WO2019015412A1 - 一种x射线的聚焦方法、装置及放疗设备 - Google Patents

一种x射线的聚焦方法、装置及放疗设备 Download PDF

Info

Publication number
WO2019015412A1
WO2019015412A1 PCT/CN2018/090280 CN2018090280W WO2019015412A1 WO 2019015412 A1 WO2019015412 A1 WO 2019015412A1 CN 2018090280 W CN2018090280 W CN 2018090280W WO 2019015412 A1 WO2019015412 A1 WO 2019015412A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
collimating
ray
target
channel group
Prior art date
Application number
PCT/CN2018/090280
Other languages
English (en)
French (fr)
Inventor
刘海峰
林小奇
昝鹏
Original Assignee
西安大医数码科技有限公司
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医数码科技有限公司, 深圳市奥沃医学新技术发展有限公司 filed Critical 西安大医数码科技有限公司
Priority to US16/632,277 priority Critical patent/US11324969B2/en
Publication of WO2019015412A1 publication Critical patent/WO2019015412A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to an X-ray focusing method, device and radiotherapy apparatus.
  • Radiotherapy is the main means of cancer treatment.
  • the existing radiotherapy equipment includes a gamma knife and an accelerator, wherein the gamma knife radiates a human tumor by using a natural radioactive isotope to emit radiation (generally using Co-60 to emit gamma rays).
  • the accelerator is generally as shown in FIG. 1 , and generally includes a pulse modulator, an electron gun, a magnetron, a waveguide accelerating tube, and a target body.
  • the pulse modulator is generally used to form a high voltage pulse, and the electron gun emits a certain energy, a certain beam current, and The electron beam of velocity and angle, the magnetron forms a high-power microwave to control the electron direction, and then accelerates electrons through the waveguide accelerating tube, and the accelerated electron hits the target to form a cone beam (generally X-ray).
  • the dose distribution of the cone beam is Gaussian distribution as shown in Fig. 2, that is, the dose in the middle portion of the ray is high, and the dose in the peripheral region is low, which generally needs to pass the primary standard.
  • the straight beam is beamed again to the high dose beam, and then the multi-leaf collimator is used to conform the intermediate region to meet the high dose requirements for tumor treatment.
  • the existing accelerators are all used for conformal treatment, that is, a beam passing region similar to the shape of the tumor is formed by the multi-leaf collimator, so that the shape of the beam passing through the human body coincides with the shape of the tumor.
  • Clinically conformal therapy is mainly suitable for larger tumors, while the treatment of smaller tumors is generally treated with gamma knife.
  • Embodiments of the present invention provide an X-ray focusing method, apparatus, and radiotherapy apparatus that can form a focus treatment using an X-ray beam generated by an accelerator.
  • an embodiment of the present invention provides an X-ray focusing method, where the focusing method includes:
  • An electron beam generator emits an electron beam
  • the electron beam is struck on the target to generate an X-ray beam
  • the X-ray beam passes through respective collimating channels of the same collimating channel group of the collimator, focusing on a focus of the collimating channel group; wherein the collimator includes at least one set of collimating channels
  • each set of the collimating channel group includes at least two collimating channels, and the same of the collimating channel groups has one or more focus points.
  • an embodiment of the present invention provides an X-ray focusing apparatus, including:
  • the collimator includes at least one set of collimating channel groups, each set of the collimating channel groups including at least two collimating channels, wherein the same of the collimating channel groups has one or more focus points.
  • an embodiment of the present invention provides a radiotherapy apparatus comprising the focusing apparatus of any one of the present invention.
  • Embodiments of the present invention provide an X-ray focusing method, apparatus, and radiotherapy apparatus.
  • An electron beam generator emits an electron beam, and an electron beam is struck on a target to generate an X-ray beam.
  • the X-ray beam is focused by a collimator. Or a plurality of focal points to achieve focusing of the X-ray beam.
  • the X-ray focusing device can be applied to a radiotherapy setting to match the focus point to the patient's tumor location in order to kill the tumor with X-rays for therapeutic purposes.
  • the X-ray focusing device provided by the present application can perform focusing treatment with respect to the existing conformal treatment using X-rays, and the focusing point can be different according to the size of the collimating channel. Compared with conformal therapy, it can achieve more elaborate treatment and have better therapeutic effect on small tumors in the early stage of the disease. And focusing therapy uses a lower energy X-ray to focus on the target, meeting the high dose requirements at the target for radiation therapy
  • 1 is a schematic structural view of a conventional accelerator
  • FIG. 2 is a schematic diagram of an X-ray dose distribution generated by an accelerator
  • FIG. 3 is a schematic diagram of an X-ray focusing method provided by the present application.
  • FIG. 4 is a schematic diagram of focusing of an X-ray provided by the present application.
  • Figure 5 is a schematic view of a circular collimator provided by the present application.
  • Figure 6 is a schematic view of a rectangular collimator provided by the present application.
  • FIG. 7 is a schematic cross-sectional view of a collimating channel group provided by the present application.
  • FIG. 8 is a schematic cross-sectional view of another collimating channel group provided by the present application.
  • FIG. 9 is a schematic cross-sectional view of another collimating channel group provided by the present application.
  • FIG. 10 is a schematic diagram of another X-ray focusing method provided by the present application.
  • FIG. 11 is a schematic diagram of another X-ray focusing method provided by the present application.
  • FIG. 12 is a schematic diagram of another X-ray focusing method provided by the present application.
  • FIG. 13 is a schematic diagram of focusing of an X-ray provided by the present application.
  • FIG. 14 is a schematic diagram of another X-ray focusing method provided by the present application.
  • FIG. 15 is a schematic diagram of another X-ray focusing method provided by the present application.
  • Figure 16 is a schematic view showing the focus of an X-ray provided by the present application.
  • Figure 17 is a schematic diagram of a focusing device provided by the present application.
  • FIG. 18 is a schematic diagram of another focusing device provided by the present application.
  • FIG. 19 is a schematic diagram of another focusing device provided by the present application.
  • FIG. 20 is a schematic diagram of another focusing device provided by the present application.
  • Figure 21 is a schematic diagram of another focusing device provided by the present application.
  • FIG. 22 is a schematic diagram of another focusing device provided by the present application.
  • 1-electron beam generator 2-electron beam; 3-target; 4-X-ray beam; 5-collimator; 6-beam splitting component.
  • the present application provides an X-ray focusing method. As shown in FIG. 3 and FIG. 4, the focusing method includes:
  • the electron beam generator 1 emits an electron beam 2.
  • the electron beam generator may be a pulse modulator, an electron gun, a magnetron, a waveguide accelerating tube, or the like.
  • the generation and emission of an electron beam by the electron beam generator reference may be made to an existing accelerator, which is not specifically described herein.
  • Step 102 the electron beam 2 is struck on the target 3 to generate an X-ray beam 4.
  • the target may be formed of a metal, for example, the target may be a seesaw or a copper plate or the like.
  • the electron beam strikes the target, and an impact occurs. The electrons suddenly decelerate, and the lost kinetic energy is emitted as a photon to form an X-ray beam.
  • Step 103 the X-rays 4 pass through the collimating channels of the same collimating channel group of the collimator 5, and are focused on the focal point o of the collimating channel group.
  • the collimator includes at least one set of collimating channels, each set of collimating channels includes at least two collimating channels, and the focus of the same collimating channel group is one or more.
  • the collimator may be a circular collimator for a head treatment or a body treatment, a bowl collimator, a rectangular collimator, etc., and the shape of the alignment device of the present application is not specific. limited. If the collimator is a circular collimator, at least two collimating channels of the same collimating channel group may be on the same circle.
  • the collimated channel group corresponding to the beam outgoing beam may be the same collimating channel group, and of course, it may be divided according to the size, shape, angle, position, etc. of the collimating channel.
  • the same collimated channel group For example, the collimating channels of the same collimating channel group have the same size, and the collimating channels of different collimating channel groups have different sizes.
  • the circular collimator is provided with four collimating channel groups a, b, c, and d, and each collimating hole group includes four collimating holes of the same size, wherein The diameter of the straight hole group is a ⁇ b ⁇ c ⁇ d.
  • the arrangement in which the collimator is a circular or bowl-shaped collimator is not limited to that shown in FIG. 5, and the present application is merely exemplified by the example shown in FIG. 5.
  • the collimating channels can be arranged in a matrix, and the collimating channels in the same row or the same column are a collimated channel group.
  • the collimating channel array on the collimator includes four collimating channel groups a, b, c, and d, and each collimating hole group includes six collimating channels of the same size.
  • the diameter of the collimated channel group is a ⁇ b ⁇ c ⁇ d.
  • the focus of the same collimated channel group is one or more.
  • the focus of the same collimated channel group is one, as shown in FIG. 7 , taking the collimating channel group b as an example, the focus of the collimating channel group b may be one, that is, X-rays can be focused through the collimating channels.
  • a focus o the focus of the same collimated channel group is one, and the X-ray beam passes through the same focus position of the collimated channel group.
  • the collimated channel groups a and b are switched, and the focus position of the collimated channel group is the same as the position of the focus o.
  • each beam passes through a group of collimating channels, and only when the beam passes through the collimating channel can focus on the focus.
  • different collimating channel groups are used. The focus is different, but the focus positions of the different collimation channel groups can be the same.
  • the focus of the same collimating channel group may also be multiple, and the X-ray beam is different in position of the focusing point through the same collimating channel group.
  • the focus of the collimating channel group b may be two, that is, o1 and o2.
  • the collimator may also be composed of a plurality of collimator blocks.
  • the X-ray beam may pass through the collimating channel on each collimator block. Focusing on one focus, the focus of the different collimator blocks is different. In turn, the size and position of the focus can be adjusted by setting different collimator blocks to meet different treatment needs.
  • the collimator includes a collimator block A1 and a collimator block A2, wherein the focus of the collimator block A1 is o1, and the focus of the collimator block A2 is o2.
  • the positions of o1 and o2 in one direction are different.
  • o1 and o2 may also have different positions in two directions (for example, x and y directions), or positions in three directions (for example, x and y and z directions) are different.
  • the shape and the like of the collimating hole group may be different, and the present invention is not limited thereto, and only the above is exemplified.
  • the shape of the collimating channel may be, for example, a circle, and the size may be between 2 and 20 mm in diameter, and may be, for example, 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, 14 mm, 16 mm, 18 mm, etc., for radiotherapy.
  • the device can be used to treat smaller head tumors.
  • the diameter can also be between 20-200mm, so that the focus point is larger, and can be applied to treat larger body tumors.
  • the X-rays 4 pass through the collimating channels of the same collimating channel group of the collimator 5, focus on the focus o of the collimating channel group, or X-rays 4 pass through the collimator in sequence.
  • the present application provides an X-ray focusing method.
  • An electron beam generator emits an electron beam, and an electron beam strikes a target to generate an X-ray beam.
  • the X-ray beam is focused by a collimator on one or more focal points, thereby Achieve the focus of the X-ray beam.
  • the X-ray focusing device can be applied to a radiotherapy setting to match the focus point to the patient's tumor location in order to kill the tumor with X-rays for therapeutic purposes.
  • the X-ray focusing device provided by the present application can perform focusing treatment, and the focusing treatment focuses on the target point with lower energy X-rays, thereby increasing the dose rate at the focus. Meet the high dose requirements at the target for radiation therapy. Compared with conformal therapy, it can achieve more elaborate treatment and have better therapeutic effect on small tumors in the early stage of the disease.
  • the collimated large size of the same collimated channel group may be the same, and the collimating channel sizes of different collimating channel groups are different.
  • the collimator shown in FIG. 5 and FIG. 6 as an example, the X-ray beam passing through the same collimated channel group is focused on the focus, and the X-ray beam is switched through the collimating channel of the different collimating channel groups, and the switching is different.
  • the size of the ray is the size of the ray.
  • the present invention provides a focusing method in which an electron beam is a diverging beam.
  • the electron beam is a divergent beam, that is, the electron beam may be a wide beam, and the electron beam is subjected to wide beam target when it contacts the target, thereby increasing the contact area of the electron beam with the target.
  • X-rays can be generated in a larger range, and the X-rays are focused to the focus by the collimator, and the high dose of the focus can be achieved while dispersing and reducing the skin dose of the human body.
  • the electron beam generator emits a first electron beam; the first electron beam is a narrow beam, and as an example, the first electron beam may be a beam having a beam width of no more than 5 mm.
  • the method further includes:
  • Step 104 Diffusion of the first electron beam to form a second electron beam; wherein the second electron beam is a diverging beam.
  • the second electron beam is in contact with the target, wide beam target is performed, thereby increasing the contact area of the electron beam with the target.
  • X-rays can be generated in a larger range, and the X-rays are focused to the focus by the collimator, and the high dose of the focus can be achieved while dispersing and reducing the skin dose of the human body.
  • Another focusing method provided by the present application as shown in FIG. 11, further includes:
  • Step 105 Perform energy equalization on the electron beam to equalize energy between the electron beam and the contact surface of the target.
  • a uniform block may be disposed between the electron beam generator and the target for energy equalization of the electron beam to balance the energy of the contact surface between the electron beam and the target.
  • a focusing method provided by the present application may further perform energy equalization on the X-ray beam.
  • a uniform block or the like may be disposed under the target or above the collimator to uniformize the X-ray energy.
  • the energy uniformity of the electron beam or the X-ray beam can make the energy of the X-ray beam more equal, or the energy distribution of the X-ray beam can satisfy a certain relationship, for example, the energy of the intermediate region is compared. Small, the energy in the surrounding area is large to facilitate increasing the dose of the target.
  • the uniformity of the ray energy can also be achieved by the target.
  • the density of the intermediate region of the target body can be set small, and the density of the peripheral region is high, so that the dose rate of the X-ray beam after the target is low in the middle and high on both sides.
  • the present disclosure provides a focusing method in which an X-ray beam passes through each collimating channel of the same collimating channel group of the collimator: the X-ray beam sequentially passes through the collimator for each quasi-straight channel group.
  • the moving electron beam can be moved along with the target such that the X-ray beam is emitted at different locations such that the X-ray beam sequentially passes through each collimating channel of the collimator of the same collimating channel group.
  • the dose of X-rays passing through each of the collimating channels is relatively large, so that the dose rate of the focus can be submitted to meet the high dose requirements of the radiotherapy.
  • the X-ray beam sequentially passes through each collimating channel in the collimating channel group b, since the X-ray beams passing through each collimating channel pass through the focus o, Thereby achieving a scanning focus.
  • the position of the X-ray beam by moving the electron beam so that the position of the electron beam hits the target, so that the X-ray beam sequentially passes through the collimator for each of the same collimating channel groups.
  • a collimating channel it is also possible to move the electron beam and the target such that the position of the X-ray beam is varied such that the X-ray beam passes through each collimator channel of the same collimating channel group of the collimator in sequence.
  • the present disclosure provides a focusing method in which an electron beam is generated on an object to generate an X-ray beam, including: moving an electron beam so that the position of the electron beam hits the target changes, and each position of the target is respectively An X-ray beam is generated.
  • the target body may be in the shape of a bowl, and the electron beam is struck at different positions of the target body, and an X-ray beam is generated at each position, and the X-ray beam at each position passes through the quasi-straight channel group.
  • Straight channel focusing on the focus.
  • FIG. 12 and FIG. 13 a focusing method provided by the present application is shown in FIG. 12 and FIG. 13:
  • Step 101 the electron beam generator 1 emits an electron beam 2.
  • Step 106 Separating the electron beam into at least two sub-electron beams, taking two sub-electron beams as an example, that is, the sub-electron beam 2a and the sub-electron beam 2b. Illustrated in FIG. 13 is an example in which the electron beam is divided into two sub-electron beams by the beam splitting member 6. Of course, the manner in which the electron beams are split is not limited to this.
  • Step 102 At least two sub-electron beams respectively generate a beam of X-rays on the target. That is, the X-ray beam 4a and the X-ray beam 4b.
  • Step 103 Each X-ray beam passes through each collimating channel of the same collimating channel group of the collimator, and is focused on the focus of the collimating channel group.
  • the target body 3 may be one unit or two.
  • the collimator 5 can be a single unit or two separate collimator blocks.
  • the X-ray beam 4a and the X-ray beam 4b are respectively focused on a focal point o through the respective collimating channels of the collimating channel group.
  • the X-ray beam 4a and the X-ray beam 4b may also be respectively focused on two focal points or a plurality of focal points after passing through the collimating channel group of the collimator.
  • the X-ray beam 4a and the X-ray beam 4b may also be focus points that are respectively focused at two different positions after passing through the collimating channel group of the collimator.
  • a focusing method provided by the present application may also be to move two sub-electron beams such that the positions of the two sub-electron beams hit the target change.
  • the target may be a disk that moves two sub-electron beams circumferentially, rotating it circumferentially, and connecting the positions on the target to form a circle.
  • the two sub-electron beams are moved horizontally to move in one or two directions, and the position on the target may be a matrix arrangement.
  • the X-rays generated on the target each time may be the collimating channels of the same collimating channel group passing through the collimator 5 in sequence, each passing through the collimating pass.
  • the focus o of the track group is thus focused on the focus o of the collimated channel group to achieve scanning focus.
  • each time the X-ray generated on the target can also be a plurality of collimating channels passing through the same collimating channel group of the collimator, and each time passes through the focus of the collimating channel, thereby focusing on the collimating pass.
  • the focus of the Tao group is on o.
  • the present invention provides a focusing method in which an electron beam generator emits a beam of electrons
  • Generating an X-ray beam on the target by the electron beam includes: an electron beam hitting the target and emitting a beam of X-rays.
  • the beam of X-rays may be each collimating channel of the same set of collimating channels passing through the collimator, focusing on a focus of the set of collimating channels.
  • the bundle of X-rays may also be collimating channels of the same set of collimating channels sequentially passing through the collimator, focusing on the focus of the set of collimating channels.
  • FIG. 1 Another focusing method provided by the present application is shown in FIG. 1
  • Step 101 The electron beam generator emits a beam of electrons.
  • the beam of electrons is a broad beam that is in surface contact with the target to minimize energy loss in the target.
  • the electron beam can also be a narrow beam.
  • Step 102 A beam of electrons is struck on the target to emit a beam of X-rays.
  • Step 103 A beam of X-ray beams sequentially passes through each of the collimating channels of the collimator of the same collimating channel group, passing through the focus of the collimating channel group.
  • the X-ray beam sequentially passes through each collimating channel of the same collimating channel group of the collimator, and may be sequentially moved by the electron beam to different positions of the target body, or may be an electron beam generator. On the target, the electron beam generator moves integrally with the target and the like.
  • the specific implementation of the present application is not specifically limited, and only the above two examples are taken as examples.
  • the embodiment shown in Fig. 14 differs from the embodiment shown in Fig. 12 in that, in the embodiment shown in Fig. 14, the electron beam is a bundle, and the radiation is sequentially passed through the collimating passage.
  • the electron beam is split into two sub-electron beams, each of which is moved separately such that the rays pass through the collimating channels in sequence.
  • the specific embodiment for achieving focusing on the electron beam movement is not limited thereto, and the present application is merely exemplified by the above description.
  • the X-ray beam may be moved circumferentially or horizontally to sequentially pass through each of the collimating channels of the collimator of the same collimating channel group.
  • the horizontal movement may also be moved in multiple directions, which is not specifically limited in the present application.
  • the electron beam generator 1 emits at least two beam electron beams (i.e., electron beam 2a and electron beam 2b).
  • the electron beam generator may be a plurality of, each electron beam generator emitting a bundle of electron beams. It should be noted that the manner in which the electron beam generator emits at least two electron beams is not specifically limited, and only the illustrated example is taken as an example.
  • Step 102 At least two electron beams (i.e., electron beam 2a and electron beam 2b) are respectively struck on the target body 3 to generate a bundle of X-ray beams (i.e., X-ray beam 4a and X-ray beam 4b).
  • Each of the X-ray beams passes through the collimator collimating channels of the same collimating channel group, that is, the X-ray beam 4a and the X-ray beam 4b are respectively focused through the collimating channels of the collimating channel group in the collimating channel group Focus o.
  • the target body 3 may be one unit or two.
  • the collimator 5 can be a single unit or two separate collimator blocks.
  • the X-ray beam 4a and the X-ray beam 4b are respectively focused on a focal point o through the respective collimating channels of the collimating channel group.
  • the X-ray beam 4a and the X-ray beam 4b may also be respectively focused on the two focal points or the plurality of focal points after passing through the collimating channel group of the collimator, that is, the focus point positions of the respective X-ray beams are different.
  • the X-ray beam 4a and the X-ray beam 4b may also be focal points that are respectively focused at two different positions of the focus after passing through the collimating channel group of the collimator.
  • the X-ray beam may also be moved such that the beam of rays sequentially passes through the collimating channel, focusing on the focal point o of the collimating channel group.
  • the X-ray beam sequentially passes through each collimating channel of the same collimating channel group of the collimator, and may be sequentially moved by the electron beam to different positions of the target body, or may be an electron beam generator.
  • the electron beam generator moves integrally with the target and the like.
  • the X-ray beam may be a circumferential movement or a horizontal movement to sequentially pass through each of the collimator channels of the same collimating channel group.
  • the horizontal movement may also be moved in multiple directions, which is not specifically limited in the present application.
  • At least two electron beams respectively generate a beam of X-rays on the target, and the plurality of X-ray beams may be focused through the same collimated channel group.
  • the focus of the different positions, and the size of the collimating channels of the quasi-through group through which each X-ray beam passes may be different.
  • the collimator may be including a collimator block A1 and a collimator block A2, wherein the focus of the collimator block A1 is o1, the focus of the collimator block A2 is o2, the collimator block A1 and the collimation
  • the collimating channels on the block A2 may be of different sizes, but the collimated channel groups in the same row belong to the same collimated channel group.
  • the present invention provides a focusing method in which an angle between an incident extension line of an electron beam target and a central axis of the collimating channel is 0-90 degrees. In order to reduce the angle between the electron beam and the central axis of the collimating channel, energy loss can be avoided as much as possible.
  • the electron beam is vertically incident on the target surface. Thereby reducing the energy loss after the electron beam hits the target surface.
  • the electron beam is aligned with the extension of the collimating channel.
  • the present application provides an X-ray focusing device, which corresponds to the X-ray focusing method provided by the present application. Therefore, the description of the components in the X-ray focusing device can be referred to the description in the above focusing method. , no specific explanations and details are given below.
  • the present invention provides an X-ray focusing apparatus 100, as shown in FIG. 17, comprising:
  • An electron beam generator 101 for emitting an electron beam may be a pulse modulator, an electron gun, a magnetron, a waveguide accelerating tube, or the like.
  • the electron beam generator may be a pulse modulator, an electron gun, a magnetron, a waveguide accelerating tube, or the like.
  • the target 102 an electron beam hitting the target, produces an X-ray beam.
  • the target may be formed of a metal, for example, the target may be a seesaw or a copper plate or the like.
  • the electron beam strikes the target, and an impact occurs.
  • the electrons suddenly decelerate, and the lost kinetic energy is emitted as a photon to form an X-ray beam.
  • the collimator 103 includes at least one set of collimating channels, each set of collimating channels includes at least two collimating channels, wherein the same collimating channel group has one or more focal points.
  • the collimator may be a circular collimator, a bowl collimator, a rectangular collimator, etc., and the shape of the alignment straightener of the present application is not specifically limited.
  • the collimator is a circular collimator, at least two collimating channels of the same collimating channel group may be located on the same circle, or the plurality of collimating channel groups may also be concentric. Round setting. As shown in FIG.
  • the collimating channels may be arranged in a matrix, and the collimating channels in the same row or the same column are a collimated channel group. In the present application, it may be divided into the same collimated channel group according to the size, shape, position, and the like of the collimating channel. For example, in the present application, the collimating channels of the same collimating channel group have the same size, and the collimating channels of different collimating channel groups have different sizes.
  • the focus of the same collimated channel group is one or more.
  • the focus of the same collimated channel group is one, as shown in FIG. 7 , taking the collimating channel group b as an example, the focus of the collimating channel group b may be one, that is, X-rays can be focused through the collimating channels.
  • a focus o the focus of the same collimated channel group is one, and the focus points of the X-rays passing through the different collimating channel groups are the same.
  • the collimated channel groups a and b are switched, and the focus position of the collimated channel group is the same as the position of the focus o.
  • each beam passes through a group of collimating channels, and only when the beam passes through the collimating channel can focus on the focus.
  • different collimating channel groups are used. The focus is different, but the focus positions of the different collimation channel groups can be the same.
  • the focus of the same collimated channel group may be multiple, and the positions of the plurality of focal points are different.
  • the collimator may be composed of a plurality of collimator blocks, and in the case where the focus of the same collimated channel group is plural, it may be a collimating channel on each collimator block.
  • the center extension line can be focused on one focus, and the focus of the different collimator blocks is different.
  • the shape of the collimating channel may be, for example, a circle, and the size may be between 2 and 20 mm in diameter, and may be, for example, 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, 14 mm, 16 mm, 18 mm, etc., for radiotherapy.
  • the device can be used to treat smaller tumors.
  • the diameter can be between 20-200mm, so that the focus point is larger, and it can be applied to treat larger tumors.
  • the present invention provides an X-ray focusing device that emits an electron beam that strikes a target to generate an X-ray beam that is focused by a collimator at one or more focal points, thereby Achieve the focus of the X-ray beam.
  • the X-ray focusing device can be applied to a radiotherapy setting to match the focus point to the patient's tumor location in order to kill the tumor with X-rays for therapeutic purposes.
  • the X-ray focusing device provided by the present application can perform focusing treatment, and the focusing point can achieve a more elaborate treatment effect according to the size of the collimating channel with respect to the conformal treatment. It has a better therapeutic effect on small tumors in the early stage of the disease. And it is capable of submitting the X-rays to the dose of the radiation focused on the target point by focusing, so that the high dose requirement of the tumor radiotherapy for the target can be met.
  • the collimated large size of the same collimated channel group may be the same, and the collimating channel sizes of different collimating channel groups are different.
  • the collimator shown in FIG. 5 and FIG. 6 as an example, the X-ray beam passing through the same collimated channel group is focused on the focus, and the X-ray beam is switched through the collimating channel of the different collimating channel groups, and the switching is different.
  • the size of the ray is the size of the ray.
  • the electron beam is a diverging beam.
  • a diverging member 104 is further included for diverging the electron beam before hitting the electron beam on the target.
  • the electron beam is diverged into a diverging beam such that the electron beam is in surface contact with the target when it is struck on the target.
  • the focusing device provided by the present application further includes a uniform block 105 for energy equalization of the electron beam and/or the X beam.
  • a uniform block may be placed under the target or above the collimator to homogenize the X-beam energy.
  • the energy uniformity of the electron beam or the X-ray beam can make the energy of the X-ray beam more uniform, or the energy distribution of the X-ray beam can satisfy a certain relationship, for example, the energy of the intermediate region is small, and the peripheral region is The energy is greater to help increase the dose of the target.
  • the density of the intermediate region of the target body is small, and the density of the peripheral region is high, so that the dose rate of the X-ray beam after the target is low in the middle and high on both sides.
  • the uniform block may also be disposed between the electron beam generator and the target for energy equalization of the electron beam to equalize the energy of the electron beam and the contact surface of the target.
  • the focusing device provided by the present application further includes a beam splitting member 106 for separating the electron beams to form at least two sub-electron beams.
  • a beam splitting member 106 for separating the electron beams to form at least two sub-electron beams.
  • the focusing device provided by the present application further includes a moving portion for changing a position of the X-ray beam such that the X-ray beam sequentially passes through each of the collimating channels of the same collimating channel group of the collimator. That is, the X-rays sequentially pass through the collimating channels of the same collimating channel group of the collimator, and the beams passing through each collimating channel group pass through the focus, thereby achieving focusing on the focus of the collimating channel group.
  • the moving portion may be horizontally moving or moving the X-ray beam circumferentially.
  • the moving part realizes the moving X-ray beam can be realized in various ways.
  • the first moving part 107 is further configured to move the sub-electron beam so that the sub-electron beam hits the position of the target body. A change occurs such that the position of the X-ray beam changes.
  • a second moving portion 108 is further included for horizontally or circumferentially rotating the X-ray beam, that is, after the X-ray beam is generated after the electron beam strikes the target body, the X-ray beam is directly moved.
  • the moving portion may also be used to move the electron beam and the target such that the position of the X-ray beam changes.
  • Figure 21 and Figure 22 show two different ways to achieve ray passing through one or more collimating channels of the collimator, each passing through the focal point o of the collimating channel group, thereby focusing on The focus of the straight channel group is on o.
  • the electron beam generator emits at least two electron beams.
  • the focusing means further comprises: a beam splitting means for separating the electron beams to form at least two sub-electron beams.
  • the application provides a radiotherapy apparatus comprising the focusing device of any of the applications provided herein.
  • the focusing device can realize the focusing treatment of the radiotherapy apparatus.
  • the radiotherapy apparatus provided by the present application may further include a plurality of treatment heads, one of which is a focus treatment head, which may include the focusing device of any one of the applications provided herein.
  • the radiotherapy apparatus can also include a plurality of focused treatment heads, for example including two focused treatment heads, one of which is a focusing device of any of the applications provided herein, and the other can be an existing cobalt-60 focusing treatment head.
  • the present invention provides a radiotherapy apparatus, further comprising at least one detector for receiving an X-ray beam.
  • the detector receives the X-ray beam and can verify the dose, size, etc. of the X-ray beam to further adjust the X-ray beam to meet the needs of the treatment plan.
  • the invention provides a radiotherapy apparatus, which further comprises an imaging system, and the imaging system comprises a bulb and a flat panel detector.
  • the radiotherapy apparatus may include a bulb and a flat panel detector, and may also include two bulbs and two detectors.
  • a radiotherapy apparatus provided by the present application further includes a compliant device.
  • the conformal device is a sum of devices for achieving conformal treatment, and the conformal device may be an accelerator treatment head or a cobalt-60 treatment head.
  • a radiation source, a multi-leaf collimator, and the like may be included, wherein the radiation source may be a cobalt source or an X-ray source.
  • the radiotherapy apparatus provided by the present application further includes a flat panel detector for receiving a radiation beam of the compliant device.
  • the flat panel detector may also be at least two of a beam that can be moved to receive the beam of the bulb, the X-ray beam of the focusing device, and the beam of the compliant device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种X射线的聚焦方法,聚焦方法包括:电子束生成器(1)发出电子束(2);电子束(2)打在靶体(3)上,产生X射线束(4); X射线束(4)穿过准直器(5)的同一准直通道组(a,b,c,d)的各准直通道,聚焦在准直通道组(a,b,c,d)的焦点(o,o1,o2)上;其中,准直器(5)包括至少一组准直通道组(a,b,c,d),每组准直通道组(a,b,c,d)包括至少两个准直通道,同一准直通道组(a,b,c,d)的焦点(o,o1,o2)为一个或多个。

Description

一种X射线的聚焦方法、装置及放疗设备 技术领域
本发明涉及医疗器械技术领域,尤其涉及一种X射线的聚焦方法、装置及放疗设备。
背景技术
放疗是肿瘤治疗的主要手段。现有的放疗设备包括伽玛刀和加速器,其中,伽玛刀是采用天然放射性同位素发出放射线(一般采用Co-60发出γ射线)对人体肿瘤进行放射治疗。而加速器如图1所示,一般包括脉冲调制器、电子枪、磁控管、波导加速管以及靶体,其中,脉冲调制器一般用于形成高压脉冲,电子枪发射出具有一定能量、一定束流以及速度和角度的电子束,磁控管形成大功率微波控制电子方向,再通过波导加速管进行电子加速,加速的电子打到靶体上形成锥形射线(一般为X射线)。
如图1所示,由于加速器产生的射线为锥形束,锥形束的剂量分布如图2所示的高斯分布,即射线中间区域的剂量高,周边区域的剂量低,一般需要通过初级准直器对高剂量的射线束再次束形,再通过多叶准直器以对中间区域进行适形,以满足肿瘤治疗的高剂量要求。
因此,现有的加速器均用于适形治疗,即通过多叶准直器形成与肿瘤形状相近的射束穿过区域,从而使得射束穿过人体的形状与肿瘤形状一致。临床上适形治疗主要适用于较大肿瘤,而对较小肿瘤的治疗一般采用伽玛刀进行聚焦治疗。
发明内容
本发明的实施例提供一种X射线的聚焦方法、装置及放疗设备,可以利用加速器产生的X射线束形成聚焦治疗。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供了一种X射线的聚焦方法,所述聚焦方法包括:
电子束生成器发出电子束;
所述电子束打在靶体上,产生X射线束;
所述X射线束穿过所述准直器的同一准直通道组的各准直通道,聚焦在所述准直通道组的焦点上;其中,所述准直器包括至少一组准直通道组,每组所述准直通道组包括至少两个准直通道,同一所述准直通道组的焦点为一个或多个。
另一方面,本发明实施例提供了一种X射线的聚焦装置,包括:
电子束生成器,用于发出电子束;
靶体,所述电子束打在靶体上,可产生X射线束;
准直器,包括至少一组准直通道组,每组所述准直通道组包括至少两个准直通道,其中,同一所述准直通道组的焦点为一个或多个。
再一方面,本发明实施例提供了一种放疗设备,包括本发明提供的任一项所述的聚焦装置。
本发明的实施例提供一种X射线的聚焦方法、装置及放疗设备,电子束生成器发出电子束,电子束打在靶体上,产生X射线束,X射线束经过准直器聚焦在一个或多个焦点上,从而实现X射线束的聚焦。该X射线的聚焦装置可应用于放疗设置中,将聚焦点与患者的肿瘤位置对应,以便利用X射线将肿瘤杀死,起到治疗的目的。相对于现有的利用X射线进行适形治疗,本申请提供的X射线的聚焦装置可以进行聚焦治疗,该聚焦点根据准直通道的大小可以不同。相对于适形治疗,可以实现更加精细的治疗,对病发前期的小肿瘤具有更好的治疗效果。且聚焦治疗利用较低能量的X射线聚焦在靶点处,满足放射治疗时对靶点处的高剂量要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有的加速器结构示意图;
图2为加速器产生的X射线剂量分布示意图;
图3为本申请提供的一种X射线的聚焦方法示意图;
图4为本申请提供的一种X射线的聚焦示意图;
图5为本申请提供的一种圆形准直器示意图;
图6为本申请提供的一种矩形准直器示意图;
图7为本申请提供的一种准直通道组的聚焦截面示意图;
图8为本申请提供的另一种准直通道组的聚焦截面示意图;
图9为本申请提供的另一种准直通道组的聚焦截面示意图;
图10为本申请提供的另一种X射线的聚焦方法示意图;
图11为本申请提供的另一种X射线的聚焦方法示意图;
图12为本申请提供的另一种X射线的聚焦方法示意图;
图13为本申请提供的一种X射线的聚焦示意图;
图14为本申请提供的另一种X射线的聚焦方法示意图;
图15为本申请提供的另一种X射线的聚焦方法示意图;
图16为本申请提供的一种X射线的聚焦示意图;
图17为本申请提供的一种聚焦装置示意图;
图18为本申请提供的另一种聚焦装置示意图;
图19为本申请提供的另一种聚焦装置示意图;
图20为本申请提供的另一种聚焦装置示意图;
图21为本申请提供的另一种聚焦装置示意图;
图22为本申请提供的另一种聚焦装置示意图。
附图标记:
1-电子束生成器;2-电子束;3-靶体;4-X射线束;5-准直器;6-分束部件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提供了一种X射线的聚焦方法,如图3、图4所示,聚焦方法包括:
步骤101、电子束生成器1发出电子束2。示例的,为了发出电子束,电子束生成器可以是包括脉冲调制器、电子枪、磁控管、以及波导加速管等。关于电子束生成器生成并发出电子束,可以参照现有的加速器,本申请在这里不做具体说明。
步骤102、电子束2打在靶体3上,产生X射线束4。一般的,靶体可以是由金属形成,例如靶体可以是钽板或铜板等。电子束打在靶体上,发生撞击,电子突然减速,其损失的动能会以光子形式放出,形成X射线束。
步骤103、X射线4穿过准直器5的同一准直通道组的各准直通道,聚焦在准直通道组的焦点o上。其中,准直器包括至少一组准直通道组,每组准直通道组包括至少两个准直通道,同一准直通道组的焦点为一个或多个。
本申请中,准直器可以是用于头部治疗或用于体部治疗的圆形准直器、碗形准直器、矩形准直器等,本申请对准直器的形状不做具体限定。若准直器为圆形准直器,则同一准直通道组的至少两个准直通道可以是位于同一个圆上。本申请中,放疗设备打开状态下,射束的出束对应的准直通道组可以为同一准直通道组,当然还可以是根据准直通道的大小、形状、角度、位置等将其划分为同一准直通道组。示例的,同一准直通道组的准直通道大小相同,不同准直通道组的准直通道大小不同。
示例的,如图5所示,圆形准直器上设置有四个准直通道组a、b、c、d,每个准直孔组包括四个大小相同的准直孔,其中,准直孔组的直径大小为a<b<c<d。当然,准直器为圆形或者碗形准直器的设置不局限于图5所示,本申请仅以图5所示的为例进行示例说明。
若准直器为矩形准直器,则准直通道可以矩阵排列,位于同一排或同一列的准直通道为一个准直通道组。示例的,如图6所示,准直器上的准直通道阵列排列,包括四个准直通道组a、b、c、d,每个准直孔组包括6个大小相同的准直通道,其中,准直通道组的直径大小为a<b<c<d。
本申请中,同一准直通道组的焦点为一个或多个。示例的,同一准直通道组的焦点为一个,如图7所示,以准直通道组b为例,准直通道组b的焦点可以是一个,即X射线穿过各准直通道可聚焦在一个焦点o上。本申请中,同一准直通道组的焦点为一个,X射线束经过不同所述准直通道组的聚焦点位置相同。如图5、图6所示,切换准直通道组a和b,其准直通道组的焦点位置同为焦点o的位置处。需要说明的是,一般的在放疗过程中,每次射束穿过一组准直通道组,只有当射束穿过准直通道才能聚焦在焦点处,本申请中,不同准直通道组的焦点不同,但不同准直通道组的焦点位置可以是相同的。
当然,同一准直通道组的焦点还可以是多个,X射线束经过同一所述准直通道组的聚焦点位置不同。如图8所示,以准直通道组b为例,准直通道组b的焦点可以是两个,即o1和o2。示例的,准直器还可以是由多个准直器块组成,在同一准直通道组的焦点是多个的情况下,可以是X射线束经过每个准直器块上的准直通道聚焦在一个焦点上,不同准直器块的焦点不同。进而可以通过设置不同准直器块调整焦点的大小及位置,以满足不同的治疗需求。示例的,如图9所示,准直器包括准直器块A1和准直器块A2,其中准直器块A1的焦点为o1,准直器块A2的焦点为o2。图8、图9中以o1和o2在一个方向(例如x方向)的位置不同。需要说明的是,o1和o2还可以是在两个方向(例如x和y方向)上的位置不同,或,三个方向(例如x和y和z方向)的位置均不同。当然,准直孔组的形状等也可以不同,本发明对此不作限定,仅以上述为例进行示例说明。
本申请中,准直通道的形状例如可以是圆形,其大小可以是直径为2-20mm之间,例如可以是2mm、4mm、6mm、8mm、12mm、14mm、16mm、18mm等,应用于放疗设备,可以适用于治疗较小的头部肿瘤。当然,其直径还可以是20-200mm之间,从而聚焦点更大,可以适用于治疗较大的体部肿瘤。
另外,本申请中,X射线4穿过准直器5的同一准直通道组的各准直通道,聚焦在准直通道组的焦点o上,还可以是X射线4依次穿过准直器5的同一准直通道组的各准直通道,穿过每个准直通道组的射束经过焦点o,从而实现聚焦在准直通道组的焦点o上。
本申请提供了一种X射线的聚焦方法,电子束生成器发出电子束,电子束打在靶体上,产生X射线束,X射线束经过准直器聚焦 在一个或多个焦点上,从而实现X射线束的聚焦。该X射线的聚焦装置可应用于放疗设置中,将聚焦点与患者的肿瘤位置对应,以便利用X射线将肿瘤杀死,起到治疗的目的。相对于现有的利用X射线进行适形治疗,本申请提供的X射线的聚焦装置可以进行聚焦治疗,聚焦治疗利用较低能量的X射线聚焦在靶点处,进而能够提高焦点处的剂量率,满足放射治疗时对靶点处的高剂量要求。相对于适形治疗,可以实现更加精细的治疗,对病发前期的小肿瘤具有更好的治疗效果。
本申请提供的一种聚焦方法,同一准直通道组的准直通大大小可以是相同的,不同准直通道组的准直通道大小不同。以图5、图6所示的准直器为例,经过同一准直通道组的X射线束聚焦在焦点上,通过切换使得X射线束穿过不同准直通道组的准直通道,切换不同大小的射线。
本申请提供的一种聚焦方法,电子束为发散束。电子束为发散束,即电子束可以是宽束,电子束与靶体接触时进行宽束打靶,从而增大电子束与靶体的接触面积。相对于常规电子束窄束打靶的方式,能够在更大的范围产生X射线,X射线经过准直器聚焦到焦点,可以分散并降低人体的表皮剂量的同时,实现焦点的高剂量。
或者,如图10所示,电子束生成器发出第一电子束;第一电子束为窄束,示例的,第一电子束可以是射束宽度不大于5mm的射束。在步骤102之前,方法还包括:
步骤104、对第一电子束进行发散,形成第二电子束;其中,第二电子束为发散束。第二电子束与靶体接触时进行宽束打靶,从而增大电子束与靶体的接触面积。相对于常规电子束窄束打靶的方式,能够在更大的范围产生X射线,X射线经过准直器聚焦到焦点,可以分散并降低人体的表皮剂量的同时,实现焦点的高剂量。
本申请提供的另一种聚焦方法,如图11所示,还包括:
步骤105、对电子束进行能量均整,以使得电子束与靶体的接触表面的能量均衡。示例的,可以是在电子束生成器和靶体之间设置均整块,用于对电子束进行能量均整,以使得电子束与靶体的接触表面的能量均衡
或者,本申请提供的一种聚焦方法,还可以是对X射线束进行能量均整。示例的,可以是在靶体下方或准直器的上方设置均整块等, 对X射束能量进行均整。
本申请提供的聚焦方法,对电子束或X射线束进行能量均整,可以使X射线束的能量大小更加均衡,也可以是使得X射线束的能量分配满足一定关系,例如使得中间区域的能量较小,周边区域的能量较大,以利于提高靶点的剂量。当然,还可以通过靶体达到射线能量的均整,例如可以设置靶体的中间区域密度小,外周区域密度高,从而使得打靶后的X射线束剂量率中间低,两侧高。
本申请提供的一种聚焦方法,X射线束穿过所述准直器的同一准直通道组的各准直通道包括:X射线束依次穿过准直器同一准直通道组的每个准直通道。示例的,移动电子束可以是连同靶体一起移动,从而使得在不同的位置处发出X射线束,从而X射线束依次穿过准直器同一准直通道组的每个准直通道。这样X射线一次经过一个准直通道,则经过每个准直通道的X射线的剂量较大,从而可以提交焦点的剂量率,以满足放射治疗的高剂量要求。示例的,如图5、图6、图7所示,X射线束依次穿过准直通道组b中的每个准直通道,由于经过每个准直通道的X射线束均经过焦点o,从而实现扫描式的聚焦。
当然,也可以通过移动电子束,以使得电子束打在靶体的位置发生变化,从而使得X射线束的位置发生变化,以使得X射线束依次穿过准直器同一准直通道组的每个准直通道。或者,还可以是移动所述电子束以及靶体,从而使得X射线束的位置发生变化,以使得X射线束依次穿过准直器同一准直通道组的每个准直通道。
示例的,本申请提供的一种聚焦方法,电子束打在靶体上产生X射线束包括:移动电子束,使得电子束打在靶体的位置发生变化,打在靶体每个位置处分别产生X射线束。示例的,靶体可以是碗状,电子束打在靶体的不同位置,在每个位置处分别产生一束X射线束,每个位置处的X射线束经过同一准直通道组的各准直通道,聚焦在焦点上。这样X射线一次经过一个准直通道,则经过每个准直通道的X射线的剂量较大,从而可以提交焦点的剂量率,以满足放射治疗的高剂量要求。
示例的,本申请提供的一种聚焦方法,如图12、图13所示:
步骤101、电子束生成器1发出电子束2。
步骤106、将电子束分隔成至少两个子电子束,以两个子电子束 为例,即子电子束2a和子电子束2b。图13中示例的,以通过分束部件6将电子束分隔成两个子电子束为例。当然,对电子束进行分束的方式也不局限于此。
步骤102、至少两个子电子束分别打在靶体上各产生一束X射线束。即X射线束4a和X射线束4b。
步骤103、每束X射线束穿过准直器同一准直通道组的各准直通道,聚焦在准直通道组的焦点上。
需要说明的是,图13中,靶体3可以是一个整体,也可以是分开的两个。同样的,准直器5可以是一个整体,也可以是分开的两个准直器块。进一步说明的是,图13中以X射线束4a和X射线束4b分别穿过准直通道组的各准直通道聚焦在一个焦点o为例。当然,X射线束4a和X射线束4b还可以是穿过准直器的准直通道组后分别聚焦在两个焦点或多个焦点上。本申请提供的一种实施方式,X射线束4a和X射线束4b还可以是穿过准直器的准直通道组后分别聚焦在两个不同位置的聚焦点。
本申请提供的一种聚焦方法,还可以是移动两个子电子束,使得两个子电子束打在靶体的位置发生变化。例如,靶体可以是圆盘,沿圆周移动两个子电子束,使其圆周旋转,打在靶体上的位置连线形成一个圆形。或者,水平移动两个子电子束,使其沿一个或两个方向移动,打在靶体上的位置可以是矩阵排布。需要说明的是,在这种情况下,每次打在靶体上产生的X射线可以是依次穿过准直器5的同一准直通道组的各准直通道,每次均穿过准直通道组的焦点o,从而聚焦在准直通道组的焦点o上,实现扫描式聚焦。当然每次打在靶体上产生的X射线也可以是穿过准直器同一准直通道组的多个准直通道,且每次均穿过该准直通道的焦点,从而聚焦在准直通道组的焦点o上。这样X射线一次经过一个准直通道,则经过每个准直通道的X射线的剂量较大,从而可以提交焦点的剂量率,以满足放射治疗的高剂量要求。
本申请提供的一种聚焦方法,电子束生成器发出一束电子束;
电子束打在靶体上产生X射线束包括:一束电子束打在靶体上,发出一束X射线束。该一束X射线束可以是穿过所述准直器的同一准直通道组的各准直通道,聚焦在所述准直通道组的焦点上。或者,该一束X射线束还可以是依次穿过所述准直器的同一准直通道组的 各准直通道,聚焦在所述准直通道组的焦点上。
进一步示例的,本申请提供的另一种聚焦方法,如图14所示,
步骤101、电子束生成器发出一束电子束。该一束电子束最好为与靶体为面接触的宽束,以尽量减少打靶的能量损失。当然,该电子束也可以是窄束。
步骤102、一束电子束打在靶体上,发出一束X射线束。
步骤103、一束X射线束依次穿过准直器同一准直通道组的每个准直通道,穿过准直通道组的焦点。
需要说明的是,X射线束依次穿过准直器的同一准直通道组的每个准直通道,可以是通过电子束依次移动打在靶体的不同位置,还可以是电子束生成器打在靶体上,电子束生成器与靶体整体移动等。本申请对其具体实现方式不做具体限定,仅以以上两种为例进行示例说明。
图14所示的实施例与图12所示的实施例不同在于,图14所示的实施例中,电子束为一束,通过移动使得射线依次穿过准直通道。而图12所示的实施例中,将电子束分隔成两个子电子束,每个子电子束分别移动使得射线依次穿过准直通道。当然,对电子束移动实现聚焦的具体实施例也不局限于此,本申请仅以上述所示为例进行示例说明。
示例的,X射线束可以是沿圆周移动,还可以是水平移动,以依次穿过准直器同一准直通道组的每个准直通道。当然,水平移动还可以是沿多个方向移动,本申请对其不做具体限定。
本申请提供的另一种聚焦方法,如图15、16所示:
步骤101、电子束生成器1发出至少两个束电子束(即电子束2a和电子束2b)。示例的,电子束生成器可以是包括多个,每个电子束生成器分别发出一束电子束。需要说明的是,本申请对电子束生成器发出至少两个电子束的方式不做具体限定,仅以所示的为例进行示例说明。
步骤102、至少两个电子束(即电子束2a和电子束2b)分别打在靶体3上各产生一束X射线束(即X射线束4a和X射线束4b)。每束X射线束穿过准直器同一准直通道组的各准直通道,即X射线束4a和X射线束4b分别穿过准直通道组的各准直通道聚焦在准直通道组的焦点o上。
需要说明的是,图16所示的实施例中,靶体3可以是一个整体,也可以是分开的两个。同样的,准直器5可以是一个整体,也可以是分开的两个准直器块。进一步说明的是,图16中以X射线束4a和X射线束4b分别穿过准直通道组的各准直通道聚焦在一个焦点o为例。当然,X射线束4a和X射线束4b还可以是穿过准直器的准直通道组后分别聚焦在两个焦点或多个焦点上,即各X射线束的聚焦点位置不同。本申请提供的一种实施方式,X射线束4a和X射线束4b还可以是穿过准直器的准直通道组后分别聚焦在两个焦点不同位置处的焦点。
示例的,图15、图16所示的实施例中,X射线束也可以是移动使得射线束依次穿过准直通道,聚焦在准直通道组的焦点o上。需要说明的是,X射线束依次穿过准直器的同一准直通道组的每个准直通道,可以是通过电子束依次移动打在靶体的不同位置,还可以是电子束生成器打在靶体上,电子束生成器与靶体整体移动等。本申请对其具体实现方式不做具体限定,仅以以上两种为例进行示例说明。示例的,X射线束可以是圆周移动,还可以是水平移动,以依次穿过准直器同一准直通道组的每个准直通道。当然,水平移动还可以是沿多个方向移动,本申请对其不做具体限定。
此外,图15、图16所示的聚焦方法中,至少两个电子束分别打在靶体上各产生一束X射线束,则多个X射线束可以是穿过同一准直通道组聚焦在不同位置的焦点,且每个X射线束穿过的准直通组的准直通道的大小可以不同。示例的,准直器可以是包括准直器块A1和准直器块A2,其中准直器块A1的焦点为o1,准直器块A2的焦点为o2,准直器块A1和准直器块A2上的准直通道可以是大小不同,但其准直通道组位于同一排则属于同一准直通道组。
本申请提供的一种聚焦方法,电子束打靶时的入射延长线与准直通道的中心轴的夹角为0-90度。以减小电子束与准直通道的中心轴的夹角,从而可以尽量避免能量的损失。
本申请提供的一种的聚焦方法,电子束垂直入射在靶面上。从而减小电子束打在靶面上后的能量损失。最好能够使得电子束与准直通道的延长线在一条直线上。
需要说明的是,本申请提供了一种X射线的聚焦装置,其与本 申请提供的X射线的聚焦方法对应,因此,对X射线的聚焦装置中的部件说明可以参照上述聚焦方法中的描述,在以下不做具体说明和赘述。
本发明提供了一种X射线的聚焦装置100,如图17所示,包括:
电子束生成器101,用于发出电子束。为了发出电子束,电子束生成器可以是包括脉冲调制器、电子枪、磁控管、以及波导加速管等。关于电子束生成器生成并发出电子束,可以参照现有的加速器,本申请在这里不做具体说明。
靶体102,电子束打在靶体上,可产生X射线束。靶体可以是由金属形成,例如靶体可以是钽板或铜板等。电子束打在靶体上,发生撞击,电子突然减速,其损失的动能会以光子形式放出,形成X射线束。
准直器103,包括至少一组准直通道组,每组准直通道组包括至少两个准直通道,其中,同一准直通道组的焦点为一个或多个。本申请中,准直器可以是圆形准直器、碗形准直器、矩形准直器等,本申请对准直器的形状不做具体限定。如图5所示,若准直器为圆形准直器,则同一准直通道组的至少两个准直通道可以是位于同一个圆上,或者,多个准直通道组还可以是同心圆设置。如图6所示,若准直器为矩形准直器,则准直通道可以矩阵排列,位于同一排或同一列的准直通道为一个准直通道组。本申请中,可以是根据准直通道的大小、形状、位置等将其划分为同一准直通道组。示例的,本申请中,同一准直通道组的准直通道大小相同,不同准直通道组的准直通道大小不同。
本申请中,同一准直通道组的焦点为一个或多个。示例的,同一准直通道组的焦点为一个,如图7所示,以准直通道组b为例,准直通道组b的焦点可以是一个,即X射线穿过各准直通道可聚焦在一个焦点o上。本申请中,同一准直通道组的焦点为一个,X射线经过不同准直通道组的聚焦点位置相同。如图5、图6所示,切换准直通道组a和b,其准直通道组的焦点位置同为焦点o的位置处。需要说明的是,一般的在放疗过程中,每次射束穿过一组准直通道组,只有当射束穿过准直通道才能聚焦在焦点处,本申请中,不同准直通道组的焦点不同,但不同准直通道组的焦点位置可以是相同的。
当然,同一准直通道组的焦点还可以是多个,则多个焦点的位置 不同。示例的,本申请中,准直器可以是由多个准直器块组成,在同一准直通道组的焦点是多个的情况下,可以是每个准直器块上的准直通道的中心延长线可聚焦在一个焦点上,不同准直器块的焦点不同。
本申请中,准直通道的形状例如可以是圆形,其大小可以是直径为2-20mm之间,例如可以是2mm、4mm、6mm、8mm、12mm、14mm、16mm、18mm等,应用于放疗设备,可以适用于治疗较小的肿瘤。当然,其直径还可以是20-200mm之间,从而聚焦点更大,可以适用于治疗较大的肿瘤。
本发明提供了一种X射线的聚焦装置,电子束生成器发出电子束,电子束打在靶体上,产生X射线束,X射线束经过准直器聚焦在一个或多个焦点上,从而实现X射线束的聚焦。该X射线的聚焦装置可应用于放疗设置中,将聚焦点与患者的肿瘤位置对应,以便利用X射线将肿瘤杀死,起到治疗的目的。相对于现有的利用X射线进行适形治疗,本申请提供的X射线的聚焦装置可以进行聚焦治疗,该聚焦点根据准直通道的大小,相对于适形治疗,可以实现更加精细的治疗效果,对病发前期的小肿瘤具有更好的治疗效果。且其能够将X射线通过聚焦方式提交聚焦在靶点处的射线剂量,从而可以满足肿瘤放射治疗对靶点的高剂量要求。
本申请提供的一种聚焦方法,同一准直通道组的准直通大大小可以是相同的,不同准直通道组的准直通道大小不同。以图5、图6所示的准直器为例,经过同一准直通道组的X射线束聚焦在焦点上,通过切换使得X射线束穿过不同准直通道组的准直通道,切换不同大小的射线。
本申请提供的聚焦装置,电子束为发散束。或者,如图18所示,还包括发散部件104,用于在将电子束打在靶体上之前,对电子束进行发散。本申请对电子束进行发散成为发散束,从而使得电子束打在靶体上时,与靶体为面接触。
本申请提供的聚焦装置,如图19所示,还包括均整块105,用于对电子束和/或X射束进行能量均整。示例的,可以是在靶体下方或准直器的上方设置均整块,对X射束能量进行均整。
本申请中对电子束或X射线束进行能量均整,可以使X射线束的能量大小更加均衡,也可以是使得X射线束的能量分配满足一定关系,例如使得中间区域的能量较小,周边区域的能量较大,以利于 提高靶点的剂量。当然,还可以通过靶体射线能量的均整,例如可以设置靶体的中间区域密度小,外周区域密度高,从而使得打靶后的X射线束剂量率中间低,两侧高。
当然,均整块还可以是设置电子束生成器和靶体之间,用于对电子束进行能量均整,以使得电子束与靶体的接触表面的能量均衡。
本申请提供的聚焦装置,如图20所示,还包括分束部件106,用于对电子束进行分隔,形成至少两个子电子束。示例的,可以参照如图12和13所示及其具体描述。
本申请提供的聚焦装置,还包括移动部,用于使得所述X射线束的位置发生变化,以使所述X射线束依次穿过准直器同一准直通道组的每个准直通道。即X射线依次穿过准直器的同一准直通道组的各准直通道,穿过每个准直通道组的射束经过焦点,从而实现聚焦在准直通道组的焦点上。
示例的,移动部可以是水平移动或沿圆周移动所述X射线束。且移动部实现移动X射线束可以通过多种方式实现,示例的,如图21所示,还包括第一移动部107,用于移动子电子束,以使得子电子束打在靶体的位置发生变化,从而使得所述X射线束的位置发生变化。或者,如图22所示,还包括第二移动部108,用于水平移动或圆周旋转X射线束,即电子束打在靶体后产生X射线束后,直接移动X射线束。当然,移动部还可以是用于移动电子束以及靶体,从而使得X射线束的位置发生变化。
图21和图22所示的为两种不同的方式,来实现射线依次穿过准直器的一个或多个准直通道,每次均穿过准直通道组的焦点o,从而聚焦在准直通道组的焦点o上。
本申请提供的聚焦装置,电子束生成器发出至少两束电子束。具体可以参照图15和图16所示的实施例。或者,聚焦装置还包括:分束部件,用于对所述电子束进行分隔,形成至少两个子电子束。
本申请提供了一种放疗设备,包括本申请提供的任一项的聚焦装置。需要说明的是,该聚焦装置可以实现放疗设备的聚焦治疗。当然,本申请提供的放疗设备,还可以是包括多个治疗头,其中一个为聚焦治疗头,该聚焦治疗头可以包括本申请提供的任一项的聚焦装置。放疗设备也可以包括多个聚焦治疗头,例如包括两个聚焦治疗头,其中 一个为本申请提供的任一项的聚焦装置,另一个可以为现有的钴-60聚焦治疗头。
本申请提供的一种放疗设备,还包括至少一个探测器,用于接收X射线束。示例的,探测器接收X射线束可以对X射线束的剂量、大小等进行验证,以进一步调整X射线束,以使其满足治疗计划的需求。
本申请提供的一种放疗设备,还包括影像系统,影像系统包括球管和平板探测器。本申请中,放疗设备可以是包括一个球管和一个平板探测器,还可以是包括两个球管和两个探测器。
本申请提供的一种放疗设备,还包括适形装置。本申请中,适形装置为实现适形治疗的装置总和,适形装置可以是加速器治疗头,还可以是钴-60治疗头。示例的,包括放射源、多叶准直器等,其中,放射源可以是钴源,也可以是X射线源。且本申请提供的放疗设备,还包括用于接收适形装置放射束的平板探测器。
本申请提供的放疗设备,平板探测器还可以是可以移动,以接收球管的射束、聚焦装置的X射线束以及适形装置的射线束中的至少两个。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种X射线的聚焦装置,其特征在于,包括:
    电子束生成器,用于发出电子束;
    靶体,所述电子束打在靶体上,可产生X射线束;
    准直器,包括至少一组准直通道组,每组所述准直通道组包括至少两个准直通道,其中,同一所述准直通道组的焦点为一个或多个。
  2. 根据权利要求1所述的聚焦装置,其特征在于,还包括:移动部,用于使得所述X射线束的位置发生变化,以使所述X射线束依次穿过准直器同一准直通道组的准直通道。
  3. 根据权利要求2所述的聚焦装置,其特征在于,所述移动部水平移动或沿圆周移动所述X射线束。
  4. 根据权利要求2所述的聚焦装置,其特征在于,所述移动部用于移动所述X射线束;或者;
    所述移动部用于移动所述电子束,以使得所子电子束打在所述靶体的位置发生变化,从而使得所述X射线束的位置发生变化;或者,
    所述移动部用于移动所述电子束以及所述靶体,从而使得所述X射线束的位置发生变化。
  5. 根据权利要求1或2所述的聚焦装置,其特征在于,所述电子束生成器发出至少两束电子束;或者,
    所述聚焦装置还包括:分束部件,用于对所述电子束进行分隔,形成至少两个子电子束。
  6. 根据权利要求1所述的聚焦装置,其特征在于,所述电子束为发散束;或者;
    所述电子束生成器发出第一电子束,所述聚焦装置还包括:发散部件,用于对所述第一电子束进行发散,形成第二电子束;其中,所述第二电子束为发散束。
  7. 根据权利要求1所述的聚焦装置,其特征在于,还包括:均整块,
    所述均整块设置在所述电子束生成器和所述靶体之间,用于对所述电子束进行能量均整,以使得所述电子束与所述靶体的接触表面的能量均衡;或者,
    所述均整块设置在所述靶体和所述准直器之间,用于对所述X射线束进行能量均整。
  8. 根据权利要求1所述的聚焦装置,其特征在于,同一所述准直 通道组的焦点为一个,且X射线束经过不同所述准直通道组的聚焦点位置相同;或者,
    同一所述准直通道组的焦点为多个,X射线束经过同一所述准直通道组的多个聚焦点位置不同。
  9. 根据权利要求5所述的聚焦装置,其特征在于,所述电子束打靶时的入射延长线与准直通道的中心轴的夹角为0-90度。
  10. 一种放疗设备,其特征在于,包括权利要求1-9任一项所述的聚焦装置。
  11. 一种X射线的聚焦方法,其特征在于,所述聚焦方法包括:
    电子束生成器发出电子束;
    所述电子束打在靶体上,产生X射线束;
    所述X射线束穿过所述准直器的同一准直通道组的各准直通道,聚焦在所述准直通道组的焦点上;其中,所述准直器包括至少一组准直通道组,每组所述准直通道组包括至少两个准直通道,同一所述准直通道组的焦点为一个或多个。
  12. 根据权利要求11所述的聚焦方法,其特征在于,所述X射线束穿过所述准直器的同一准直通道组的各准直通道包括:
    所述X射线束依次穿过准直器同一准直通道组的准直通道。
  13. 根据权利要求12所述的聚焦方法,其特征在于,所述电子束生成器发出一束电子束;
    所述电子束打在靶体上产生X射线束包括:所述一束电子束打在靶体上,发出一束X射线束。
  14. 根据权利要求12所述的聚焦方法,其特征在于,所述电子束生成器发出至少两束电子束;
    所述电子束打在靶体上发出射线束包括:所述至少两束电子束打在靶体上分别发出一束X射线束;
    所述X射线束依次穿过准直器同一准直通道组的每个准直通道包括:每束X射线束分别依次穿过准直器同一准直通道组的各准直通道,聚焦在所述准直通道组的焦点上。
  15. 根据权利要求14所述的聚焦方法,其特征在于,各X射线束的聚焦点位置相同。
  16. 根据权利要求12所述的聚焦方法,其特征在于,所述X射线束沿圆周移动或水平移动,依次穿过准直器同一准直通道组的每个准 直通道。
  17. 根据权利要求11所述的聚焦方法,其特征在于,所述电子束打在靶体上产生X射线束包括:
    移动所述电子束,使得所述电子束打在所述靶体的位置发生变化,打在靶体每个位置处分别产生X射线束。
  18. 根据权利要求11或12所述的聚焦方法,其特征在于,所述电子束生成器发出电子束;
    在将所述电子束打在靶体上发出射线束之前,所述方法还包括:
    将所述电子束分隔成至少两个子电子束;
    所述电子束打在靶体上发出射线束包括:所述至少两个子电子束分别打在靶体上各产生一束X射线束;
    所述X射线束穿过所述准直器的同一准直通道组的各准直通道,聚焦在所述准直通道组的焦点上包括:每束X射线束穿过或依次穿过准直器同一准直通道组的各准直通道,聚焦在所述准直通道组的焦点上。
  19. 根据权利要求11所述的聚焦方法,其特征在于,所述电子束为发散束;或者;
    所述电子束生成器发出第一电子束;
    在将所述第一电子束打在靶体上发出X射线束之前,所述方法还包括:
    对所述第一电子束进行发散,形成第二电子束;其中,所述第二电子束为发散束。
  20. 根据权利要求11所述的聚焦方法,其特征在于,所述方法还包括:
    对所述电子束进行能量均整,以使得所述电子束与所述靶体的接触表面的能量均衡;或者,
    对所述X射线束进行能量均整。
PCT/CN2018/090280 2017-07-19 2018-06-07 一种x射线的聚焦方法、装置及放疗设备 WO2019015412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/632,277 US11324969B2 (en) 2017-07-19 2018-06-07 Method and device for focusing X-ray and radiotherapy apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710589635.3A CN107456663A (zh) 2017-07-19 2017-07-19 一种x射线的聚焦方法、装置及放疗设备
CN201710589635.3 2017-07-19

Publications (1)

Publication Number Publication Date
WO2019015412A1 true WO2019015412A1 (zh) 2019-01-24

Family

ID=60546753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090280 WO2019015412A1 (zh) 2017-07-19 2018-06-07 一种x射线的聚焦方法、装置及放疗设备

Country Status (3)

Country Link
US (1) US11324969B2 (zh)
CN (1) CN107456663A (zh)
WO (1) WO2019015412A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107456663A (zh) * 2017-07-19 2017-12-12 西安大医数码技术有限公司 一种x射线的聚焦方法、装置及放疗设备
CN108379748B (zh) * 2018-04-09 2019-11-05 西安大医集团有限公司 放射治疗头及放射治疗装置
CN111388883A (zh) * 2020-03-26 2020-07-10 北京易康医疗科技有限公司 一种肿瘤放疗中的放射线束聚焦方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185981A (zh) * 1997-08-19 1998-07-01 深圳奥沃国际科技发展有限公司 多个加速器聚焦式x射线治疗装置
CN1310029A (zh) * 2001-02-28 2001-08-29 王增开 一种实现对x线适形调强的方法及其准直装置
US20040037393A1 (en) * 2002-08-20 2004-02-26 General Electric Company Multiple focal spot X-ray inspection system
CN101642605A (zh) * 2008-08-06 2010-02-10 三菱重工业株式会社 放射治疗设备和放射线照射方法
CN203408368U (zh) * 2013-07-24 2014-01-29 深圳市奥沃医学新技术发展有限公司 一种集成立体定向多源聚焦治疗和适形调强治疗放疗设备
CN107456663A (zh) * 2017-07-19 2017-12-12 西安大医数码技术有限公司 一种x射线的聚焦方法、装置及放疗设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639045A (ja) * 1991-06-12 1994-02-15 Hitachi Medical Corp 電子線走査形定位放射線装置
WO1998041992A1 (en) * 1997-03-18 1998-09-24 Focused X-Rays Llc Medical uses of focused and imaged x-rays
US6125295A (en) * 1997-08-27 2000-09-26 Cash, Jr.; Webster C. Pharmaceutically enhanced low-energy radiosurgery
US20020085674A1 (en) * 2000-12-29 2002-07-04 Price John Scott Radiography device with flat panel X-ray source
CA2679385C (en) * 2007-02-28 2018-01-02 University Of Maryland, Baltimore Method and equipment for image-guided stereotactic radiosurgery of breast cancer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185981A (zh) * 1997-08-19 1998-07-01 深圳奥沃国际科技发展有限公司 多个加速器聚焦式x射线治疗装置
CN1310029A (zh) * 2001-02-28 2001-08-29 王增开 一种实现对x线适形调强的方法及其准直装置
US20040037393A1 (en) * 2002-08-20 2004-02-26 General Electric Company Multiple focal spot X-ray inspection system
CN101642605A (zh) * 2008-08-06 2010-02-10 三菱重工业株式会社 放射治疗设备和放射线照射方法
CN203408368U (zh) * 2013-07-24 2014-01-29 深圳市奥沃医学新技术发展有限公司 一种集成立体定向多源聚焦治疗和适形调强治疗放疗设备
CN107456663A (zh) * 2017-07-19 2017-12-12 西安大医数码技术有限公司 一种x射线的聚焦方法、装置及放疗设备

Also Published As

Publication number Publication date
CN107456663A (zh) 2017-12-12
US11324969B2 (en) 2022-05-10
US20200230436A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
US10576303B2 (en) Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
US8600003B2 (en) Compact microbeam radiation therapy systems and methods for cancer treatment and research
US20140112451A1 (en) Convergent photon and electron beam generator device
JP2019150662A (ja) 荷電ハドロンビームの供給
US11857805B2 (en) Increased beam output and dynamic field shaping for radiotherapy system
KR20190085914A (ko) 방사선 전자 빔의 자기 제어를 위한 장치 및 방법
JP6256974B2 (ja) 荷電粒子ビームシステム
US11975216B2 (en) Radiation treatment head and radiation treatment device
WO2019015412A1 (zh) 一种x射线的聚焦方法、装置及放疗设备
WO2019205924A1 (zh) 放射治疗头及放射治疗装置
US9403036B2 (en) Particle beam treatment device and operation method therefor
CN208756803U (zh) 一种x射线的聚焦装置及放疗设备
US20220387824A1 (en) Device For Ultra-High Dose Rate Radiation Treatment
WO2020001375A1 (zh) 放射治疗设备
JP2022541460A (ja) 放射線治療を計画および送達するためのコンピュータプログラム製品およびコンピュータシステムならびに放射線治療を計画する方法
CN111388883A (zh) 一种肿瘤放疗中的放射线束聚焦方法
US20220270777A1 (en) Dynamic Pinhole Aperture for Charged Particle Therapy Systems
JPH06130200A (ja) 放射線照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834367

Country of ref document: EP

Kind code of ref document: A1