CN110603096A - 高再生效率的直链轻烃的脱氢催化剂的制备方法 - Google Patents

高再生效率的直链轻烃的脱氢催化剂的制备方法 Download PDF

Info

Publication number
CN110603096A
CN110603096A CN201880028916.4A CN201880028916A CN110603096A CN 110603096 A CN110603096 A CN 110603096A CN 201880028916 A CN201880028916 A CN 201880028916A CN 110603096 A CN110603096 A CN 110603096A
Authority
CN
China
Prior art keywords
catalyst
platinum
acid
tin
dehydrogenation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880028916.4A
Other languages
English (en)
Other versions
CN110603096B (zh
Inventor
韩贤植
柳永山
金和东
曹永安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi Xing Catalyst Co Ltd
Original Assignee
Xi Xing Catalyst Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi Xing Catalyst Co Ltd filed Critical Xi Xing Catalyst Co Ltd
Publication of CN110603096A publication Critical patent/CN110603096A/zh
Application granted granted Critical
Publication of CN110603096B publication Critical patent/CN110603096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/10Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/58Platinum group metals with alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/656Manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)

Abstract

本发明涉及在C3至C4范围内的直链烃气体的脱氢反应中使用的催化剂,并且提供了一种脱氢催化剂,其沉积在通过改变铂、辅助金属和碱金属的相而获得的载体上,其中铂和辅助金属以合金形式在从催化剂的外边缘起的一定厚度内以单一络合物形式存在。

Description

高再生效率的直链轻烃的脱氢催化剂的制备方法
技术领域
本发明涉及使用稳定化活性金属络合物制备直链轻烃的脱氢催化剂的方法,即,涉及C3至C4范围内的直链烃的脱氢催化剂。更具体地,本发明涉及制备催化剂的技术,该催化剂包含以合金形式在预定厚度内存在于载体表面上的金属组分,并且该催化剂在用于脱氢时其具有高转化率、选择性和再生效率。特别地,当负载金属时,使用有机溶剂和有机酸,从而制备显示出高分散性和合金性质的催化剂,以便使用快速干燥和快速还原方法使合金以独特的形式存在于催化剂中。
背景技术
轻烯烃是用于各种商业应用(如塑料、合成橡胶、药物和化学产品的原料)的材料。通常,轻烯烃是作为当热解衍生自原油的石脑油时产生的副产物提取的,或者是从裂化反应的副产物气体中提取的。然而,全球对轻烯烃的需求逐年增加,但生产量受到常规生产方法的限制。因此,使用催化剂通过脱氢制备轻烯烃的研究正在稳步进行。在该研究中,脱氢催化的优点在于,与常规方法相比,可获得具有高产率和高纯度的产物,并且,由于其工艺简单,脱氢催化是具有较高的生产效率的反应(Yuling Shan等人,Chem.Eng.J.278(2015),p240)。通常,取决于烃脱氢中反应物的碳数,会发生各种反应,其主要反应可以表示如下。
通常,当将热能施加于烃时,碳与碳之间的键强度(240KJ/mol)低于碳与氢之间的键强度(360KJ/mol)。因此,在热力学反应开始之后,首先发生碳-碳裂解反应,导致副产物的生成,因此产物的产率低。然而,当使用合适的催化剂时,碳-碳裂解反应可被最小化,这使得脱氢能够因此确保高产率和选择性。
迄今已有报道称,具有内部孔隙的成形载体,例如γ/θ/α氧化铝、沸石、二氧化硅和尖晶石型金属铝酸盐,可用于轻烃的脱氢。然而,在商业上,载体主要以催化剂的形式应用,其中活性成分负载于氧化铝载体中。通常,脱氢的转化率和选择性是催化剂选择的重要决定因素,并且在设计催化剂时要考虑以下因素。在活性点的控制中,由于铂的脱氢程度非常高,因此引入了碱金属。另外,为了防止由碳沉积引起的催化剂活性的降低,引入了一些过渡金属。此外,关于向催化剂颗粒进行的质量转移和活性材料的分散性,活性材料均匀地分布在直径为2至3mm的球形颗粒内部,从而提高总转化率并抑制高温下的烧结现象,进而减缓活性的降低。铂或第VIII族贵金属作为活性成分主要负载在二氧化硅、氧化铝或二氧化硅-氧化铝中,由此制备催化剂。该催化剂的缺点在于,由于高温反应,金属颗粒在反应的早期被烧结,从而降低了催化剂的寿命。当铂或第VIII族贵金属单独存在于催化剂中时,随着反应的进行,高温导致了颗粒快速烧结现象的出现,并且反应后产生的焦炭容易使催化剂中毒。当将辅助金属布置在催化剂旁边时,由于辅助金属有助于将吸附在铂上的焦炭前体轻松转移至载体,因此将活性金属物质在催化剂中制成合金态是非常重要的。因此,常规上,在链烷烃的脱氢中,使用包括两个或三个物种并通过将第VIII族贵金属元素(如铂)与一种或多种其他金属组分(如锡、镓、铟、铑、钌、钯、钴、铁、锗、钾和钠)组合获得的复合催化剂,以提高催化剂的活性金属的分散性和选择性并且延长提高催化剂的寿命(J.Catal.,320(2014),p52;Catal.Today,111(2006),p133)。
同时,已经广泛地进行了对催化剂的活性金属的研究和对这些金属的载体的研究。特别地,催化剂载体的重要性已在美国专利7,432,406、韩国专利2002-0048142中充分公开,并且由Ke等人(Chem.Eng.J.284(2016),p1068)、Zeeshan等人(Korean J.Chem.Eng.,26(6),(2009),p1528)、Owen等人(J.Mol.Catal.,79(1993),p265)、Bao等人(Appl.Catal.A:Gen.,400(2011),p25)和Bing等人(Appl.Catal.A:Gen.,533(2017),p.17)研究。根据研究结果,催化剂的活性和烯烃选择性不仅受金属的分散性显著影响,而且受催化剂载体的特性显著影响。已经对使用诸如二氧化硅、介孔二氧化硅(SBA-15)、水滑石(MgAlOx)、铝酸锌(ZnAl2O4)、沸石和氧化镁钒(MgO/V2O5)作为催化剂载体的材料进行了研究。这些材料对耐焦炭或产品选择性具有良好的效果。然而,当随着反应的进行,催化剂中积聚的焦炭量逐渐增加时,存在于催化剂中的微孔被焦炭堵塞,因此存在于其中的活性金属无法参与反应,导致失活。此外,由于这些材料中有一些必须使用诸如水热合成或共沉淀的制备方法来制备,因此制备原材料的成本高,介孔尺寸难以控制,并且需要单独的颗粒形成过程来用于工业化工艺。因此,存在制造成本高的限制。韩国专利2000-0026638报道,由于C5或更小的烃的反应在高温下进行,因此即使在短的反应时间内也产生大量的焦炭,因此,当反应物与催化剂的活性位点接触导致反应之后反应物很容易排放到催化剂外部时,可以减少副反应和焦炭沉积。
因此,关于催化剂的内部孔隙,必须减少微孔,但是必须保持孔隙,以使大多数孔隙形成大孔隙。从该观点出发,催化剂载体主要采用仅使用热处理就可以相对容易地控制孔径的氧化铝载体。其中,已知γ氧化铝由于其小孔径而易于焦炭沉积,而副反应的发生是由于载体的酸性位点。α氧化铝的缺点在于,由于降低了金属的分散性来引起金属的凝结,其选择性良好,但总转化率较低。因此,在描述轻烯烃制备的大多数文献(例如美国专利4,717,779和4,914,075、韩国专利10-2005-0009290和10-2010-0078460、Jie等人(Appl.Surf.Sci.,368(2016)P233)和Bhari等人(Catal.Today,232(2014),p 40))中使用的氧化铝相是θ氧化铝,并对其进行约1000℃的热处理。通过最大限度地减少金属之间的凝结,θ氧化铝对转化率和选择性具有极好的影响,因为它具有很高的使用高温热处理消除酸位点来抑制副反应的能力,以及很高的与金属的键合的能力。对于催化剂再生,由于要在短周期内再生的轻烃脱氢的特性,必须平稳地进行焦炭氧化,并且优选在尽可能最低的温度下再生催化剂,以防止颗粒快速烧结的现象。上述催化剂的再生特性在很大程度上取决于载体的孔径、铂和锡的合金状态以及铂的分布模式。
US 4,716,143公开了一种催化剂,其中Pt和Sn浓缩至从其外周起100微米的深度,但是在催化剂内部包括预定浓度的Pt,即具有Pt分级构造的催化剂。US 4,786,625公开了一种结构,其中Pt在其外周上形成壳并且Sn均匀地分布在整个催化剂中。
发明内容
技术问题
根据常规技术,由于铂和锡的合金形式是通过循序负载铂和锡来制备的,因此铂和锡的合金形式仅取决于两种活性材料接触的可能性。除了目标反应的最佳铂/锡摩尔比之外,还单独存在铂、或者存在具有另一铂/锡摩尔比的另一种合金。通常,只有当作为脱氢活性位点的铂和改善铂稳定性的锡以合金形式存在时,才能获得最佳结果。然而,常规技术的问题在于,由于除了铂-锡合金之外,单独存在铂或单独存在锡,因此在反应过程中会发生副反应。常规技术还具有以下问题:因为使用了铂和锡均匀地分布在氧化铝载体的中心的催化剂,催化剂的活性由于反应期间沉积在氧化铝中的碳(焦炭)而被降低;并且,催化剂由于残留在其中的焦炭而不能完全再生成初始状态,而且,即使尝试使用煅烧过程除去碳,催化剂也不会被氧化。
技术方案
根据本发明,在轻链烷烃的脱氢催化剂中,载体中的活性金属不是单独分布而是以合金形式保持恒定,并且该合金以预定的厚度存在于催化剂表面与其内核之间。在该结构中,由于在脱氢过程中在催化剂的中心不存在合金,因此不形成碳沉积物,并且碳沉积物仅位于分布有合金的催化剂的外周。因此,本发明的目的是提供一种具有显著改善的耐久性的催化剂及通过在催化剂再生过程之后从该催化剂内部完全除去碳沉积物而制备该催化剂的方法。本发明基于以下认识:当通过常规技术直接负载活性金属时,铂-锡合金比不是恒定的。在有机溶剂中将铂和锡制成复合物,并将该复合物与预定量的有机酸一起负载在载体中,从而以从氧化铝载体的表面起的预定的厚度分布,由此完成催化剂。
有益效果
根据本发明,通过使用铂-锡复合溶液在载体中获得铂和锡的相同分布,并且通过保持铂-锡合金比恒定而提高转化率和选择性。制备催化剂以使载体中不存在铂锡合金。因此,在反应期间在载体内部的碳沉积被最小化,并且在反应之后的再生过程期间易于除去沉积的焦炭,从而显著提高了催化剂的再生和耐久性。
附图说明
图1示出了常规技术和本发明的催化剂在反应后的状态;
图2示出了本发明所述方法的步骤流程图;
图3是在本发明实例1中制备的催化剂的电子探针显微分析(EPMA)照片;
图4是电子显微镜比较照片(视频显微镜),示出了再生之前和之后使用常规技术和本发明制备的催化剂。
图5示出了根据催化剂的再生循环数的丙烷转化率和丙烯选择性,其中使用的是实例1和比较例3中制备的催化剂;并且
图6示出了根据催化剂的再生循环数的催化剂中所积累碳量的变化,其中使用的是实例1和比较例3中制备的催化剂。
具体实施方式
本发明涉及C3至C4范围内的直链烃的脱氢催化剂,还涉及一种制备催化剂的技术,该催化剂包含以从载体表面起的预定厚度以合金形式存在于载体中的金属组分。与重烃相比,轻烃的脱氢催化剂经受的反应温度较高,故而会由于热分解和其他副反应而形成大量的焦炭。因此,取决于载体的孔径和孔体积的传质速率可能是相应反应中的主要因素。此外,当气时空速(GHSV),即反应物向反应器中的添加速率高时,沉积在催化剂中的碳量迅速增加。在定期进行的催化剂再生过程中,由于必须易于除去沉积的碳,因此控制载体中的孔分布非常重要。当铂单独存在于载体中时,铂是一种直接参与反应的活性金属,很容易被焦炭覆盖。因此,铂周围必须始终存在预定量的辅助金属或碱金属。当辅助金属或碱金属独立地分布在催化剂中而不是铂周围时,就选择性和耐久性而言都得到不利的结果。因此,可以得出结论,使用满足上述条件的催化剂将抑制脱氢中的副反应,从而提高耐久性以及催化剂反应的转化率和选择性。令人惊讶地,本发明人发现,在轻链烷烃的脱氢催化剂的情况下,当活性金属不是单独分布在载体中而是以合金形式从催化剂表面到其内部以预定厚度存在时,可以制备能够大大提高链烷烃转化率、烯烃选择性和耐久性的催化剂。本发明提供了一种制备催化剂的方法,该方法通过负载使用有机溶剂与预定量的有机酸和/或无机酸一起形成的合金型活性金属,能够控制活性金属以从催化剂表面起的预定厚度的分布。图1示出了本发明的核心技术,以与常规技术进行比较,图2则示出了催化剂制备方法的流程图,其全面解释了本发明的方法。
1)制备稳定的铂锡复合溶液的步骤
铂和锡的复合溶液由于锡的高还原性而容易在空气中引起铂的沉淀。因此,在复合溶液的制备中,溶剂的选择非常重要。当使用水作为溶剂时,由于锡还原铂,铂-锡前体溶液仍非常不稳定,最终铂颗粒沉淀,这使得该溶液无法用作前体。因此,本发明人使用不还原锡的溶剂制备了能长时间保持稳定状态的前体溶液。首先,铂和锡的前体在彼此混合时被添加到有机溶剂中,以使铂-锡复合材料不分解,并添加盐酸以制备酸性溶液。然后,添加有机酸以增加向载体内部的渗透速度。在有机溶剂的情况下,可依次使用水、甲醇、乙醇、丁醇、丙酮、乙酸乙酯、乙腈、乙二醇、三乙二醇、乙二醇醚、甘油、山梨糖醇、木糖醇、二烷基醚和四氢呋喃中的一种或两种,或者以混合溶液形式使用。在有机酸的情况下,可主要以混合溶液形式使用甲酸、乙酸、乙醇酸、乙醛酸、草酸、丙酸和羧酸丁酸中的一种或两种。在铂-锡复合溶液的制备过程中,溶液在惰性气体气氛中老化,从而抑制了氧气的分解并实现了稳定。可以使用氮气、氩气和氦气作为惰性气体,并且优选使用氮气。
2)使用稳定的铂锡复合溶液和碱金属制备催化剂的步骤
为了增加孔径和孔体积,将载体在煅烧炉中在1000℃至1050℃下热处理1至5小时,从而将γ氧化铝相变为θ氧化铝以使用。热处理温度与载体的晶相和孔结构密切相关。当热处理温度为1000℃以下时,氧化铝的晶相处于其中γ和θ彼此混合的状态,并且载体的孔径小,因此反应物在载体中的扩散速率可能会降低。当热处理温度为1050℃以上时,氧化铝的晶相处于其中θ相和α相彼此混合的状态,因此孔径有利于反应,但是在负载活性金属的过程期间分布在α氧化铝上的活性金属的分散性降低。在负载活性金属的过程中,以等于载体的总孔体积的量制备铂-锡复合溶液,并使用喷雾负载方法将其浸渍在载体中。在浸渍后,进行预定时间的老化过程,以使用有机酸控制铂和锡向氧化铝中的渗透深度。在老化过程之后,进行快速干燥过程,同时在150℃至250℃的气氛中使催化剂流化,从而除去残留在催化剂中的大部分有机溶剂。通过24小时在100至150℃下的干燥过程将残留在催化剂中的水完全除去。进行快速干燥的原因是当铂-锡复合溶液被负载在氧化铝载体中时,防止铂-锡复合溶液随时间的推移与无机或有机酸溶剂一起扩散到载体中。低于150℃的温度下的快速干燥对于金属的固定而言并不重要,并且由于有机溶剂的分解反应,在250℃或更高的温度下的快速干燥可导致金属颗粒的凝结。干燥后,以250至400℃的温度在氮气气氛下除去有机材料,然后以400℃至700℃的温度在环境气氛下进行煅烧过程。当在400℃或更低的温度下进行热处理时,负载的金属可能不会转化成金属氧化物物质。当在700℃或更高的温度下进行热处理时,发生金属间凝结现象,并且考虑到催化剂的量,催化剂活性不高。在煅烧后,进行负载碱金属的步骤以抑制催化剂副反应。首先,采用与上述铂-锡复合溶液的情况下相同的喷雾负载方法,将钾负载到载体的内部孔隙中,并进行在100至150℃下的干燥过程24小时,然后以400℃至700℃范围内的温度进行环境气氛下的煅烧过程。最后,在煅烧之后,使用氢气/氮气混合气体(在4%/96%至100%/0%的范围内)在400℃至600℃范围内的温度下进行还原过程,从而获得最终的催化剂。当在还原过程期间还原温度低于400℃时,金属氧化物物质可能不会完全还原,并且两种或多种金属颗粒可以单独的金属而不是合金形式存在。此外,当还原温度高于600℃时,两种或多种金属颗粒之间发生凝结和烧结,其结果是,随着活性位点数量的减少,催化剂活性可能降低。使用保持氮气气氛直至达到预定温度的快速高温还原法来进行还原,并且在达到预定温度时注入氢气以进行还原,而不是采用使用来自升温步骤的氢气进行还原的升温还原法。当使用升温还原法进行还原时,存在铂和锡的还原温度互不相同的问题,因此还原后它们以单独的金属的形式存在于催化剂中,使得从焦炭抑制和耐久性的角度来看,锡的作用无法最大化。
如上所述制备的催化剂的性能评价如下。轻链烷烃向烯烃的转化可以使用气相反应在500℃至680℃(优选为570℃)、0atm至2atm(优选为1.5atm)并且链烷烃GHSV(气体时空速)为5000h-1至10000h-1(优选为6000h-1至8000h-1)的条件下进行,通过使用根据本发明的脱氢催化剂,用氢气稀释具有2至5个碳原子,优选为3至4个碳原子的烃(包括链烷烃、异链烷烃和烷基芳烃)。对使用脱氢生产烯烃的反应器没有特别限制,但是可以使用反应器填充有催化剂的固定床催化反应器。此外,由于脱氢是吸热反应,因此重要的是将催化剂反应器始终保持在绝热条件下。对于本发明的脱氢方法,重要的是进行反应,同时将作为反应条件的反应温度、压力和液时空速保持在合适的范围内。当反应温度低时,反应不进行。当反应温度非常高时,反应压力与之成比例地增加,并且发生诸如焦炭形成和裂化反应的副反应。
实例1:使用同时铂-锡浸渍法制备催化剂
关于实例1中使用的载体,将γ-氧化铝载体(制造商:德国巴斯夫;比表面积:210m2/g;孔隙体积:0.7cm3/g;平均孔径:8.5Nm)在1020℃下煅烧5小时以使其相转变为θ氧化铝,并使用所得θ氧化铝载体。相变的θ氧化铝具有包括92m2/g的比表面积、0.41cm3/g的孔隙体积和12nm的平均孔径的物理性质。氯铂酸(H2PtCl6)用作铂前体,且氯化锡(SnCl2)用作锡前体。在氮气气氛中混合相当于催化剂总重量的0.4wt%的氯铂酸和氯化锡,使得铂/锡的摩尔比为1.1。此后,将溶剂添加到铂-锡混合物中,使得溶剂的量对应于载体的总孔隙体积,从而溶解混合物。使用97wt%的乙醇和3wt%的盐酸来制备所使用的溶剂。另外,为了实现铂-锡合金溶液在载体中的流动性,以相当于溶剂总量的3wt%的量将乙醛酸与其混合。此后,使用初始润湿方法用制备的铂-锡复合溶液浸渍经历相变的θ氧化铝载体。浸渍后,在室温下进行约30分钟的老化过程,然后在170℃下进行连续快速干燥过程,从而除去90%以上的所携带的有机溶剂。之后,在120℃下干燥24小时以完全除去残留在催化剂中的水分,然后在环境气氛中在600℃下热处理4小时,从而使活性金属固着。接下来,使用初始润湿法,将硝酸钾(KNO3)以基于催化剂的总重量为1.0wt%的量负载在含铂和锡的氧化铝的内部孔隙中。将其中负载金属的组合物在环境气氛中在570℃下热处理4小时,从而制备金属负载的催化剂。催化剂的还原过程是逐步进行的,在氮气气氛中将温度升至570℃,然后将催化剂暴露于流动的氢气/氮气混合气体(4%/96%)中4小时,从而制备催化剂。通过电子探针显微分析(EPMA)的实例1中制备的催化剂的铂和锡的状态示于图3中。其结果是,证实了催化剂中的铂和锡的位置和分布保持恒定。
实例2:使用同时铂-锡浸渍法制备催化剂
在实例2中,使用与实例1相同的方法制备催化剂,不同之处在于在制备铂-锡复合溶液时,乙醇和无机酸的比例为93wt%:7wt%。可以使用盐酸、硝酸或硫酸作为无机酸。
实例3:使用同时铂-锡浸渍法制备催化剂
在实例3中,使用与实例1相同的方法制备催化剂,不同之处在于,在制备催化剂时,在将快速干燥温度保持在100℃的同时进行流化。
比较例1:使用同时铂-锡浸渍法制备催化剂
在比较例1中,使用与实例1相同的方法制备催化剂,不同之处在于,在没有快速干燥过程的情况下将催化剂在相对低的100℃的温度下干燥。
比较例2:使用同时铂-锡浸渍法制备催化剂
在比较例2中,使用与实例1相同的方法制备催化剂,不同之处在于,在制备催化剂的过程中,在升温气氛中进行干燥/煅烧过程之后的还原过程。
比较例3:使用铂和锡的顺序浸渍法制备催化剂
对于比较例3中使用的载体,与实例1相同,将γ氧化铝在1050℃下煅烧2小时以使其相转变为θ氧化铝,并使用所得的θ氧化铝。氯铂酸(H2PtCl6)用作铂前体。在相当于载体总孔隙体积的量的去离子水中和在相当于溶剂的总量的5wt%的量的无机酸中稀释相当于催化剂总重量的0.4wt%的量的铂,然后使用初始润湿方法将其浸渍在载体中。将其中负载铂的组合物在环境气氛下以600℃热处理4小时,从而使活性金属固着。此后,在相当于溶剂总量的5wt%的量的去离子水和无机酸中稀释用作锡前体的氯化锡(SnCl2),使得铂和锡的摩尔比为1.1,因此使用初始润湿法将其负载在载铂的氧化铝的内部孔隙中。将其中负载金属的组合物在环境气氛下进行600℃的热处理,从而使活性金属固着。此后,使用初始润湿法,将硝酸钾(KNO3)以基于催化剂的总重量为0.7wt%的量负载在含铂和锡的氧化铝的内部孔隙中。将其中负载金属的组合物在环境气氛下进行570℃的热处理4小时,从而制备金属负载的催化剂。使用氢气/氮气混合气体(4%/96%)将催化剂的还原保持4小时,从而制备催化剂。
比较例4:使用铂和锡的顺序浸渍法制备催化剂
在比较例4中,使用与比较例3相同的方法制备催化剂,不同之处在于,当负载铂和锡时,不以基于溶剂的总量为5wt%的量添加无机酸。
实验例1:催化剂性能评估
进行脱氢以测量催化剂活性,并使用固定床反应系统评价反应器。将3.0g的催化剂装入管式反应器中,并使氢气以1000cc/min的恒定速率流动,由此将催化剂在570℃下还原1小时。随后,将反应器的温度保持恒定在570℃,该温度是反应温度,以6:4的恒定体积比向反应器中连续供应丙烷气和氢气的混合气体(其为反应中使用的原料),并且气时空速恒定固定在8100h-1。此外,为了抑制催化反应中发生的副反应,进一步注入相当于反应物总量的100ppm的硫化氢气体。使用压力调节器将反应压力恒定地保持在1.5atm。在反应进行1小时和4小时后,生成的物质通过包裹有热丝的注入管线迁移到GC(气相色谱仪),并使用FID(火焰电离检测器)和TCD(热导检测器)进行定量分析。在再生实验的情况下,在反应24小时后,用氮气进行吹扫5分钟,然后在570℃下用5%/95%氧气/氮气平衡气体除去焦炭3小时。之后,使氢气以1000cc/min的恒定速率流动,从而再次还原催化剂。将上述程序定义为“1个循环”,并且评估催化剂的活性总计“10个循环”。基于以下标准计算丙烷的转化率和丙烯的选择性,并且使用由此获得的丙烯的产率对催化剂的活性做相互比较。
丙烷转化率(%)=[反应前丙烷的摩尔数-反应后链烷烃的摩尔数]/[丙烷链烷烃的摩尔数]×100
丙烯的选择性(%)=[产品中丙烯的摩尔数]/[产品的摩尔数]×100
丙烯的产率(%)=[丙烷的转化率]×[丙烯的选择性]/100
表1中显示实例1至3和比较例1至4中制备的催化剂的活性测试。
[表1]
结果
如表1所示,实例1中的催化剂(其中,铂和锡以预定的厚度以合金形式浸渍在载体中)在转化率和选择性方面表现出最好的活性。在实例1的情况下,使用快速干燥方法将铂和锡以500μm的相同厚度分布在载体表面上,并且以铂-锡合金的形式存在,以便抑制由于单独使用铂或锡而引起的副反应,从而显示出高转化率和选择性。根据各种未示出的实施方案,当铂和锡以300至500μm或更小的相同厚度分布在载体表面上时,可以获得与实例1相似的结果。
在实例2的情况下,由于所添加的无机酸的含量增加,因此铂和锡均匀地存在于载体中。因此,反应物与铂-锡合金之间的接触次数增加,并且脱氢进行得相对良好。在实例2中,可以确认转化率相似,但是与实例1相比选择性低。在实例3的情况下,实例1的快速干燥过程的温度降低,因此铂和锡没有以预定的厚度固定在载体的表面上,而是被分离。由于仅存在铂,因此副反应进行得很强烈。因此,选择性低,导致了快速失活。在比较例1中,由于没有进行快速干燥过程制备催化剂,因此铂和锡的分布不同,表现出相对低的转化率和耐久性。在比较例2中,由于升温还原而不是快速还原,并且因为铂和锡在不同的温度下还原,因此活性低于其他催化剂。铂的还原温度为200℃至300℃,其低于400℃至500℃的锡还原温度。因此,当使用升温方法进行还原时,铂和锡的分布彼此一致,但是其还原单独发生,因此表现出低活性,如在比较例2中那样。使用顺序浸渍法制备比较例3和4的催化剂。在比较例4的情况下,随着无机酸的添加量减少,铂和锡的分布不一致。与同时浸渍法和比较例4相比,这两种情况均显示出低的转化率和选择性,其中铂和锡的分布彼此不一致,显示出快速失活。
实验例2:催化剂活性的评估
使用实例1和比较例3中制备的催化剂,在与实验例1相同的条件下,将反应物的脱氢进行12小时,并且结果示于下图5和表2中。
表2:实例1和比较例3中制备的催化剂的各次活性评估结果
[表2]
如表2所示,在实例1的情况下,使用快速干燥过程将铂和锡以预定厚度均匀地分布,因此其显示出比比较例3更高的转化率、选择性和耐久性。
在比较例3的情况下,与实例1相比,由于顺序浸渍而导致铂和锡作为合金存在的可能性相对较低,因此由于仅存在铂,副反应的程度增加,从而降低了选择性并加速失活。
实验例3:催化剂再生性能的评估
使用实例1和比较例3中制备的催化剂,在与实验例1相同的条件下将反应物的脱氢进行12小时后,将催化剂进行煅烧和还原过程,然后加回到反应器中以进行脱氢。在重复上述反应总共10次的同时评价活性,结果示于下图6和表3中。此外,当重复10个循环时,对在每次煅烧过程之后催化剂中的残留碳含量进行热重分析,并且结果示于表3中。
表3:实例1和比较例1中制备的催化剂的再生循环数的活性评估结果和催化剂中残留碳含量的分析结果
[表3]
图4是示出本发明的实例1和比较例3中制备的催化剂的电子探针显微分析(EPMA)的比较图。当铂和锡稀薄地分布在载体中时,可以看出,由于在使用催化剂后催化剂经受了煅烧-还原过程,沉积在内部的焦炭被完全氧化并消失。然而,当铂和锡均匀地分布在载体中时,可以确认,即使在使用催化剂之后进行煅烧还原过程,沉积在载体内部深处的焦炭也不会被完全氧化,而是残留在其中。在表3中,实例1的催化剂和比较例3的催化剂再生之后,残留的焦炭量的差异是显著的。随着再生循环次数的增加,实例1中的催化剂再生之后残留的焦炭量保持较低。然而,可以确认,在比较例3的催化剂的情况下,残留焦炭逐渐积累。由于催化剂中心部分的焦炭没有被完全氧化,因此丙烷的转化率随着再生循环次数的增加而逐渐降低。
上述结果表明,与铂和锡在载体中的均匀分布相比,铂-锡合金以预定厚度分布在载体的外表面上对于催化剂的再生更有效。

Claims (9)

1.用于C3至C4范围内的直链烃气体的脱氢的脱氢催化剂,所述脱氢催化剂包括:
负载在相变载体中的铂、辅助金属和碱金属,
其中所述铂和所述辅助金属形成单一络合物,并且所述铂和所述辅助金属在从所述催化剂的外周起的预定厚度内以合金形式存在。
2.如权利要求1所述的脱氢催化剂,其中所述预定厚度通过使用有机酸和无机酸对所述单一络合物进行的快速热处理过程和快速干燥过程实现。
3.如权利要求1所述的脱氢催化剂,其中所述催化剂使用进一步包括煅烧步骤和还原步骤的过程获得,并且所述还原步骤通过高温快速还原过程实现。
4.如权利要求1所述的脱氢催化剂,其中所述预定厚度为从所述催化剂的外周起300至500μm厚。
5.如权利要求2所述的脱氢催化剂,其中所述无机酸为盐酸、硝酸或硫酸。
6.如权利要求2所述的脱氢催化剂,其中所述有机酸进一步包括甲酸、乙酸、乙醇酸、乙醛酸、草酸、丙酸和丁酸中的一种,或者包括它们中的两种的混合物。
7.如权利要求1或2所述的脱氢催化剂,其中所述辅助金属选自锡、锗、镓和锰。
8.如权利要求1或2所述的脱氢催化剂,其中所述碱金属选自钾、钠和锂。
9.如权利要求1或2所述的脱氢催化剂,其中所述载体选自氧化铝、二氧化硅、沸石及它们的复合组分。
CN201880028916.4A 2017-05-11 2018-01-11 高再生效率的直链轻烃的脱氢催化剂的制备方法 Active CN110603096B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0058603 2017-05-11
KR1020170058603A KR101972121B1 (ko) 2017-05-11 2017-05-11 높은 재생 효율의 직쇄형 경질탄화수소류 탈수소화 촉매 제조방법
PCT/KR2018/000514 WO2018207992A1 (ko) 2017-05-11 2018-01-11 높은 재생 효율의 직쇄형 경질탄화수소류 탈수소화 촉매 제조방법

Publications (2)

Publication Number Publication Date
CN110603096A true CN110603096A (zh) 2019-12-20
CN110603096B CN110603096B (zh) 2023-11-07

Family

ID=64105266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880028916.4A Active CN110603096B (zh) 2017-05-11 2018-01-11 高再生效率的直链轻烃的脱氢催化剂的制备方法

Country Status (7)

Country Link
US (1) US20200122125A1 (zh)
EP (1) EP3623045B1 (zh)
KR (1) KR101972121B1 (zh)
CN (1) CN110603096B (zh)
ES (1) ES2965517T3 (zh)
MY (1) MY190455A (zh)
WO (1) WO2018207992A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171801A (zh) * 2020-11-30 2021-07-27 谷育英 一种低碳烷烃脱氢制烯烃的催化剂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332406B1 (ko) * 2020-03-10 2021-11-26 에스케이가스 주식회사 알칸족 가스로부터 올레핀 제조용 탈수소촉매 및 그 제조방법
CN112264024B (zh) * 2020-11-12 2021-12-17 西南化工研究设计院有限公司 一种环保型流化床烷烃脱氢催化剂及其制备方法
KR102464144B1 (ko) * 2020-12-04 2022-11-04 희성촉매 주식회사 링 타입 금속분포를 가지는 탈수소화 촉매
KR102523345B1 (ko) * 2020-12-04 2023-04-18 희성촉매 주식회사 담체 기공이 조절된 탈수소화 촉매

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212411A (zh) * 2013-05-07 2013-07-24 北京化工大学 低碳烷烃脱氢制取烯烃的高效催化剂及其制备方法
KR101456900B1 (ko) * 2013-12-04 2014-11-04 희성촉매 주식회사 계면활성제를 이용한 탄화수소 탈수소화 촉매 제조방법
KR20150116118A (ko) * 2014-04-04 2015-10-15 주식회사 효성 선택도가 우수한 탈수소화 촉매의 제조방법
KR101716170B1 (ko) * 2015-11-10 2017-03-14 희성촉매 주식회사 안정화 활성금속 복합체를 이용한 직쇄형 경질탄화수소류 탈수소화 촉매 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717779A (en) 1985-09-11 1988-01-05 Uop Inc. Dehydrogenation of dehydrogenatable hydrocarbons
US4786625A (en) 1987-02-25 1988-11-22 Uop Inc. Dehydrogenation catalyst compositon
US4716143A (en) 1986-06-06 1987-12-29 Uop Inc. Dehydrogenation catalyst composition
US4914075A (en) 1988-12-05 1990-04-03 Uop Dehydrogenation catalyst composition
KR960013454B1 (ko) * 1994-04-18 1996-10-05 최성주 의류용 단추
KR100305482B1 (ko) 1998-10-22 2001-12-01 조 정 래 거대기공을가진탈수소반응용촉매
US7432406B1 (en) 1999-05-25 2008-10-07 Uop Llc Dehydrogenation process using a noble metal on a tin containing zeolite catalyst
KR100387433B1 (ko) 2000-12-16 2003-06-18 주식회사 효성 산화아연과 알루미나의 결정 특성을 조절한 탈수소용금속촉매
US6756340B2 (en) * 2002-04-08 2004-06-29 Uop Llc Dehydrogenation catalyst composition
EP2500093B1 (en) * 2007-10-26 2020-06-10 Asahi Kasei Kabushiki Kaisha Use of a supported composite particle material, production process of said material and process for producing compounds using supported composite particle material as catalyst for chemical synthesis
KR100983740B1 (ko) * 2008-12-30 2010-09-24 주식회사 효성 산화 탈수소 촉매, 및 이를 이용한 프로판으로부터 프로필렌의 제조방법
JP5871773B2 (ja) 2012-10-30 2016-03-01 Jx日鉱日石エネルギー株式会社 脱水素触媒及びその製造方法
KR101745220B1 (ko) * 2012-11-30 2017-06-08 엑손모빌 케미칼 패턴츠 인코포레이티드 탈수소화 방법
KR101527841B1 (ko) 2013-12-04 2015-06-16 희성촉매 주식회사 중공형 담체를 이용한 탄화수소 탈수소화 촉매 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212411A (zh) * 2013-05-07 2013-07-24 北京化工大学 低碳烷烃脱氢制取烯烃的高效催化剂及其制备方法
KR101456900B1 (ko) * 2013-12-04 2014-11-04 희성촉매 주식회사 계면활성제를 이용한 탄화수소 탈수소화 촉매 제조방법
KR20150116118A (ko) * 2014-04-04 2015-10-15 주식회사 효성 선택도가 우수한 탈수소화 촉매의 제조방법
KR101716170B1 (ko) * 2015-11-10 2017-03-14 희성촉매 주식회사 안정화 활성금속 복합체를 이용한 직쇄형 경질탄화수소류 탈수소화 촉매 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171801A (zh) * 2020-11-30 2021-07-27 谷育英 一种低碳烷烃脱氢制烯烃的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
ES2965517T3 (es) 2024-04-15
CN110603096B (zh) 2023-11-07
KR101972121B1 (ko) 2019-04-24
EP3623045A4 (en) 2021-01-13
US20200122125A1 (en) 2020-04-23
EP3623045B1 (en) 2023-11-01
MY190455A (en) 2022-04-21
EP3623045A1 (en) 2020-03-18
WO2018207992A1 (ko) 2018-11-15
KR20180124313A (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
CN110603096B (zh) 高再生效率的直链轻烃的脱氢催化剂的制备方法
CN107921427B (zh) 甲烷干重整反应、用于甲烷干重整反应的含镍和铈的核壳结构的催化剂及其制备
CN108290140B (zh) 使用稳定活性金属复合物制备用于直链轻质烃的脱氢催化剂的方法
Shen et al. The effects of calcination temperature of support on PtIn/Mg (Al) O catalysts for propane dehydrogenation reaction
JP2004522563A (ja) 脱水素化触媒の再生方法
JPH0623269A (ja) 担体上に担持された第viii族の金属と第iiia族の金属とを含む触媒
Moraes et al. Steam reforming of ethanol on Rh/SiCeO2 washcoated monolith catalyst: Stable catalyst performance
JP4652695B2 (ja) 水素化芳香族類の脱水素触媒及びその製造方法
KR101814451B1 (ko) 안정화 활성금속 착체를 이용한 직쇄형 탄화수소류 탈수소화 촉매 제조방법
US20110301392A1 (en) Variation of tin impregnation of a catalyst for alkane dehydrogenation
CN112839735A (zh) 高效率的支链轻烃的脱氢催化剂的制备方法
TW201006549A (en) Use of sulphur-containing supports for catalytic reforming
CA2432200C (en) Catalyst with bimodal pore radius distribution
Pamphile-Adrián et al. Iridium catalysts for CC and CO hydrogenolysis: catalytic consequences of iridium sites
KR100711509B1 (ko) 자열개질 반응에 의해 물과 에탄올 혼합물로부터 수소를 제조하는데 사용되는 복합 금속 담지 촉매, 그 제조 방법 및 상기 촉매를 이용하여 수소를 제조하는 방법
KR102700317B1 (ko) 황 함유 메탄가스의 수증기 개질 촉매 제조방법 및 이를 이용한 수소 제조방법
JP5107046B2 (ja) 炭化水素の水蒸気改質触媒
KR102223597B1 (ko) 아세틸렌의 선택적 수소화용 촉매 및 이의 제조방법
CN116547073A (zh) 对载体气孔进行调节的脱氢催化剂
KR101839568B1 (ko) 금속 담지 촉매, 이의 제조방법 및 이를 이용한 탄소수 4의 올레핀 제조 방법
KR101631146B1 (ko) 메틸사이클로펜탄으로부터 고순도의 벤젠 제조용 촉매 및 이를 이용한 벤젠 제조방법
KR100897043B1 (ko) 선형 파라핀 제조용 코발트계 촉매 및 이 촉매를 이용한 선형 파라핀의 제조방법
JP2023117810A (ja) シクロペンタジエンの製造方法
JP2023554069A (ja) 改良された生成物選択性を有するフィッシャー・トロプシュ法
Grigoryev et al. Nature of active sites in the cobalt-zirconium oxide catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant