令被用来控制放射疗法设备,该放射疗法设备用于基于患者的治疗计划和一个或多个预定基本形状(例如,圆形、椭圆形、八字形、三叶形等等)来产生对应束路径。例如,可以选择多个形状,并且可以为每个形状指派特定的权重,该权重指示针对对应形状的期望束强度。在一个示例中,将电子(例如,数字)信号或命令从功率管理或控制单元发送到一对转向线圈,以改变转向线圈上的电流或电压来产生期望的形状。以这种方式关于患者移动电子束减少了靶标加热并增加了放射疗法系统的输出。在操作期间,可以使用诸如任意正弦波的控制信号来触发放射疗法系统,以定期生成电子束。
根据一些实施例,电子信号或命令被用来控制放射疗法设备,该放射疗法设备用于使用基本形状函数(例如,圆形、椭圆形、八字形、三叶形等等)的线性组合来产生任意2D形状(例如,凸包)。而且,可以针对快速递送精确强度调制的辐射疗法(IMRT)的快速弧形治疗优化对治疗体积的二维投影的平铺。
如图8中所描绘的,根据一些实施例,计算机系统805生成或访问用于使用放射疗法系统800提供放射疗法的患者治疗计划。患者治疗计划可以包括与治疗权重或幅度相关联的一个或多个预定义形状。基于治疗计划(例如,形状和权重),计算机系统805将一个或多个指令发送到放射疗法治疗系统的功率单元810,以用于根据患者治疗计划控制放射疗法治疗系统800的转向线圈815来生成电子束路径。功率单元810可以通过改变由功率单元810供应的被发送到转向线圈810的控制信号的电压或电流,使转向线圈815对电子束进行成形,以产生电子束路径。预成形的输出束被施加到产生高产x射线的靶标820(例如,钨板或钨楔),并且所得的输出x 射线分布825被施加到患者,以用于在其靶标区域上执行放射疗法。
关于图9,根据本发明的实施例描绘了用于自动生成2D周期性束分布以使用放射疗法系统产生x射线的治疗体积的计算机实现的步骤900的示例序列。在步骤905处,例如根据治疗计划从电子发射设备发射电子束,并且在步骤910处将电子束转向到预定靶标上。在步骤915处,在2D周期性路径中动态地扫描电子束遍及靶标,以产生x射线的2D周期性分布。在步骤920处,通过使用束成形设备对x射线的2D周期性分布进行成形来产生x射线的所得治疗体积。与现有技术相比,在步骤920处生成的所得治疗体积可以在短时间内提供更高的剂量,并且可以通过跨靶标表面分布热量来延长x射线靶标的寿命期。
关于图10,根据本发明的实施例描绘了用于使用放射疗法系统自动产生x射线的2D周期性分布的计算机实现的步骤1000的示例性序列。在步骤1005处,使用计算机系统确定用于治疗靶标区域的一个或多个形状(例如,球形谐波形状)和对应的权重。例如,可以根据基于计算机断层摄影(CT)扫描所生成的治疗计划来确定靶标区域。在步骤1010处,将表示形状和权重的一个或多个控制信号从计算机系统传输到功率管理单元。此后,在步骤1015处,功率管理单元响应于控制信号动态地调节被施加到转向线圈的电流或电压,以产生与形状和权重相对应的x射线(例如,x射线的2D周期性分布)。在步骤1020处,通过使用束成形设备对x射线的分布进行成形,生成x射线的所得治疗体积。与现有技术相比,由步骤1020 生成的所得治疗体积可以在短时间内提供更高的剂量,并且可以通过跨靶标表面分布热量来延长x射线靶标的寿命期。
有利地,可以在不移动部件的情况下(例如,不移动x射线靶标的情况下)实现根据本发明的实施例。然而,可以通过关于电子束移动x射线靶标来实现2D周期性束分布。关于靶标移动电子束减少了靶标加热并增加了电子束输出。
图11示出了根据本公开的各种实施例的可以在其上实现本文描述的一个或多个各种实施例的计算系统1100的示例的框图。计算机系统1100可以包括基于云的计算机系统、本地计算机系统或混合计算机系统,该混合计算机系统包括用于使用x射线的2D周期性分布来提供放射疗法的本地和远程设备。在基本配置中,系统1100包括至少一个处理单元1102和存储器1104。该基本配置在图11中由虚线1106图示出。系统1100还可以具有附加的特征和/或功能性。例如,系统1100还可以包括附加存储装置(例如,可移除和/或不可移除),包括但不限于磁盘、光盘或磁带。在图11中通过可移除存储装置1108和不可移除存储装置1120图示了这种附加存储装置。
系统1100还可以包含(多个)通信连接1122,其允许该设备例如在联网环境中使用与一个或多个远程计算机的逻辑连接与其他设备通信。此外,系统1100还可以包括(多个)输入设备1124,诸如但不限于语音输入设备,触摸输入设备、键盘、鼠标、笔、触摸输入显示设备等等。另外,系统1100还可以包括(多个)输出设备1126,诸如但不限于显示设备、扬声器、打印机等等。
在图11的示例中,存储器1104包括与根据本公开的一个或多个各种实施例1150相关联的计算机可读指令、数据结构、程序模块等。然而,(多个)实施例1150可以改为驻留在系统1100所使用的任何一种计算机存储介质中,或者可以被分布在计算机存储介质的某种组合上,或者可以被分布在联网计算机的某种组合上,但是不限于此。系统1100可以被配置为生成或访问放射疗法治疗计划并控制一个或多个转向线圈以根据放射疗法治疗计划产生束路径。
注意,计算系统1100可以不包括图11中所图示的所有元件。此外,计算系统1100可以被实现为包括图11中未图示出的一个或多个元件。要指出的是,可以以类似于本公开所描述和/或示出的任何方式来利用或实现计算系统1100,但是不限于此。
因此描述了本发明的实施例。尽管已经在特定实施例中描述了本发明,但是应当理解,本发明不应被解释为受这样的实施例的限制,而应根据所附权利要求来解释。

Claims (14)

1.一种放射疗法治疗系统,包括:
计算机系统;
电子发射设备,用于产生和发射电子束;
靶标;
多个转向线圈,用于在垂直方向上提供磁场以用于使所述电子束向所述靶标转向,其中所述靶标响应于与所述电子束的相互作用而生成x射线;以及
场成形设备,被配置为被放置在所述靶标和患者之间,所述场成形设备可操作以对所述x射线的治疗体积进行成形,
其中所述计算机系统包括指令,所述指令在被执行时使所述计算机系统控制所述多个转向线圈在2D周期性路径中扫描所述电子束遍及所述靶标,以产生x射线的2D周期性分布。
2.根据权利要求1所述的放射疗法治疗系统,其中所述电子发射设备包括:
电子枪;以及
线性加速器,被耦合以从所述电子枪接收电子,并且可操作以产生从所述电子发射设备发射的所述电子束。
3.根据权利要求1所述的放射疗法治疗系统,其中所述2D周期性路径包括利萨如类型形状。
4.根据权利要求1所述的放射疗法治疗系统,其中所述2D周期性路径包括基于球形谐波的形状。
5.根据权利要求1所述的放射疗法治疗系统,其中所述2D周期性路径包括s波形状、p波形状和d波形状的线性组合。
6.根据权利要求5所述的放射疗法治疗系统,其中所述2D周期性路径包括用于对所述电子束进行成形的非笛卡尔形状。
7.根据权利要求1所述的放射疗法治疗系统,其中与所述场成形设备的物理配置和取向相结合的所述2D周期性路径的形状限定被暴露给所述患者的x射线的所得治疗体积。
8.根据权利要求1所述的放射疗法治疗系统,其中所述指令在被执行时使所述计算机系统调节所述多个转向线圈上的电压和电流中的至少一项。
9.一种放射疗法治疗系统,包括:
电子发射设备,用于产生和发射电子束;
靶标;
多个转向线圈,用于在垂直方向上提供磁场以用于使所述电子束向所述靶标转向,其中所述靶标响应于与所述电子束的相互作用而生成x射线;
控制设备,与所述多个转向线圈耦合;以及
场成形设备,包括多叶准直器,所述场成形设备被配置为被放置在所述靶标和患者之间,所述场成形设备可操作以对所述x射线的治疗体积进行成形,并且
其中所述控制设备可操作以控制所述多个转向线圈的所述磁场,以使所述电子束在2D周期性路径中扫描遍及所述靶标,以产生x射线的2D周期性分布,并且其中进一步地,与所述场成形设备的物理配置和取向相结合的所述2D周期性路径的形状限定被暴露给所述患者的x射线的所得治疗体积。
10.根据权利要求9所述的放射疗法治疗系统,其中所述电子发射设备包括:
电子枪;以及
线性加速器,被耦合以从所述电子枪接收电子,并且可操作以产生所述电子束,其中所述电子束的范围从1MeV至300MeV。
11.根据权利要求10所述的放射疗法治疗系统,其中所述2D周期性路径包括利萨如类型路径。
12.根据权利要求10所述的放射疗法治疗系统,其中所述2D周期性路径包括基于球形谐波的形状。
13.根据权利要求12所述的放射疗法治疗系统,其中所述2D周期性路径包括s波形状、p波形状和d波形状的线性组合。
14.根据权利要求9所述的放射疗法治疗系统,其中所述控制设备可操作以通过调节所述多个转向线圈上的电压和电流中的至少一项来控制所述多个转向线圈的所述磁场。
CN201880085643.7A 2017-11-16 2018-11-16 用于放射疗法系统的增加的束输出和动态场成形 Active CN111556776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210876433.8A CN115282504A (zh) 2017-11-16 2018-11-16 放射疗法治疗系统以及在放射疗法治疗系统中的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762587331P 2017-11-16 2017-11-16
US62/587,331 2017-11-16
PCT/US2018/061623 WO2019099904A1 (en) 2017-11-16 2018-11-16 Increased beam output and dynamic field shaping for radiotherapy system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210876433.8A Division CN115282504A (zh) 2017-11-16 2018-11-16 放射疗法治疗系统以及在放射疗法治疗系统中的方法

Publications (2)

Publication Number Publication Date
CN111556776A CN111556776A (zh) 2020-08-18
CN111556776B true CN111556776B (zh) 2022-09-02

Family

ID=64664471

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210876433.8A Pending CN115282504A (zh) 2017-11-16 2018-11-16 放射疗法治疗系统以及在放射疗法治疗系统中的方法
CN201880085643.7A Active CN111556776B (zh) 2017-11-16 2018-11-16 用于放射疗法系统的增加的束输出和动态场成形

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210876433.8A Pending CN115282504A (zh) 2017-11-16 2018-11-16 放射疗法治疗系统以及在放射疗法治疗系统中的方法

Country Status (4)

Country Link
US (2) US11007381B2 (zh)
EP (2) EP3967367A1 (zh)
CN (2) CN115282504A (zh)
WO (1) WO2019099904A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9844358B2 (en) * 2014-06-04 2017-12-19 Varian Medical Systems, Inc. Imaging-based self-adjusting radiation therapy systems, devices, and methods
US10843011B2 (en) * 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
EP3967367A1 (en) 2017-11-16 2022-03-16 Varian Medical Systems Inc Increased beam output and dynamic field shaping for radiotherapy system
EP3932481B1 (en) * 2020-06-30 2023-12-27 Ion Beam Applications Multimodal proton therapy treatment planning system
WO2022240894A1 (en) * 2021-05-11 2022-11-17 Celestial Oncology Inc. Coupled robotic radiation therapy system
US20230293909A1 (en) * 2022-03-17 2023-09-21 Varian Medical Systems, Inc. High dose rate radiotherapy, system and method
CN114899066B (zh) * 2022-05-19 2023-04-07 电子科技大学 一种四带状注梯形线慢波结构及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269927A1 (de) * 1986-11-25 1988-06-08 Siemens Aktiengesellschaft Computertomograph
US5682412A (en) * 1993-04-05 1997-10-28 Cardiac Mariners, Incorporated X-ray source
WO2006012631A2 (en) * 2004-07-23 2006-02-02 Calypso Medical Technologies, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
WO2007090650A1 (en) * 2006-02-09 2007-08-16 Friedrich-Alexander-Universität Erlangen-Nürnberg Method and apparatus for determining one or more characteristics of radiation

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955089A (en) * 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
FR2386958A1 (fr) * 1977-04-06 1978-11-03 Cgr Mev Dispositif compact d'irradiation utilisant un accelerateur lineaire de particules chargees
US5153900A (en) * 1990-09-05 1992-10-06 Photoelectron Corporation Miniaturized low power x-ray source
US5267294A (en) * 1992-04-22 1993-11-30 Hitachi Medical Corporation Radiotherapy apparatus
US5651047A (en) * 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5550378A (en) * 1993-04-05 1996-08-27 Cardiac Mariners, Incorporated X-ray detector
WO1994029882A1 (en) * 1993-06-09 1994-12-22 Wisconsin Alumni Research Foundation Dynamic beam flattening apparatus for radiation therapy
JP2617283B2 (ja) 1995-05-26 1997-06-04 技術研究組合医療福祉機器研究所 放射線治療計画装置
US6260005B1 (en) 1996-03-05 2001-07-10 The Regents Of The University Of California Falcon: automated optimization method for arbitrary assessment criteria
JPH1028742A (ja) * 1996-07-18 1998-02-03 Hitachi Medical Corp 放射線治療装置
JP3563226B2 (ja) * 1997-03-11 2004-09-08 日本原子力研究所 スパイラル・ビーム走査によるイオンビームの大面積均一照射法
US5757885A (en) * 1997-04-18 1998-05-26 Siemens Medical Systems, Inc. Rotary target driven by cooling fluid flow for medical linac and intense beam linac
US6222544B1 (en) 1997-10-17 2001-04-24 Siemens Medical Systems, Inc. Graphical user interface for radiation therapy treatment apparatus
US6198957B1 (en) * 1997-12-19 2001-03-06 Varian, Inc. Radiotherapy machine including magnetic resonance imaging system
US6187037B1 (en) 1998-03-11 2001-02-13 Stanley Satz Metal stent containing radioactivatable isotope and method of making same
IT1299175B1 (it) 1998-05-11 2000-02-29 Enea Ente Nuove Tec Composizione contenente radioisotopi immobilizzati su particelle solide, utile in particolare per la brachiterapia clinica in patologie
US6198802B1 (en) * 1998-10-06 2001-03-06 Cardiac Mariners, Inc. Scanning beam x-ray source and assembly
US6234671B1 (en) * 1998-10-06 2001-05-22 Cardiac Mariners, Inc. X-ray system with scanning beam x-ray source below object table
US6580940B2 (en) * 2000-02-02 2003-06-17 George Gutman X-ray system with implantable needle for treatment of cancer
US6504899B2 (en) 2000-09-25 2003-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method for selecting beam orientations in intensity modulated radiation therapy
US6445766B1 (en) * 2000-10-18 2002-09-03 Siemens Medical Solutions Usa, Inc. System and method for improved diagnostic imaging in a radiation treatment system
US6411675B1 (en) 2000-11-13 2002-06-25 Jorge Llacer Stochastic method for optimization of radiation therapy planning
US7922923B2 (en) * 2001-02-01 2011-04-12 Creatv Microtech, Inc. Anti-scatter grid and collimator designs, and their motion, fabrication and assembly
AU2003213771A1 (en) 2002-03-06 2003-09-22 Tomotherapy Incorporated Method for modification of radiotherapy treatment delivery
US6993112B2 (en) 2002-03-12 2006-01-31 Deutsches Krebsforschungszentrum Stiftung Des Oeffentlichen Rechts Device for performing and verifying a therapeutic treatment and corresponding computer program and control method
IT1333559B (it) 2002-05-31 2006-05-04 Info & Tech Spa Macchina per radioterapia intraoperatoria.
EP1560475A4 (en) * 2002-10-25 2008-07-09 Japan Science & Tech Agency ELECTRONIC ACCELERATOR AND RADIOTHERAPY DEVICE WITH IT
US20090063110A1 (en) 2003-03-14 2009-03-05 Transpire,Inc. Brachytherapy dose computation system and method
US7778691B2 (en) 2003-06-13 2010-08-17 Wisconsin Alumni Research Foundation Apparatus and method using synchronized breathing to treat tissue subject to respiratory motion
EA010207B1 (ru) 2003-10-07 2008-06-30 Номос Корпорейшн Система планирования, способ и устройство для конформной радиотерапии
AU2004298243A1 (en) 2003-12-02 2005-06-23 Fox Chase Cancer Center Method of modulating laser-accelerated protons for radiation therapy
US7522706B2 (en) * 2004-01-13 2009-04-21 Koninklijke Philips Electronics N.V. X-ray tube cooling collar
EP1584353A1 (en) 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
WO2006005059A2 (en) 2004-06-30 2006-01-12 Lexitek, Inc. High resolution proton beam monitor
CN101432739A (zh) * 2004-07-29 2009-05-13 金实验室公司 超灵敏传感器和分析物的快速检测
US7453983B2 (en) 2005-01-20 2008-11-18 Carestream Health, Inc. Radiation therapy method with target detection
US8306184B2 (en) * 2005-05-31 2012-11-06 The University Of North Carolina At Chapel Hill X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulation radiation field intensity patterns for radiotherapy
US7880154B2 (en) 2005-07-25 2011-02-01 Karl Otto Methods and apparatus for the planning and delivery of radiation treatments
ITVE20050037A1 (it) 2005-08-04 2007-02-05 Marco Sumini Apparecchiatura per trattamenti di radioterapia interstiziale ed intraoperatoria.
US7295649B2 (en) * 2005-10-13 2007-11-13 Varian Medical Systems Technologies, Inc. Radiation therapy system and method of using the same
US9468777B2 (en) * 2005-10-17 2016-10-18 Alberta Health Services Integrated external beam radiotherapy and MRI system
GB2436424A (en) * 2006-02-28 2007-09-26 Elekta Ab A reference phantom for a CT scanner
US7616735B2 (en) 2006-03-28 2009-11-10 Case Western Reserve University Tomosurgery
JP4730167B2 (ja) 2006-03-29 2011-07-20 株式会社日立製作所 粒子線照射システム
US20080123813A1 (en) 2006-04-07 2008-05-29 Maurer Calvin R Automatic selection of multiple collimators
US8073104B2 (en) 2006-05-25 2011-12-06 William Beaumont Hospital Portal and real time imaging for treatment verification
US10279196B2 (en) 2006-09-28 2019-05-07 Accuray Incorporated Radiation treatment planning using four-dimensional imaging data
DE102008007245B4 (de) * 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
WO2008115830A2 (en) 2007-03-16 2008-09-25 Cyberheart, Inc. Radiation treatment planning and delivery for moving targets in the heart
US8014494B2 (en) 2009-10-20 2011-09-06 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US7623623B2 (en) 2007-06-29 2009-11-24 Accuray Incorporated Non-collocated imaging and treatment in image-guided radiation treatment systems
US7835492B1 (en) 2007-11-27 2010-11-16 Velayudhan Sahadevan Lethal and sublethal damage repair inhibiting image guided simultaneous all field divergent and pencil beam photon and electron radiation therapy and radiosurgery
EP2116277A1 (en) 2008-05-06 2009-11-11 Ion Beam Applications S.A. Device and method for particle therapy monitoring and verification
EP2321001A1 (en) 2008-05-15 2011-05-18 Intelect Medical Inc. Clinician programmer system interface for monitoring patient progress
WO2009155700A1 (en) * 2008-06-24 2009-12-30 Marco Carlone Radiation therapy system
CN102132279B (zh) 2008-08-14 2020-03-03 皇家飞利浦电子股份有限公司 前瞻性适应性辐射治疗计划
US8644946B2 (en) 2008-12-04 2014-02-04 The Cleveland Clinic Foundation System and method to define target volume for stimulation in brain
US20100178245A1 (en) 2009-01-13 2010-07-15 Arnsdorf Morton F Biocompatible Microbubbles to Deliver Radioactive Compounds to Tumors, Atherosclerotic Plaques, Joints and Other Targeted Sites
US7839973B2 (en) 2009-01-14 2010-11-23 Varian Medical Systems International Ag Treatment planning using modulability and visibility factors
US8600003B2 (en) 2009-01-16 2013-12-03 The University Of North Carolina At Chapel Hill Compact microbeam radiation therapy systems and methods for cancer treatment and research
US8693629B2 (en) 2009-12-09 2014-04-08 The Johns Hopkins University Method and system for administering internal radionuclide therapy (IRT) and external radiation therapy (XRT)
US20110006224A1 (en) 2009-07-09 2011-01-13 Maltz Jonathan S Digital Tomosynthesis in Ion Beam Therapy Systems
AU2010273298B2 (en) * 2009-07-15 2014-10-23 Viewray Technologies, Inc. Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
WO2011024085A1 (en) 2009-08-31 2011-03-03 Koninklijke Philips Electronics, N.V. Interactive computer-aided editor for compensators used in radiotherapy treatment planning
JP4712905B2 (ja) 2009-09-09 2011-06-29 学校法人東海大学 腫瘍細胞の選択的な殺傷方法およびそのための装置
US10007961B2 (en) 2009-09-09 2018-06-26 Wisconsin Alumni Research Foundation Treatment planning system for radiopharmaceuticals
WO2011053802A2 (en) 2009-10-30 2011-05-05 Tomotherapy Incorporated Non-voxel-based broad-beam (nvbb) algorithm for intensity modulated radiation therapy dose calculation and plan optimization
US8613694B2 (en) 2010-01-25 2013-12-24 James Sherman Walsh Method for biological modulation of radiation therapy
DE102010001743B4 (de) * 2010-02-10 2012-07-12 Siemens Aktiengesellschaft Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
US9694205B2 (en) 2010-02-12 2017-07-04 Elekta Ab (Publ) Radiotherapy and imaging apparatus
EP3195902B1 (en) * 2010-02-24 2019-07-10 Accuray, Inc. Gantry image guided radiotherapy system
EP2542307A4 (en) 2010-03-01 2013-10-09 Intraop Medical Corp COMBINED RADIOTHERAPY WITH HYPOXIC CELL SENSITILIZERS
US8284898B2 (en) * 2010-03-05 2012-10-09 Accuray, Inc. Interleaving multi-energy X-ray energy operation of a standing wave linear accelerator
BR112012026233B8 (pt) * 2010-04-13 2021-04-13 Varian Med Sys Inc sistema de tratamento por radiação
WO2011156526A2 (en) * 2010-06-08 2011-12-15 Accuray, Inc. Imaging methods and target tracking for image-guided radiation treatment
US9155908B2 (en) 2010-06-11 2015-10-13 Koninklijke Philips N.V. Simultaneous multi-modality inverse optimization for radiotherapy treatment planning
US8986186B2 (en) 2010-08-17 2015-03-24 Board Of Regents, The University Of Texas System Automated treatment planning for radiation therapy
US9258876B2 (en) * 2010-10-01 2016-02-09 Accuray, Inc. Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage
GB2484529B (en) * 2010-10-15 2012-09-19 Siemens Ag Beam deflection arrangement within a combined radiation therapy and magnetic resonance unit
CN102095852A (zh) * 2010-11-24 2011-06-15 中国检验检疫科学研究院 一种用于快速检测新型h1n1流感病毒的双抗体夹心法
GB201021841D0 (en) 2010-12-22 2011-02-02 Univ Bristol A system for upstream direct X-Ray detection
EP2661275B1 (en) 2011-01-07 2019-01-02 Poseida Therapeutics, Inc. Compositions and methods for delivery of high-affinity oxygen binding agents to tumors
US8636636B2 (en) 2011-01-28 2014-01-28 Siemens Medical Solutions Usa, Inc. Grid radiotherapy for static and dynamic treatment delivery
US9005262B2 (en) 2011-02-03 2015-04-14 Tria Beauty, Inc. Radiation-based dermatological devices and methods
US9636525B1 (en) 2011-02-15 2017-05-02 Velayudhan Sahadevan Method of image guided intraoperative simultaneous several ports microbeam radiation therapy with microfocus X-ray tubes
DE102011005739A1 (de) 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung eines Bestrahlungsplans
JP5637055B2 (ja) 2011-04-18 2014-12-10 株式会社日立製作所 粒子線治療計画装置および粒子線治療装置
CL2011000898A1 (es) * 2011-04-20 2011-06-24 Univ La Frontera Dispositivo para generar un haz convergente de electrones y rayos-x que comprende uno o mas lentes magneticos y/o electricos que permiten focalizar un haz de electrones provenientes de una fuente, impactar el haz en un casquete anodico y generar un haz de rayos-x colimado convergente.
US8831179B2 (en) * 2011-04-21 2014-09-09 Carl Zeiss X-ray Microscopy, Inc. X-ray source with selective beam repositioning
US9330879B2 (en) * 2011-08-04 2016-05-03 John Lewellen Bremstrahlung target for intensity modulated X-ray radiation therapy and stereotactic X-ray therapy
US8918183B2 (en) 2011-08-09 2014-12-23 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing
WO2013065762A1 (ja) * 2011-11-02 2013-05-10 富士フイルム株式会社 放射線照射装置、放射線照射方法、及びプログラム記憶媒体
US20150117599A1 (en) * 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
WO2013081218A2 (ko) 2011-12-02 2013-06-06 Kim Jong Ki 브래그 피크 기반 입자 유도 방사선 치료요법
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
CA2862290A1 (en) 2012-01-18 2013-10-17 Neumedicines, Inc. Il-12 for radiation protection and radiation-induced toxicity mitigation
US8948341B2 (en) 2012-02-12 2015-02-03 Christopher V. Beckman Radiation therapy techniques using targeted wave superposition, magnetic field direction and real-time sensory feedback
CN104246961B (zh) 2012-03-03 2017-05-17 小利兰·斯坦福大学托管委员会 多向非常高电子能量放射治疗系统
JP5338000B1 (ja) 2012-06-15 2013-11-06 株式会社アキュセラ リアルタイム3次元放射線治療装置
US10413755B1 (en) 2012-08-01 2019-09-17 Velayudhan Sahadevan Device and methods for adaptive resistance inhibiting proton and carbon ion microbeams and nanobeams radiosurgery
US9114157B2 (en) 2012-08-30 2015-08-25 The Board Of Trustees Of The Leland Stanford Junior University Anti-tumor T cell immunity induced by high dose radiation
EP2909622A2 (en) 2012-10-22 2015-08-26 M-Flow Technologies Ltd. Fluid sensor comprising a composite cavity member
GB2507792B (en) * 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
JP5879446B2 (ja) 2012-11-20 2016-03-08 三菱電機株式会社 治療計画装置、粒子線治療装置、および荷電粒子ビームの走査経路決定方法
RU2648226C2 (ru) 2012-12-17 2018-03-22 Конинклейке Филипс Н.В. Лучевая терапия с адаптивным расчетом дозы в реальном масштабе времени
CN103903940B (zh) * 2012-12-27 2017-09-26 清华大学 一种产生分布式x射线的设备和方法
US20140206926A1 (en) 2013-01-18 2014-07-24 Robert van der LAARSE Methods for optimizing and evaluating dose distributions in brachytherpay
US20140275706A1 (en) 2013-03-15 2014-09-18 Case Western Reserve University Systems and methods for determining and delivering radiation treatment plans
DE102013004616B4 (de) 2013-03-15 2020-04-23 Forschungszentrum Jülich GmbH Verfahren zur minimalinvasiven Messung einer Strahlintensität
US9233260B2 (en) 2013-03-29 2016-01-12 Microbeam Therapy, Llc. Magnetic confinement for microbeam radiation damage area
DE102013206252A1 (de) * 2013-04-09 2014-10-09 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung zur schnellen Elektronenstrahl-Röntgencomputertomographie
US9801594B2 (en) * 2013-05-24 2017-10-31 Imatrex Inc. Ebeam tomosynthesis for radiation therapy tumor tracking
US10660588B2 (en) * 2013-05-24 2020-05-26 Imatrex Inc. Tumor tracing device with multiple scan tubes
EP2808057B1 (en) 2013-05-31 2016-02-03 RaySearch Laboratories AB Method and system for robust radiotherapy treatment planning
CN105339005A (zh) 2013-06-04 2016-02-17 福姆迪卡股份公司 在癌症治疗中用于与放射治疗组合的细胞毒性物质
US20140369476A1 (en) 2013-06-14 2014-12-18 Morpho Detection, Inc. Device for generating x-rays having a liquid metal anode
US20150011817A1 (en) 2013-07-03 2015-01-08 Yuxin Feng System and Method for Delivering an Ultra-High Dose of Radiation Therapy
WO2015003111A1 (en) 2013-07-05 2015-01-08 University Of Iowa Research Foundation Method and system for dynamically-trimmed spot scanning for ion therapy
WO2015102680A2 (en) 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
JP6139361B2 (ja) * 2013-09-30 2017-05-31 株式会社東芝 医用画像処理装置、治療システム及び医用画像処理方法
EP2853292B1 (en) 2013-09-30 2019-07-31 Ion Beam Applications S.A. Charged hadron beam delivery
JP6208535B2 (ja) 2013-10-25 2017-10-04 株式会社日立製作所 放射線治療装置およびシステムおよび方法
US9719947B2 (en) * 2013-10-31 2017-08-01 Sigray, Inc. X-ray interferometric imaging system
US9874531B2 (en) * 2013-10-31 2018-01-23 Sigray, Inc. X-ray method for the measurement, characterization, and analysis of periodic structures
FR3013225B1 (fr) 2013-11-20 2018-09-14 Pmb Dispositif d'irradiation a rayonnement ionisant, notamment pour la radiotherapie et/ou la radiobiologie
WO2015085252A1 (en) 2013-12-06 2015-06-11 Sonitrack Systems, Inc. Radiotherapy dose assessment and adaptation using online imaging
US20150202464A1 (en) 2014-01-23 2015-07-23 Mitsubis Multi-Criteria Optimization in Particle Beam Dose Optimization
CN104001270B (zh) 2014-05-07 2016-07-06 上海交通大学 超高能电子束或光子束放射治疗机器人系统
US9844358B2 (en) * 2014-06-04 2017-12-19 Varian Medical Systems, Inc. Imaging-based self-adjusting radiation therapy systems, devices, and methods
WO2016061256A1 (en) 2014-10-14 2016-04-21 The University Of Chicago Nanoparticles for photodynamic therapy, x-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof
WO2016069633A1 (en) 2014-10-27 2016-05-06 Elekta, Inc. Image guidance for radiation therapy
KR101689130B1 (ko) * 2014-12-23 2016-12-23 재단법인 아산사회복지재단 자기장을 이용한 체내 점막조직 선량 제어 광자빔 방사선 치료장치
US10549115B2 (en) 2015-01-22 2020-02-04 Koninklijke Philips N.V. Volumetric modulated arc therapy (VMAT) with non-coplanar trajectories
US9878177B2 (en) 2015-01-28 2018-01-30 Elekta Ab (Publ) Three dimensional localization and tracking for adaptive radiation therapy
EP3265176A4 (en) 2015-03-05 2018-12-26 The Regents of the University of California Radiotherapy utilizing the entire 4pi solid angle
JP6844942B2 (ja) 2015-04-28 2021-03-17 株式会社東芝 粒子線治療システムおよび粒子線治療用管理システム
EP3108932B1 (en) 2015-06-26 2018-01-31 RaySearch Laboratories AB Method, computer program and system for optimizing radiotherapy treatment
US9884206B2 (en) 2015-07-23 2018-02-06 Loma Linda University Medical Center Systems and methods for intensity modulated radiation therapy
US10636609B1 (en) * 2015-10-09 2020-04-28 Accuray Incorporated Bremsstrahlung target for radiation therapy system
KR101803346B1 (ko) * 2015-10-16 2017-11-30 재단법인 아산사회복지재단 자기장을 이용한 종양표면선량 강화 방사선 치료장치
EP3181049B1 (en) 2015-12-18 2018-02-14 RaySearch Laboratories AB Radiotherapy method, computer program and computer system
EP3195901A1 (en) 2016-01-20 2017-07-26 Ion Beam Applications S.A. Method and device for determining an interest of applying a qa procedure to a treatment plan in radiation therapy
US10293184B2 (en) * 2016-01-29 2019-05-21 Elekta Ltd. Therapy control using motion prediction
US10022564B2 (en) * 2016-02-05 2018-07-17 Varian Medical Systems International Ag Systems, methods, and devices for radiation beam alignment and radiation beam measurements using electronic portal imaging devices
EP3426345B1 (en) 2016-03-09 2021-06-23 RefleXion Medical, Inc. Fluence map generation methods for radiotherapy
US9854662B2 (en) * 2016-03-11 2017-12-26 Varex Imaging Corporation Hybrid linear accelerator with a broad range of regulated electron and X-ray beam parameters includes both standing wave and traveling wave linear sections for providing a multiple-energy high-efficiency electron beam or X-ray beam useful for security inspection, non-destructive testing, radiation therapy, and other applications
US9855445B2 (en) 2016-04-01 2018-01-02 Varian Medical Systems, Inc. Radiation therapy systems and methods for delivering doses to a target volume
EP3228357B1 (en) 2016-04-08 2021-03-31 RaySearch Laboratories AB Method, computer program product and computer system for radiotherapy treatment planning
JP7199226B2 (ja) 2016-04-13 2023-01-05 コーニンクレッカ フィリップス エヌ ヴェ 放射線治療のインタラクティブ計画
US20170348547A1 (en) 2016-05-27 2017-12-07 W. Davis Lee Ion beam kinetic energy dissipater apparatus and method of use thereof
LU93102B1 (en) 2016-06-10 2018-01-22 Fyzikalni Ustav Av Cr V V I Device and method for high-dose pulse radiotherapy with real-time imaging
US20180154183A1 (en) 2016-06-22 2018-06-07 Velayudhan Sahadevan Normal Tissue Toxicity Reducing Microbeam-Broadbeam Radiotherapy, Skin's Radio-Response Immunotherapy and Mutated Molecular Apheresis Combined Cancer Treatments
AU2017292772A1 (en) 2016-07-05 2019-02-21 The Johns Hopkins University CRISPR-Cas9-based compositions and methods for treating cancer
US9999786B2 (en) * 2016-07-29 2018-06-19 Accuthera Inc. Radiation emitting apparatus, radiation therapy apparatus, and collimator drive control method
US10342996B2 (en) 2016-08-29 2019-07-09 Accuray Incorporated Online angle selection in rotational imaging and tracking systems
KR20230147765A (ko) * 2016-09-09 2023-10-23 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 방사선 전자 빔의 자기 제어를 위한 장치 및 방법
US10307615B2 (en) * 2016-09-19 2019-06-04 Varian Medical Systems International Ag Optimization of radiation treatment plans for optimal treatment time in external-beam radiation treatments
US10272264B2 (en) * 2016-09-19 2019-04-30 Varian Medical Systems International Ag Generating time-efficient treatment field trajectories for external-beam radiation treatments
US10307614B2 (en) 2016-09-22 2019-06-04 Accuray Incorporated Systems and methods for selecting a radiation therapy treatment plan
EP3306334A1 (en) 2016-10-07 2018-04-11 Ion Beam Applications S.A. Apparatus and method for visualizing a hadron beam path traversing a target tissue by magnetic resonance imaging
EP3305366A1 (en) 2016-10-07 2018-04-11 Ion Beam Applications S.A. Hadron therapy apparatus for adaptive treatment in non-supine position
EP3305200A1 (en) 2016-10-07 2018-04-11 Ion Beam Applications S.A. Medical apparatus comprising a hadron therapy device, a mri, and a prompt-gamma system
CN106730407A (zh) 2016-11-18 2017-05-31 上海艾普强粒子设备有限公司 一种用于粒子治疗的扫描照射方法、装置和治疗头
US10449389B2 (en) * 2016-12-05 2019-10-22 Varian Medical Systems International Ag Dynamic target masker in radiation treatment of multiple targets
US9987502B1 (en) 2016-12-06 2018-06-05 International Business Machines Corporation Radiation therapy treatment planning using regression
EP3338858B1 (en) 2016-12-22 2019-06-26 RaySearch Laboratories AB System for attaining target dose conformity in ion beam treatment
US10485988B2 (en) * 2016-12-30 2019-11-26 Varian Medical Systems International Ag Interactive dose manipulation using prioritized constraints
US10713801B2 (en) 2017-01-06 2020-07-14 Accuray Incorporated Image registration of treatment planning image, intrafraction 3D image, and intrafraction 2D x-ray image
JP6812563B2 (ja) 2017-01-27 2021-01-13 レイサーチ ラボラトリーズ,エービー 放射線療法治療を計画するためのシステム及び方法
WO2018152302A1 (en) 2017-02-15 2018-08-23 University Of Maryland, Baltimore Techniques for spatially fractionated particle beam therapy
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10682528B2 (en) * 2017-03-03 2020-06-16 Varian Medical Systems International Ag Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices
US10661100B2 (en) 2017-03-08 2020-05-26 Mayo Foundation For Medical Education And Research Method for measuring field size factor for radiation treatment planning using proton pencil beam scanning
WO2018165423A1 (en) 2017-03-08 2018-09-13 University Of Maryland, Baltimore Techniques for particle beam therapy
WO2018175804A1 (en) * 2017-03-24 2018-09-27 Radiabeam Technologies, Llc Compact linear accelerator with accelerating waveguide
EP3384961B1 (en) 2017-04-05 2021-10-13 RaySearch Laboratories AB System and method for modelling of dose calculation in radiotherapy treatment planning
EP3391940A1 (en) 2017-04-21 2018-10-24 Koninklijke Philips N.V. Planning system for adaptive radiation therapy
US11058893B2 (en) * 2017-06-02 2021-07-13 Precision Rt Inc. Kilovoltage radiation therapy
KR101953350B1 (ko) * 2017-06-23 2019-02-28 재단법인 아산사회복지재단 자기장과 산란체를 이용한 광자선의 선량상승영역 변조 장치, 이를 포함하는 광자선 기반의 방사선치료장치 및 자기장과 산란체를 이용한 광자선의 선량상승영역 변조 방법
EP3421087A1 (en) 2017-06-30 2019-01-02 RaySearch Laboratories AB Assigning ripple filter settings
US11712579B2 (en) 2017-07-21 2023-08-01 Varian Medical Systems, Inc. Range compensators for radiation therapy
US10843011B2 (en) 2017-07-21 2020-11-24 Varian Medical Systems, Inc. Particle beam gun control systems and methods
US11590364B2 (en) 2017-07-21 2023-02-28 Varian Medical Systems International Ag Material inserts for radiation therapy
US10609806B2 (en) 2017-07-21 2020-03-31 Varian Medical Systems Particle Therapy Gmbh Energy modulation of a cyclotron beam
US10245448B2 (en) 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US10183179B1 (en) 2017-07-21 2019-01-22 Varian Medical Systems, Inc. Triggered treatment systems and methods
US10549117B2 (en) 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment
US10092774B1 (en) 2017-07-21 2018-10-09 Varian Medical Systems International, AG Dose aspects of radiation therapy planning and treatment
CN107362464A (zh) 2017-08-13 2017-11-21 吴大可 精准立体定向放射外科治疗装置
EP3453427A1 (en) 2017-09-12 2019-03-13 RaySearch Laboratories AB Evaluation of arcs for a radiation treatment plan
WO2019051557A1 (en) 2017-09-14 2019-03-21 Australian Nuclear Science And Technology Organisation METHOD AND SYSTEM OF IRRADIATION
EP3967367A1 (en) 2017-11-16 2022-03-16 Varian Medical Systems Inc Increased beam output and dynamic field shaping for radiotherapy system
GB201719076D0 (en) 2017-11-17 2018-01-03 Xerion Healthcare Ltd Particles for the treatment of cancer in combination with radiotherapy
US11478489B2 (en) 2017-11-21 2022-10-25 William Marsh Rice University Selective accretion of cytoprotectant in radiation-sensitive tissues and uses thereof
JP2019097969A (ja) 2017-12-05 2019-06-24 株式会社日立製作所 粒子線治療計画装置および粒子線治療システム
US11794038B2 (en) 2018-02-20 2023-10-24 The Trustees Of The University Of Pennsylvania Proton beam system and methods for irradiating a target
WO2019166702A1 (fr) 2018-02-28 2019-09-06 Hagalife Utilisation d'un procédé d'irradiation flash pour augmenter la longévité et/ou pour retarder les effets du vieillissement chez les mammifères
CN111971749A (zh) 2018-03-26 2020-11-20 皇家飞利浦有限公司 Ct/直线加速器控制台中的用于自适应放射治疗的决策支持工具
JP6974232B2 (ja) 2018-03-29 2021-12-01 株式会社日立製作所 粒子線治療計画装置、粒子線治療システムおよび線量分布演算プログラム
JP7090451B2 (ja) 2018-03-29 2022-06-24 住友重機械工業株式会社 荷電粒子線治療装置
CN113260412A (zh) 2018-05-15 2021-08-13 霍洛比姆技术有限公司 利用具有时间相关驻波干涉和相干强度放大的全息能量传送(het)进行能量的精确传送
EP3586920A1 (en) 2018-06-29 2020-01-01 RaySearch Laboratories AB System and method for radiation treatment planning
EP3823618A1 (en) 2018-07-19 2021-05-26 Varian Medical Systems, Inc. Methods of use of ultra-high dose rate radiation and therapeutic agents
US10910188B2 (en) 2018-07-25 2021-02-02 Varian Medical Systems, Inc. Radiation anode target systems and methods
US10960232B2 (en) 2018-07-28 2021-03-30 Varian Medical Systems, Inc. Single-pass imaging and radiation treatment delivery via an extended rotation gantry
US10525285B1 (en) 2018-08-06 2020-01-07 Integrated Sensors, Llc Ionizing-radiation beam monitoring system
EP3856175A1 (en) 2018-09-25 2021-08-04 Myelo Therapeutics GmbH Imidazolyl ethanamide pentandioic acid for use in therapy of symptoms related to exposure to lethal radiation
US20210370097A1 (en) 2018-11-28 2021-12-02 Provincial Health Services Authority Motion synchronized arc radiotherapy
EP3917560A1 (en) 2019-01-28 2021-12-08 Amphera B.V. Pharmaceutical composition for use in the treatment of pancreatic cancer
US11786755B2 (en) 2019-02-07 2023-10-17 Canon Medical Systems Corporation Radiotherapy support apparatus, radiotherapy system, and radiotherapy support method
US10946220B2 (en) 2019-03-01 2021-03-16 Elekta, Inc. Method of providing rotational radiation therapy using particles
US11103727B2 (en) 2019-03-08 2021-08-31 Varian Medical Systems International Ag Model based PBS optimization for flash therapy treatment planning and oncology information system
CN109966662B (zh) 2019-04-30 2020-11-24 四川省肿瘤医院 一种验证放射治疗剂量的系统
CN111481840A (zh) 2020-06-10 2020-08-04 中国工程物理研究院应用电子学研究所 一种小型化闪光放射治疗装置
CN111481841A (zh) 2020-06-10 2020-08-04 中国工程物理研究院应用电子学研究所 一种闪光放射治疗装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269927A1 (de) * 1986-11-25 1988-06-08 Siemens Aktiengesellschaft Computertomograph
US5682412A (en) * 1993-04-05 1997-10-28 Cardiac Mariners, Incorporated X-ray source
WO2006012631A2 (en) * 2004-07-23 2006-02-02 Calypso Medical Technologies, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
WO2007090650A1 (en) * 2006-02-09 2007-08-16 Friedrich-Alexander-Universität Erlangen-Nürnberg Method and apparatus for determining one or more characteristics of radiation

Also Published As

Publication number Publication date
EP3967367A1 (en) 2022-03-16
US11007381B2 (en) 2021-05-18
EP3710111A1 (en) 2020-09-23
EP3710111B1 (en) 2021-12-29
WO2019099904A1 (en) 2019-05-23
US20210220674A1 (en) 2021-07-22
US20190143144A1 (en) 2019-05-16
CN111556776A (zh) 2020-08-18
US11857805B2 (en) 2024-01-02
CN115282504A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN111556776B (zh) 用于放射疗法系统的增加的束输出和动态场成形
AU2020232818B2 (en) Method of providing rotational radiation therapy using particles
US20080049897A1 (en) System and Method for Temporally Precise Intensity Modulated Radiation Therapy (Imrt)
US20170065834A1 (en) Radiotherapeutic system and driving control method thereof
US9999787B1 (en) Beam limiting device for intensity modulated proton therapy
US20200398080A1 (en) Automatic Generation of Radiation Treatment Plan Optimization Objectives
WO2002049044A2 (en) Radiotherapeutic apparatus comprising multileaf collimator
US7085348B2 (en) Leaf sequencing method and system
JP2022530151A (ja) 周期的な動きを利用した陽子線治療を提供する方法
CN108478941B (zh) 放射治疗装置
WO2019015412A1 (zh) 一种x射线的聚焦方法、装置及放疗设备
CN116920285A (zh) 辐射治疗计划中的监测单元优化约束
US20230090348A1 (en) Pinhole collimator systems and methods
EP3766539B1 (en) Computer program product and computer system for planning and delivering radiotherapy treatment and a method of planning radiotherapy treatment
US7573978B2 (en) Variable feathering field splitting for intensity modulated fields of large size
US20230356004A1 (en) Composite field sequencing (cfs) for proton beam therapy
JP2018143659A (ja) 荷電粒子線治療装置
WO2022241474A1 (en) Continuous scanning for particle radiation therapy
EP4337312A1 (en) Particle dose optimization for particle arc therapy
CN115038496A (zh) 生成放射疗法治疗计划的方法、用于生成放射疗法治疗计划的计算机程序和计算机系统以及放射疗法递送系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant