CN110573157A - 使用jak抑制剂化合物的治疗方法 - Google Patents

使用jak抑制剂化合物的治疗方法 Download PDF

Info

Publication number
CN110573157A
CN110573157A CN201880028764.8A CN201880028764A CN110573157A CN 110573157 A CN110573157 A CN 110573157A CN 201880028764 A CN201880028764 A CN 201880028764A CN 110573157 A CN110573157 A CN 110573157A
Authority
CN
China
Prior art keywords
pneumonia
pharmaceutically acceptable
compound
disease
mammal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880028764.8A
Other languages
English (en)
Other versions
CN110573157B (zh
Inventor
V·R·萨兰迪
张�浩
M·A·克莱因舍尔克
G·D·克拉泰尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Theravance Biopharma R&D IP LLC
Original Assignee
Theravance Biopharma R&D IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Theravance Biopharma R&D IP LLC filed Critical Theravance Biopharma R&D IP LLC
Publication of CN110573157A publication Critical patent/CN110573157A/zh
Application granted granted Critical
Publication of CN110573157B publication Critical patent/CN110573157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Otolaryngology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明涉及使用化合物5‑乙基‑2‑氟‑4‑(3‑(5‑(1‑甲基哌啶‑4‑基)‑4,5,6,7‑四氢‑1H‑咪唑并[4,5‑c]吡啶‑2‑基)‑1H‑吲唑‑6‑基)苯酚或其药学上可接受的盐治疗眼部疾病和某些呼吸道疾病的方法。

Description

使用JAK抑制剂化合物的治疗方法
技术领域
本发明涉及使用特定JAK抑制剂化合物或其药学上可接受的盐治疗眼部疾病和某些呼吸道疾病的方法。
背景技术
细胞因子是细胞间信号传导分子,其包括趋化因子、干扰素、白介素、淋巴介质和肿瘤坏死因子。细胞因子对于正常细胞生长和免疫性调节是关键的,并且还驱动免疫介导的疾病并且有助于恶性细胞生长。许多细胞因子的较高含量已涉及大量疾病或病况,确切地说,表征为炎症的那些疾病的病变。涉及疾病的多种细胞因子依赖于酪胺酸激酶(JAK)的杰纳斯(Janus)家族而在整个信号传导路径起作用,所述酪胺酸激酶经由转录因子的信号转导子和转录活化因子(STAT)家族来传导信号。
JAK家族包含四个成员JAK1、JAK2、JAK3和酪胺酸激酶2(TYK2)。细胞因子结合于JAK依赖性细胞因子受体诱导受体二聚,其使得JAK激酶上酪胺酸残基磷酸化,从而影响JAK活化。磷酸化JAK转而结合各种STAT蛋白质并使其磷酸化,所述蛋白质在单元细胞核中二聚合、内化并且直接调节基因转录,在其它作用中,导致与发炎疾病相关的下游作用。JAK通常与细胞因子受体成对缔合作为均二聚体或杂二聚体。特定细胞因子与特定JAK配对相关。JAK家族的四个成员中的每一个涉及与哮喘发炎相关的细胞因子中的至少一种的信号传导。
炎症在许多眼部疾病中起重要作用,包括眼色素层炎、糖尿病性视网膜病变、糖尿病性黄斑水肿、干眼病、年龄相关黄斑变性和异位性角膜结膜炎。眼色素层炎涵盖多种眼内发炎病况并且通常是自体免疫性的,在无已知感染性触发的情况下出现。估计所述病况在美国影响约2百万患者。在一些患者中,与眼色素层炎相关的慢性发炎引起组织破坏,并且在美国,其为失明的第五个主要原因。在眼色素层炎患者的眼睛中较高的经由JAK-STAT路径传导信号的细胞因子包括IL-2、IL-4、IL-5、IL-6、IL-10、IL-23和IFN-γ。(宝来(Horai)和卡斯皮(Caspi),干扰素和细胞因子研究杂志(J Interferon Cytokine Res),2011,31,733-744;黄(Ooi)等人,临床医学与研究(Clinical Medicine and Research),2006,4,294-309)。用于眼色素层炎的现有疗法通常是次佳的,并且许多患者控制不良。类固醇尽管通常有效,但却与白内障和眼内压增加/青光眼相关。
糖尿病性视网膜病变(DR)由视网膜中的血管损伤引起。在患有糖尿病的人群中,其为最常见的视力丧失原因。血管生成路径以及发炎路径在疾病中起重要作用。通常,DR将发展为糖尿病性黄斑水肿(DME),患有糖尿病的患者中视力丧失的最常见原因。估计所述病况仅在美国就影响约一百五十万患者,其中约20%患有影响双眼的疾病。相信,经由JAK-STAT路径传导信号的细胞因子(如IL-6)以及其产生部分地通过JAK-STAT路径信号传导驱动的其它细胞因子(如IP-10和MCP-1(或者称为CCL2))在与DR/DME相关的炎症中起作用(阿布科沃尔(Abcouwer),临床与细胞免疫学杂志(J Clin Cell Immunol),2013,增刊1,1-12;索恩(Sohn)等人,美国眼科杂志(American Journal of Opthalmology),2011,152,686-694;欧文(Owen)和哈奈特(Hartnett),最新糖尿病报告(Curr Diab Rep),2013,13,476-480;张(Cheung)等人,分子视角(Molecular Vision),2012,18,830-837;董(Dong)等人,分子视角,2013,19,1734-1746;船津(Funatsu)等人,眼科学(Ophthalmology),2009,116,73-79)。针对DME的现有疗法是次佳的:玻璃体内抗VEGF治疗仅在一部分患者中有效,并且类固醇与白内障和眼内压增加相关。
干眼病(DED)是影响美国约5百万患者的多因素病症。相信眼表面炎症在这种疾病的发展和传播中起重要作用。已注意到在患有DED的患者眼液中较高含量的细胞因子,如IL-1、IL-2、IL-4、IL-5、IL-6和IFN-γ。(史蒂文森(Stevenson)等人,眼科学文献(ArchOphthalmol),2012,130,90-100),并且含量通常与疾病严重程度相关。还认为年龄相关黄斑变性和异位性角膜结膜炎与JAK依赖性细胞因子相关。
考虑到发炎疾病中的细胞因子的数目提高并且每一细胞因子与特定JAK配对相关,将需要提供针对JAK家族的所有成员具有泛活性的用于治疗眼部疾病的化学抑制剂。然而,这类抑制剂的广泛消炎作用可能会抑制正常免疫细胞功能,潜在地导致感染风险提高。因此,将需要提供可局部递送到眼部中的作用位点,从而限制不良全身性免疫抑制可能性的抑制剂。
2016年11月02日申请的共同受让美国申请第15/341,226号公开适用作JAK抑制剂的二胺化合物。确切地说,化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(化合物1)
在申请中尤其公开为强力泛JAK抑制剂。本申请公开化合物1的多种用途,确切地说,治疗呼吸道疾病,包括哮喘、慢性阻塞性肺病、囊肿性纤维化、肺炎、间质性肺病(包括特发性肺纤维化)、急性肺损伤、急性呼吸窘迫综合征、支气管炎、气肿和阻塞性细支气管炎。然而,本申请未公开化合物1用于治疗眼部疾病的用途。
发明内容
本发明涉及使用JAK抑制剂5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐治疗眼部疾病或其症状的方法。
在一个方面,本发明提供一种治疗人类患者眼部疾病的方法,所述方法包含向所述患者眼部投与下式化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚
在下文称作化合物1,或其药学上可接受的盐。
在一个方面,眼部疾病是眼色素层炎、糖尿病性视网膜病变、糖尿病性黄斑水肿、干眼病、年龄相关黄斑变性或异位性角膜结膜炎。确切地说,眼部疾病是眼色素层炎或糖尿病性黄斑水肿。
在另一方面,本发明提供一种5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(化合物1)或其药学上可接受的盐的药物组合物,其中所述药物组合物适用于向患者眼部直接投与。
本发明进一步涉及使用化合物1治疗某些特定呼吸道疾病的方法。
在一个方面,本发明提供一种治疗哺乳动物呼吸道疾病的方法,所述方法包含向所述哺乳动物投与包含化合物1或其药学上可接受的盐和药学上可接受的载剂的药物组合物,其中所述呼吸道疾病是肺部感染、蠕虫感染、肺部动脉高血压、类肉瘤病、肺淋巴血管平滑肌增生症、支气管扩张症或浸润性肺病。
在又一方面,本发明提供一种治疗哺乳动物呼吸道疾病的方法,所述方法包含向所述哺乳动物投与包含化合物1或其药学上可接受的盐和药学上可接受的载剂的药物组合物,其中所述呼吸道疾病是药物诱发的肺炎、真菌诱发的肺炎、过敏性支气管肺曲菌过敏性肺嗜酸性肉芽肿伴多血管炎、特发性急性嗜酸性肺炎、特发性慢性嗜酸性肺炎、嗜酸性细胞增多综合征、吕弗勒综合征(syndrome)、阻塞性细支气管炎伴机化性肺炎和免疫检查点抑制剂诱发的肺炎。
具体实施方式
如ChemDraw软件(PerkinElmer,Inc.,Cambridge,MA)中所实施,本文中根据IUPAC规则命名化学结构。
此外,本发明化合物结构中的四氢咪唑并哌啶部分的咪唑并部分以互变异构型式存在。化合物可等效地表示为
根据IUPAC规则,这些表述产生咪唑吡啶部分的原子的不同编号。因此,这一结构命名为5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-3H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚。应了解,虽然结构是以具体型式展示或命名,但本发明也包括其互变异构体。
定义
除非另外指示,否则当描述本发明时,以下术语具有以下含义。
除非使用上下文清晰地指明,否则单数术语“一(a/an)”和“所述(the)”包括相应复数术语。
术语“约”意味着指定值的±5%。
术语“治疗有效量”意味着当投与需要治疗的患者时足以实现治疗的量,例如获得所要治疗效果所需的量。
术语“治疗(treating/treatment)”意味着预防、改善或遏制患者(确切地说,人类)正在治疗的医学病况、疾病或病症(例如呼吸道疾病);或减轻医学病况、疾病或病症的症状。
术语“单位剂型”或“单位剂量”意味着适用于给药患者的物理离散单位,即,含有经过计算以产生治疗效果的单独或与一或多个额外单位组合的预定量治疗剂的每一单位。实例包括胶囊、片剂等。
本文中所使用的所有其它术语均打算具有其所属领域的一般技术人员所理解的其普通含义。
术语“药学上可接受”意味着对于向患者投与为可接受的(例如,对于特定使用情况具有可接受的安全性)。
术语“药学上可接受的盐”意味着由酸和碱(包括两性离子)制备的对于向患者投与为可接受的盐(例如,对于给定给药方案具有可接受的安全性的盐)。
代表性药学上可接受的盐包括以下的盐:乙酸、抗坏血酸、苯磺酸、苯甲酸、樟脑磺酸、柠檬酸、乙磺酸、乙二磺酸、反丁烯二酸、龙胆酸、葡萄糖酸、葡糖醛酸、麸胺酸、马尿酸、氢溴酸、盐酸、羟乙基磺酸、乳酸、乳糖酸、顺丁烯二酸、苹果酸、杏仁酸、甲磺酸、粘液酸、萘磺酸、萘-1,5-二磺酸、萘-2,6-二磺酸、烟碱酸、硝酸、乳清酸、草酸、双羟萘酸、泛酸、磷酸、丁二酸、硫酸、酒石酸、对甲苯磺酸和羟萘甲酸等。
术语“其盐”意味着当酸的氢被阳离子(如金属阳离子或有机阳离子等)置换时所形成的化合物。
化合物1
本方法发明采用5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(化合物1)
或其药学上可接受的盐。
化合物1可如美国申请第15/341,226号或随附实例中所描述来制备。
在本发明的一个方面,化合物1以结晶游离碱水合物型式使用,所述结晶游离碱水合物表征为在以下2θ值处具有显著衍射峰(在其它峰中)的粉末X射线衍射(PXRD)图案:6.20±0.20、9.58±0.20、17.53±0.20、19.28±0.20和21.51±0.20。结晶水合物的制备也描述于美国第15/341,226号和以下实例中。
药物组合物
本发明化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(1)和其药学上可接受的盐通常以药物组合物或配制物型式使用。这类药物组合物可有利地通过任何可接受的投与途径向患者投与,包括但不限于口服、吸入、经眼注射、表面(包括经皮)、经直肠、经鼻和非经肠投与模式。
用于本发明中的药物组合物通常含有治疗有效量的化合物1。然而,所属领域的技术人员将认识到,药物组合物可含有大于治疗有效量(即,主体成分)或小于治疗有效量(即,被设计成用于多次投与以获得治疗有效量的单个单位剂量)。当讨论组成和用途时,化合物1在本文中也可称作‘活性剂’。
通常,药物组合物将含有约0.01至约95重量%的活性剂;包括例如约0.05至约30重量%;和约0.1重量%至约10重量%的活性剂。
任何常规载剂或赋形剂可用于在本发明中使用的药物组合物中。选择特定载剂或赋形剂,或载剂或赋形剂的组合将取决于用于治疗特定患者或特定类型的医学病状或疾病病况的投与模式。就此而言,对于特定投与模式,合适的药物组合物的制备完全在药学领域的技术人员的范围内。另外,本发明的药物组合物中所使用的载剂或赋形剂是可商购的。作为进一步说明,常规配制技术描述于雷明顿:药学科学与实践(Remington:The Scienceand Practice of Pharmacy),第20版,马里兰州巴尔的摩的利平科特、威廉姆斯与怀特出版社(Lippincott Williams&White,Baltimore,Maryland)(2000);和H.C.安塞尔(Ansel)等人,药物剂型和药物递送系统(Pharmaceutical Dosage Forms and Drug DeliverySystems),第7版,马里兰州巴尔的摩的利平科特、威廉姆斯与怀特出版社(1999)中。
可充当药学上可接受的载剂的材料的代表性实例包括但不限于以下:糖,如乳糖、葡萄糖和蔗糖;淀粉,如玉米淀粉和马铃薯淀粉;纤维素,如微晶纤维素和其衍生物,如羧甲基纤维素钠、乙基纤维素和乙酸纤维素;粉末状黄蓍;麦芽;明胶;滑石;赋形剂,如可可脂和栓剂蜡;油,如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;二醇,如丙二醇;多元醇,如丙三醇、山梨糖醇、甘露糖醇和聚乙二醇;酯,如油酸乙酯和月桂酸乙酯;琼脂;缓冲剂,如氢氧化镁和氢氧化铝;褐藻酸;无热原质水;等张盐水;林格氏溶液(Ringer'ssolution);乙醇;磷酸盐缓冲溶液;以及其它用于药物组合物中的无毒相容物质。
典型地通过将活性剂与药学上可接受的载剂和一或多种任选的成分充分并紧密地混合或掺合来制备药物组合物。接着可使用常规程序和设备将所得均匀掺合的混合物成形为片剂、胶囊、丸剂等或装载到其中。
在一个方面,药物组合物适用于眼部注射。在这一方面,化合物可配制为无菌水性悬浮液或水溶液。可包括于这类水性配制物中的适用赋形剂包括聚山梨醇酯80、羧甲基纤维素、氯化钾、氯化钙、氯化镁、乙酸钠、柠檬酸钠、组胺酸、α-α-二水合海藻糖、蔗糖、聚山梨醇酯20、羟丙基-β-环糊精和磷酸钠。苯甲醇可充当防腐剂,并且可包括氯化钠以调节张力。另外,可将盐酸和/或氢氧化钠添加到溶液中以供pH调节。用于眼部注射的水性配制物可制备成无防腐剂。
在另一方面,药物组合物适用于吸入投与。用于吸入投与的药物组合物典型地呈气雾剂或粉剂型式。这类组合物一般使用吸入器递送装置投与,如干粉吸入器(DPI)、定量吸入器(MDI)、喷雾器吸入器或类似递送装置。
在一特定实施例中,药物组合物使用干粉吸入器通过吸入来投与。这类干粉吸入器通常以在吸气期间分散于患者气流中的自由流动粉剂型式投与药物组合物。为了获得自由流动粉剂组合物,治疗剂典型地与如乳糖、淀粉、甘露糖醇、右旋糖、聚乳酸(PLA)、聚乳酸交酯-共-乙交酯(PLGA)或其组合的合适的赋形剂一起配制。典型地,使治疗剂微粉化并与合适的载剂组合以形成适用于吸入的组合物。
用于干粉吸入器中的代表性药物组合物包含乳糖和呈微粉化型式的本发明化合物。这类干粉组合物可例如通过将干燥研磨乳糖与治疗剂组合,并且接着干掺合所述组分来制得。接着典型地将组合物装载到干粉施配器中或与干粉递送装置一起使用的吸入套筒或胶囊中。
适用于通过吸入投与治疗剂的干粉吸入器递送装置描述于所属领域中,并且这类装置的实例是可商购的。举例来说,代表性干粉吸入器递送装置或产品包括Aeolizer(诺华公司(Novartis));Airmax(安维世公司(IVAX));ClickHaler(创新生物医药公司(InnovataBiomed));Diskhaler(葛兰素史克股份有限公司(GlaxoSmithKline));Diskus/Accuhaler(葛兰素史克股份有限公司);Ellipta(葛兰素史克股份有限公司);Easyhaler(奥里昂制药公司(Orion Pharma));Eclipse(安内特公司(Aventis));FlowCaps(好利安制药公司(Hovione));Handihaler(德国勃林格殷格翰制药公司(Boehringer Ingelheim));Pulvinal(凯西制药公司(Chiesi));Rotahaler(葛兰素史克股份有限公司);SkyeHaler/Certihaler(斯基制药公司(SkyePharma));Twisthaler(先灵葆雅公司(Schering-Plough));Turbuhaler(阿斯利康公司(AstraZeneca));Ultrahaler(安内特公司);等。
在另一特定实施例中,药物组合物使用定量吸入器通过吸入来投与。这类定量吸入器典型地使用压缩推进剂气体,排出测量量的治疗剂。因此,使用定量吸入器投与的药物组合物典型地包含治疗剂于液化推进剂中的溶液或悬浮液。可采用任何合适的液化推进剂,包括氢氟烷烃(HFA),如1,1,1,2-四氟乙烷(HFA134a)和1,1,1,2,3,3,3-七氟-正丙烷(HFA 227);和氯氟碳化物,如CCl3F。在一特定实施例中,推进剂是氢氟烷烃。在一些实施例中,氢氟烷烃配制物含有共溶剂,如乙醇或戊烷;和/或表面活性剂,如脱水山梨糖醇三油酸酯、油酸、卵磷脂和丙三醇。
适用于定量吸入器的代表性药物组合物包含约0.01重量%至约5重量%本发明化合物;约0重量%至约20重量%乙醇;和约0重量%至约5重量%表面活性剂;其中剩余部分为HFA推进剂。这类组合物典型地通过向含有治疗剂、乙醇(如果存在)和表面活性剂(如果存在)的合适容器中添加经过冷却或经过加压的氢氟烷烃来加以制备。为了制备悬浮液,将治疗剂微粉化,并且接着与推进剂组合。接着将组合物装载到典型地形成定量吸入器装置一部分的气雾剂罐中。
适用于通过吸入投与治疗剂的定量吸入器装置描述于所属领域中,并且这类装置的实例是可商购的。举例来说,代表性定量吸入器装置或产品包括AeroBid吸入器系统(森林制药公司(Forest Pharmaceuticals));Atrovent吸入气雾剂(德国勃林格殷格翰制药公司);Flovent(葛兰素史克股份有限公司);Maxair吸入器(3M公司);Proventil吸入器(先灵公司(Schering));Serevent吸入气雾剂(葛兰素史克股份有限公司);等。
在另一特定方面,药物组合物使用喷雾器吸入器通过吸入来投与。这类喷雾器装置典型地产生使药物组合物喷雾为进入患者呼吸道的雾状物的高速空气流。因此,当适用于喷雾器吸入器配制时,可使治疗剂溶解于合适的载剂中以形成溶液。或者,治疗剂可被微粉化或纳米研磨并且与合适的载剂组合以形成悬浮液。
适用于喷雾器吸入器的代表性药物组合物包含溶液或悬浮液,其包含约0.05μg/mL至约20mg/mL本发明化合物和与雾化配制物相容的赋形剂。在一个实施例中,溶液的pH为约3至约8。
适用于通过吸入投与治疗剂的喷雾器装置描述于所属领域中,并且这类装置的实例是可商购的。举例来说,代表性喷雾器装置或产品包括Respimat Softmist吸入器(德国勃林格殷格翰制药公司);AERx肺部递送系统(阿拉迪姆公司(Aradigm Corp.));PARI LCPlus可再用喷雾器(德国百瑞公司(Pari GmbH));等。
在又一方面,本发明的药物组合物可替代地以打算用于口服投与的剂量型式制备。用于口服投与的合适的药物组合物可呈胶囊、片剂、丸剂、口含片、扁囊剂、糖衣药丸、散剂、颗粒型式;或呈于水性或非水性液体中的溶液或悬浮液型式;或呈水包油或油包水液体乳液型式;或呈酏剂或糖浆型式;等;各自含有预定量的本发明化合物作为活性成份。
当打算以固体剂量型式用于口服投与时,本发明的药物组合物将典型地包含活性剂和一或多种药学上可接受的载剂,如柠檬酸钠或磷酸二钙。任选地或替代地,这类固体剂量型式还可包含:填充剂或增量剂、粘合剂、保湿剂、溶液阻滞剂、吸收加速剂、湿润剂、吸附剂、润滑剂、着色剂和缓冲剂。释放剂、湿润剂、包衣剂、甜味剂、调味剂和芳香剂、防腐剂和抗氧化剂也可存在于本发明的药物组合物中。
替代配制物还可包括控制释放配制物、用于口服投与的液体剂量型式、经皮贴片和非经肠配制物。制备这类替代配制物的常规赋形剂和方法描述于例如上文雷明顿的参考文献中。
以下非限制性实例说明了本发明的代表性药物组合物。
用于眼部注射的水性配制物
每mL无菌水性悬浮液包括5mg至50mg化合物1、用于张力的氯化钠、作为防腐剂的0.99%(w/v)苯甲醇、0.75%羧甲基纤维素钠和0.04%聚山梨醇酯。可包括氢氧化钠或盐酸以将pH调节到5至7.5。
用于眼部注射的水性配制物
无菌无防腐剂水性悬浮液包括含5mg/mL至50mg/mL化合物1的10mM磷酸钠、40mM氯化钠、0.03%聚山梨醇酯20和5%蔗糖。
干粉组合物
将微粉化化合物1(1g)与经过研磨的乳糖(25g)掺合。接着将这一掺合混合物以每剂量足以提供约0.1mg至约4mg之间的式I化合物的量装载到可剥离泡壳包装的单独泡壳中。使用干粉吸入器投与泡壳的内含物。
干粉组合物
将微粉化化合物1(1g)与经过研磨的乳糖(20g)掺合以形成化合物与经过研磨的乳糖的重量比为1:20的主体成分。将掺合组合物包装于每剂量能够递送约0.1mg至约4mg式I化合物之间的干粉吸入装置中。
定量吸入器组合物
使微粉化化合物1(10g)分散于通过使卵磷脂(0.2g)溶解于去矿物质水(200mL)中制备的溶液中。喷雾干燥所得悬浮液,并且接着被微粉化以形成包含平均直径小于约1.5μm的粒子的微粉化组合物。接着将微粉化组合物以在通过定量吸入器投与时每剂量足以提供约0.1mg至约4mg式I化合物的量装载到含有加压1,1,1,2-四氟乙烷的定量吸入器套筒中。
喷雾器组合物
使化合物1(25mg)溶解于含有1.5-2.5当量盐酸的溶液中,接着添加氢氧化钠以将pH调节到3.5至5.5和3重量%甘油。充分搅拌溶液直到所有组分溶解为止。使用每剂量提供约0.1mg至约4mg式I化合物的喷雾器装置投与溶液。
效用
本发明化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(化合物1)已展示为酶类JAK家族:JAK1、JAK2、JAK3和TYK2的强力抑制剂。
眼部疾病
许多眼部疾病已显示与依赖于JAK-STAT路径的促炎性细胞因子升高相关。由于本发明化合物在所有四种JAK酶下呈现强力抑制,因此预期本发明化合物强力抑制经由JAK传导信号的多种细胞因子(如IL-6、IL-2和IFN-γ)的信号传导和致病作用,以及防止其产生通过JAK-STAT路径信号传导驱动的其它细胞因子(如MCP-1和IP-10)增加。
确切地说,本发明化合物在检定3至7中所描述的细胞检定中呈现6.7或更大的pIC50值(IC50值为200nM或更小)以用于抑制IL-2、IL-4、IL-6和IFNγ信号传导,所述检定包括记录抑制细胞因子升高的下游作用的检定。
检定8的药物动力学研究证明在单次玻璃体内注射之后持续暴露于家兔眼睛中和血浆浓度比玻璃体组织中观察到的低至少三个数量级。
此外,本发明化合物的玻璃体内给药已证明,大鼠视网膜/脉络膜组织中对IL-6诱导的pSTAT3的显著抑制以及兔玻璃体以及视网膜/脉络膜组织中对IFN-γ诱导的IP-10的显著并持久的抑制。
预期,在显著全身性含量不存在的情况下持续眼部JAK抑制将在眼部中产生强力局部消炎活性,而无全身性驱动的不良作用。预期本发明化合物有益于多种眼部疾病,包括但不限于眼色素层炎、糖尿病性视网膜病变、糖尿病性黄斑水肿、干眼病、年龄相关黄斑变性和异位性角膜结膜炎。
确切地说,眼色素层炎(宝来和卡斯皮,干扰素和细胞因子研究杂志,2011,31,733-744)、糖尿病性视网膜病变(阿布科沃尔,临床与细胞免疫学杂志,2013,增刊1,1-12)、糖尿病性黄斑水肿(索恩等人,美国眼科杂志,2011,152,686-694)、干眼病(史蒂文森等人,眼科学文献,2012,130,90-100)和年龄相关黄斑变性(尼克贝因(Knickelbein)等人,国际眼科与临床研究杂志(Int Ophthalmol Clin),2015,55(3),63-78)表征为经由JAK-STAT路径传导信号的特定促炎性细胞因子升高。因此,本发明化合物可能能够减轻相关眼部炎症并逆转疾病进程或缓解症状。
视网膜静脉栓塞(RVO)是非常盛行的视觉致残性疾病。视网膜血流堵塞可导致视网膜血管结构损伤、出血和组织局部缺血。尽管RVO的原因是多因素的,但血管以及炎性介质两者皆显示出重要性(多哈塔(Deobhakta)等人,国际炎症杂志(International Journalof Inflammation),2013,文章ID 438412)。已检测到经由JAK-STAT路径传导信号的细胞因子(如IL-6和IL-13)以及其产生部分地通过JAK-STAT路径信号传导驱动的其它细胞因子(如MCP-1)在患有RVO的患者眼部组织中的含量较高(修库(Shchuko)等人,印度眼科杂志(Indian Journal of Ophthalmology),2015,63(12),905-911)。因此,化合物1可能能够减轻相关眼部炎症并逆转疾病进程或缓解此疾病的症状。虽然患有RVO的许多患者通过光致凝固治疗,但这在本质上是破坏性治疗。还使用抗VEGF剂,但其仅在一部分患者中有效。降低眼部炎症水平的类固醇药品(曲安奈德(Triamcinolone acetonide)和地塞米松(dexamethasone)植入物)也已展示对患有特定型式的RVO的患者提供有益结果,但其也已展示导致白内障和眼内压增加/青光眼。
因此,在一个方面,本发明提供一种治疗哺乳动物眼部疾病的方法,所述方法包含向所述哺乳动物眼部投与5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐。在一个方面,眼部疾病是眼色素层炎、糖尿病性视网膜病变、糖尿病性黄斑水肿、干眼病、年龄相关黄斑变性、视网膜静脉栓塞或异位性角膜结膜炎。在一个方面,所述方法包含通过玻璃体内注射投与本发明化合物。
呼吸道疾病
已证明本发明化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(1)对T细胞活化的抑制、对与炎症相关的细胞因子的抑制以及啮齿动物肺脏嗜酸性细胞增多症和嗜中性细胞增多症检定中的活性。因此,相信化合物适用于治疗某些特定呼吸道疾病。
嗜酸性呼吸道炎症是统称为嗜酸性肺病的典型特征(科坦(Cottin)等人,胸腔医学(Clin.Chest.Med.),2016,37(3),535-56)。嗜酸性疾病与IL-4、IL-13和IL-5信号传导相关。嗜酸性肺病包括感染(尤其是蠕虫感染)、药物诱发的肺炎(例如通过如抗生素、苯妥英(phenytoin)或l-色胺酸的治疗药物诱发)、真菌诱发的肺炎(例如过敏性支气管肺曲霉病)、过敏性肺炎和嗜酸性肉芽肿伴多血管炎(先前称为彻奇-斯全司综合征(Churg-Strauss syndrome))。未知病因的嗜酸性肺病包括特发性急性嗜酸性肺炎、特发性慢性嗜酸性肺炎、嗜酸性细胞增多综合征和吕弗勒综合征。已显示化合物1显著降低检定13的啮齿动物呼吸道模型中的肺嗜酸性细胞增多症,并且在细胞检定中强力抑制IL-13、IL-4和IL-2信号传导。
IL-6基因多态性与较高IL-6水平和罹患肺部动脉高血压(PAH)的风险增加相关(方(Fang)等人,美国高血压学会杂志(J Am Soc Hypertens.),白介素-6-572C/G多态性与血清白介素-6水平和特发性肺部动脉高血压相关(Interleukin-6-572C/G polymorphismis associated with serum interleukin-6levels and risk of idiopathic pulmonaryarterial hypertension),2017,预先出版)。确证IL-6于PAH中的作用,对IL-6受体链gp130的抑制减轻了PAH大鼠模型中的疾病(黄(Huang)等人,加拿大心脏病学杂志(Can JCardiol.),2016,32(11),1356.e1-1356.e10)。本发明化合物已显示抑制IL-6信号传递。
如IFNγ、IL-12和IL-6的细胞因子已涉及一定范围的非过敏性肺病,如类肉瘤病和肺淋巴血管平滑肌增生症(艾尔-哈希姆(El-Hashemite)等人,美国呼吸细胞和分子生物学杂志(Am.J.Respir.Cell Mol.Biol.),2005,33,227-230,和艾尔-哈希姆等人,癌症研究(Cancer Res.),2004,64,3436-3443)。本发明化合物还已显示抑制IL-6和IFNγ信号传导。
支气管扩张症和浸润性肺病是与慢性嗜中性炎症相关的疾病。本发明化合物已显示抑制啮齿动物模型中的呼吸道嗜中性细胞增多症。
病理性T细胞活化对于多种呼吸道疾病的病因具有决定性。自体反应性T细胞在阻塞性细支气管炎伴机化性肺炎(也称为COP[隐源性机化性肺炎])中起作用。近年来,免疫检查点抑制剂诱发的肺炎(另一种T细胞介导的肺病)随着免疫检查点抑制剂的使用增加而出现。在用这些T细胞刺激剂治疗的癌症患者中,可能发生致死性肺炎。本发明化合物已显示抑制从人类周边血液单核细胞分离的T细胞活化。
因此,在一个方面,本发明提供一种治疗哺乳动物(例如人类)呼吸道疾病的方法,所述方法包含向所述哺乳动物投与5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐,或包含药学上可接受的载剂和本发明化合物或其药学上可接受的盐的药物组合物,其中所述呼吸道疾病是肺部感染、蠕虫感染、肺部动脉高血压、类肉瘤病、肺淋巴血管平滑肌增生症、支气管扩张症或浸润性肺病。
在另一方面,本发明提供一种治疗哺乳动物(例如人类)呼吸道疾病的方法,所述方法包含向所述哺乳动物投与本发明化合物或其药学上可接受的盐,或包含药学上可接受的载剂和本发明化合物或其药学上可接受的盐的药物组合物,其中所述呼吸道疾病是药物诱发的肺炎、真菌诱发的肺炎、过敏性支气管肺曲霉病、过敏性肺炎、嗜酸性肉芽肿伴多血管炎、特发性急性嗜酸性肺炎、特发性慢性嗜酸性肺炎、嗜酸性细胞增多综合征、吕弗勒综合征、阻塞性细支气管炎伴机化性肺炎或免疫检查点抑制剂诱发的肺炎。
JAK信号传导细胞因子也在T细胞活化中起主要作用,T细胞是对许多免疫过程重要的免疫细胞亚类。病理性T细胞活化对于多种呼吸道疾病的病因具有决定性。自体反应性T细胞在阻塞性细支气管炎伴机化性肺炎(也称为COS)中起作用。类似于COS,肺移植排斥反应的病因与受体T细胞因为移植供体肺所致的异常T细胞活化相关。肺移植排斥反应可早期以原发性移植物功能障碍(PGD)、机化性肺炎(OP)、急性排斥反应(AR)或淋巴细胞性细支气管炎(LB)型式发生,或其可在肺移植后数年以慢性肺同种异体移植物功能障碍(CLAD)型式发生。CLAD先前已知为阻塞性细支气管炎(BO),但现在视为可具有不同病理学表现的综合征,包括BO、限制性CLAD(rCLAD或RAS)和嗜中性细胞同种异体移植物功能障碍。慢性肺同种异体移植物功能障碍(CLAD)是肺移植受体长期管理中的主要挑战,这是由于其导致移植肺逐渐失去功能(高蒂耶(Gauthier)等人,最新移植报告(Curr Transplant Rep.),2016,3(3),185-191)。CLAD对治疗的反应不佳,并且因此,仍需要能够预防或治疗这一病况的有效化合物。如IFNγ和IL-5的若干JAK依赖性细胞因子在CLAD和肺移植排斥反应中上调(贝拉斯特吉(Berastegui)等人,临床移植(Clin Transplant).2017,31,e12898)。此外,在JAK依赖性IFN信号传导下游的CXCR3趋化因子(如CXCL9和CXCL10)的高肺含量与肺移植患者的恶化结果相关(志野(Shino)等人,公共科学图书馆·综合(PLOS One),2017,12(7),e0180281)。全身性JAK抑制已展示为在肾脏移植排斥反应中有效(维琴提(Vicenti)等人,美国移植杂志(American Journal of Transplantation),2012,12,2446-56)。因此,JAK抑制剂具有有效治疗或预防肺移植排斥反应和CLAD的潜力。如描述为肺移植排斥反应基础的类似T细胞活化事件也视为造血干细胞移植后可能发生的肺移植物抗宿主病(GVHD)的主要驱动因素。类似于CLAD,肺GVHD是一种具有极其不良后果的慢性进行性病况,并且目前尚无批准的治疗。对95位接受全身性JAK抑制剂卢佐替尼(ruxolitinib)作为补救治疗的患有类固醇难治性急性或慢性GVHD的患者进行的回溯性多中心调查研究表明,大多数患者(包括患有肺GVHD的患者)对卢佐替尼完全或部分反应(蔡瑟(Zeiser)等人,白血病(Leukemia),2015,29,10,2062-68)。由于全身性JAK抑制与严重不良事件和小治疗指数相关,因此需要吸入肺部定向的非全身性JAK抑制剂以预防和/或治疗肺移植排斥反应或肺GVHD。
因此,本发明进一步提供一种治疗哺乳动物上述其它呼吸道病况的方法,所述方法包含向所述哺乳动物投与化合物1或其药学上可接受的盐。
肠胃发炎疾病
作为JAK抑制剂,化合物1或其医药盐还可适用于治疗肠胃发炎疾病,包括但不限于发炎性肠病、溃疡性结肠炎(直肠乙状结肠炎、全结肠炎、溃疡性直肠炎和左侧结肠炎)、克罗恩氏病(Crohn's disease)、胶原性结肠炎、淋巴细胞性结肠炎、白塞氏病(Behcet'sdisease)、乳糜泻、免疫检查点抑制剂诱发的结肠炎、回肠炎、嗜酸性食道炎、移植物抗宿主疾病相关的结肠炎和感染性结肠炎。溃疡性结肠炎(雷蒙德(Reimund等人),临床免疫学杂志(J Clin Immunology),1996,16,144-150)、克罗恩氏病(维沃特(Woywodt)等人,欧洲胃肠病学与肝脏病学杂志(Eur J Gastroenterology Hepatology),1999,11,267-276)、胶原性结肠炎(库玛瓦特(Kumawat)等人,分子免疫学(Mol Immunology),2013,55,355-364)、淋巴细胞性结肠炎(库玛瓦特等人,2013)、嗜酸性食道炎(维因布兰德-戈奇博格(Weinbrand-Goichberg)等人,免疫学研究(Immunol Res),2013,56,249-260)、移植物抗宿主疾病相关的结肠炎(科吉尔(Coghill)等人,血液(Blood),2001,117,3268-3276)、感染性结肠炎(斯托玛奇(Stallmach)等人,国际结肠直肠疾病杂志(Int J Colorectal Dis),2004,19,308-315)、白塞氏病(周(Zhou)等人,自体免疫综述(Autoimmun Rev),2012,11,699-704)、乳糜泻(德·尼托(de Nitto)等人,世界胃肠病学杂志(World J Gastroenterol),2009,15,4609-4614)、免疫检查点抑制剂诱发的结肠炎(例如CTLA-4抑制剂诱发的结肠炎;(矢野(Yano)等人,转化医学杂志(J Translation Med),2014,12,191)、PD-1-抑制剂或PD-L1-抑制剂诱发的结肠炎)和回肠炎(山本(Yamamoto)等人,消化与肝脏疾病(Dig Liver Dis),2008,40,253-259)表征为特定促炎性细胞因子含量升高。由于许多促炎性细胞因子经由JAK活化来传导信号,因此本申请中所描述的化合物能够减轻发炎并缓解症状。
发炎性皮肤病
异位性皮炎和其它发炎性皮肤病与依赖于JAK-STAT路径的促炎性细胞因子升高相关。因此,化合物1或其医药盐可有益于多种真皮炎或瘙痒病况,包括但不限于异位性皮炎、斑秃、白癜风、牛皮癣、皮肌炎、皮肤T细胞淋巴瘤(涅奇波鲁克(Netchiporouk)等人,细胞周期(Cell Cycle).2014;13,3331-3335)和亚型(塞扎莱综合征(Sezary syndrome)、蕈样霉菌病、佩吉特样网状细胞增多症(pagetoid reticulosis)、肉芽肿性皮肤松弛、淋巴瘤样丘疹病、慢性苔藓样糠疹、急性痘疮样苔癣样糠疹、CD30+皮肤T细胞淋巴瘤、继发性皮肤CD30+大细胞淋巴瘤、非蕈样霉菌病CD30-皮肤大T细胞淋巴瘤、多形性T细胞淋巴瘤、林内特淋巴瘤(Lennert lymphoma)、皮下T细胞淋巴瘤、血管中心性淋巴瘤、母细胞性NK细胞淋巴瘤)、结节性痒疹、扁平苔藓、原发性局部皮肤淀粉样变性、大疱性类天疱疮、移植物抗宿主病的皮肤表现、类天疱疮、盘状狼疮、环状肉芽肿、慢性单纯性苔癣、外阴/阴囊/肛周瘙痒症、硬化性苔癣、带状疱疹后神经痛痒、扁平毛发苔藓和脱发性毛囊炎。确切地说,异位性皮炎(包(Bao)等人,JAK-STAT,2013,2,e24137)、斑秃(邢(Xing)等人,自然·医学(Nat Med.)2014,20,1043-1049)、白癜风(克雷格罗(Craiglow)等人,美国医学会杂志·皮肤病学(JAMA Dermatol.)2015,151,1110-1112)、结节性痒疹(雄科伊(Sonkoly)等人,过敏与临床免疫学杂志(J Allergy Clin Immunol.)2006,117,411-417)、扁平苔癣(威尔兹-库比亚克(Welz-Kubiak)等人,免疫学研究杂志(J Immunol Res.)2015,ID:854747)、原发性局部皮肤淀粉样变性(田中(Tanaka)等人,英国皮肤病学杂志(Br J Dermatol.)2009,161,1217-1224)、大疱性类天疱疮(菲利西亚尼(Feliciani)等人,国际免疫病理学与药理学杂志(IntJ Immunopathol Pharmacol.)1999,12,55-61)以及移植物抗宿主疾病的皮肤表现(冲山(Okiyama)等人,皮肤病学研究杂志(J Invest Dermatol.)2014,134,992-1000)表征为经由JAK活化传导信号的特定细胞因子升高。因此,化合物1或其药学上可接受的盐可能能够减轻由这些细胞因子驱动的相关真皮炎或搔痒症。
其它疾病
化合物1或其药学上可接受的盐也可适用于治疗其它疾病,如其它发炎疾病、自体免疫疾病或癌症。化合物1或其药学上可接受的盐可适用于治疗以下中的一或多个:关节炎、类风湿性关节炎、青少年类风湿性关节炎、移植排斥反应、干眼症、牛皮癣性关节炎、糖尿病、胰岛素依赖性糖尿病、运动神经元疾病、骨髓发育不良综合征、疼痛、肌肉减少症、恶病质、败血性休克、全身性红斑性狼疮症、白血病、慢性淋巴细胞性白血病,慢性骨髓细胞性白血病、急性淋巴母细胞白血病、急性骨髓性白血病、僵直性脊椎炎、骨髓纤维化、B细胞淋巴瘤、肝细胞癌、霍奇金氏病(Hodgkins disease)、乳癌、多发性骨髓瘤、黑素瘤、非霍奇金氏淋巴瘤、非小细胞肺癌、卵巢透明细胞癌、卵巢肿瘤、胰脏肿瘤、真性红细胞增多症、休格连综合征(Sjoegrens syndrome)、软组织肉瘤、肉瘤、脾肿大、T细胞淋巴瘤和重度地中海贫血。
组合治疗
本发明化合物1或其药学上可接受的盐可与通过相同机理或不同机理起作用来治疗疾病的一或多种药剂组合使用。不同药剂可在单独的组合物或同一组合物中依序或同时投与。用于组合疗法的药剂的适用种类包括但不限于:β2肾上腺素受体激动剂、蕈毒碱受体拮抗剂、糖皮质激素激动剂、G蛋白连接的受体-44拮抗剂、白三烯D4拮抗剂、蕈毒碱M3受体拮抗剂、组胺H1受体拮抗剂、免疫球蛋白E拮抗剂、PDE 4抑制剂、IL-4拮抗剂、蕈毒碱M1受体拮抗剂、组胺受体拮抗剂、IL-13拮抗剂、IL-5拮抗剂、5-脂肪加氧酶抑制剂、β肾上腺素受体激动剂、CCR3趋化因子拮抗剂、CFTR刺激剂、免疫球蛋白调节剂、白介素33配位体抑制剂、PDE 3抑制剂、磷酸肌醇-3激酶δ抑制剂、凝血脂素A2拮抗剂、弹性蛋白酶抑制剂、Kit酪胺酸激酶抑制剂、白三烯E4拮抗剂、白三烯拮抗剂、PGD2拮抗剂、TNFα配位体抑制剂、TNF结合剂、补体级联抑制剂、伊红趋素配位体抑制剂、麸胱甘肽还原酶抑制剂、组胺H4受体拮抗剂、IL-6拮抗剂、IL2基因刺激剂、免疫球蛋白γFc受体IIB调节剂、干扰素γ配位体、白介素13配位体抑制剂、白介素17配位体抑制剂、L-选择素拮抗剂、白细胞弹性蛋白酶抑制剂、白三烯C4拮抗剂、白三烯C4合成酶抑制剂、膜铜胺氧化酶抑制剂、金属蛋白酶-12抑制剂、金属蛋白酶-9抑制剂、螨过敏原调节剂、蕈毒碱受体调节剂、烟碱酸乙酰胆碱受体激动剂、核因子κB抑制剂、p-选择素拮抗剂、PDE 5抑制剂、PDGF受体拮抗剂、磷酸肌醇-3激酶γ抑制剂、TLR-7激动剂、TNF拮抗剂、Abl酪胺酸激酶抑制剂、乙酰胆碱受体拮抗剂、酸性哺乳动物壳质酶抑制剂、ACTH受体激动剂、肌动蛋白聚合调节剂、腺苷A1受体拮抗剂、腺苷酸环化酶刺激剂、肾上腺素受体拮抗剂、促肾上腺皮质激素配位体、醇脱氢酶5抑制剂、α1抗胰蛋白酶刺激剂、α1蛋白酶抑制剂、雄激素受体调节剂、血管收缩素转化酶2刺激剂、ANP激动剂、Bcr蛋白抑制剂、β1肾上腺素受体拮抗剂、β2肾上腺素受体拮抗剂、β2肾上腺素受体调节剂、β淀粉样调节剂、BMP10基因抑制剂、BMP15基因抑制剂、钙通道抑制剂、组织蛋白酶G抑制剂、CCL26基因抑制剂、CCR3趋化因子调节剂、CCR4趋化因子拮抗剂、细胞粘附分子抑制剂、伴侣蛋白刺激剂、壳质酶抑制剂、胶原蛋白I拮抗剂、补体C3抑制剂、CSF-1拮抗剂、CXCR2趋化因子拮抗剂、细胞因子受体共用β链调节剂、细胞毒性T淋巴细胞蛋白-4刺激剂、脱氧核糖核酸酶I刺激剂、脱氧核糖核酸酶刺激剂、二肽基肽酶I抑制剂、DNA旋转酶抑制剂、DP前列腺素受体调节剂、E-选择素拮抗剂、EGFR家族酪胺酸激酶受体抑制剂、弹性蛋白调节剂、内皮素ET-A拮抗剂、内皮素ET-B拮抗剂、环氧化物水解酶抑制剂、FGF3受体拮抗剂、Fyn酪胺酸激酶抑制剂、GATA3转录因子抑制剂、葡糖神经酰胺酶调节剂、麸胺酸受体调节剂、GM-CSF配位体抑制剂、鸟苷酸环化酶刺激剂、H+K+ATP酶抑制剂、血红素调节剂、肝素激动剂、组蛋白脱乙酰酶抑制剂、组蛋白脱乙酰酶-2刺激剂、HMG CoA还原酶抑制剂、I-κB激酶β抑制剂、ICAM1基因抑制剂、IL-17拮抗剂、IL-17受体调节剂、IL-23拮抗剂、IL-4受体调节剂、免疫球蛋白G调节剂、免疫球蛋白G1激动剂、免疫球蛋白G1调节剂、免疫球蛋白εFc受体IA拮抗剂、免疫球蛋白γFc受体IIB拮抗剂、免疫球蛋白κ调节剂、胰岛素敏化剂、干扰素β配位体、白介素1样受体拮抗剂、白介素18配位体抑制剂、白介素受体17A拮抗剂、白介素-1β配位体抑制剂、白介素-5配位体抑制剂、白介素-6配位体抑制剂、KCNA电位闸控钾通道-3抑制剂、Kit配位体抑制剂、层粘连蛋白-5激动剂、白三烯CysLT1受体拮抗剂、白三烯CysLT2受体拮抗剂、LOXL2基因抑制剂、Lyn酪胺酸激酶抑制剂、MARCKS蛋白抑制剂、MDR相关蛋白4抑制剂、金属蛋白酶-2调节剂、金属蛋白酶-9调节剂、盐皮质素受体拮抗剂、蕈毒碱M2受体拮抗剂、蕈毒碱M4受体拮抗剂、蕈毒碱M5受体拮抗剂、利尿钠肽受体A激动剂、自然杀伤细胞受体调节剂、烟碱酸ACh受体α7亚基刺激剂、NK细胞受体调节剂、核因子κB调节剂、类鸦片生长因子受体激动剂、P-醣蛋白抑制剂、P2X3嘌呤受体拮抗剂、p38 MAP激酶抑制剂、肽酶1调节剂、磷脂酶A2抑制剂、磷脂酶C抑制剂、纤维蛋白溶酶原活化剂抑制剂1抑制剂、血小板激活因子受体拮抗剂、PPARγ激动剂、前列腺环素激动剂、蛋白酪胺酸激酶抑制剂、SH2结构域肌醇磷酸酶1刺激剂、信号转导抑制剂、钠通道抑制剂、STAT-3调节剂、干细胞抗原-1抑制剂、超氧化歧化酶调节剂、T细胞表面醣蛋白CD28抑制剂、T细胞表面醣蛋白CD8抑制剂、TGFβ激动剂、TGFβ拮抗剂、凝血脂素合成酶抑制剂、胸腺基质淋巴蛋白配位体抑制剂、胸腺素激动剂、胸腺素β4配位体、TLR-8激动剂、TLR-9激动剂、TLR9基因刺激剂、拓朴异构酶IV抑制剂(Topoisomerase IVinhibitor)、肌钙蛋白I快肌刺激剂、肌钙蛋白T快肌刺激剂、I型IL-1受体拮抗剂、II型TNF受体调节剂、离子通道调节剂、子宫球蛋白刺激剂和VIP激动剂。
可与本发明JAK抑制剂化合物1组合使用的特定药剂包括但不限于:乙酸罗斯普特(rosiptor acetate)、芜地溴铵(umeclidinium bromide)、塞库金单抗(secukinumab)、乙酸米特法林(metenkefalin acetate)、乙酸特瑞得卡(tridecactide acetate)、丙酸氟替卡松(fluticasone propionate)、α-环糊精稳定的萝卜硫素、泰泽佩鲁单抗(tezepelumab)、糠酸莫米松(mometasone furoate)、BI-1467335、度匹鲁单抗(dupilumab)、阿地铵(aclidinium)、福莫特罗(formoterol)、AZD-1419、HI-1640V、瑞威潘塞(rivipansel)、CMP-001、甘露醇、ANB-020、奥马珠单抗(omalizumab)、曲加力单抗(tregalizumab)、Mitizax、苯纳珠单抗(benralizumab)、戈利木单抗(golimumab)、罗氟司特(roflumilast)、伊马替尼(imatinib)、REGN-3500、马赛替尼(masitinib)、阿普司特(apremilast)、RPL-554、阿克姆(Actimmune)、阿达木单抗(adalimumab)、卢帕他定(rupatadine)、帕罗格列(parogrelil)、MK-1029、二丙酸倍氯米松(beclometasonedipropionate)、反丁烯二酸福莫特罗、莫格利珠单抗(mogamulizumab)、塞曲司特(seratrodast)、UCB-4144、纳米拉昔布(nemiralisib)、CK-2127107、非维兰特(fevipiprant)、达尼日辛(danirixin)、波生坦(bosentan)、阿巴西普(abatacept)、EC-18、杜维昔布(duvelisib)、多西帕他(dociparstat)、环丙沙星(ciprofloxacin)、沙丁胺醇HFA(salbutamol HFA)、厄多司坦(erdosteine)、PrEP-001、奈多罗米(nedocromil)、CDX-0158、沙丁胺醇、恩博沙(enobosarm)、R-TPR-022、朗齐鲁单抗(lenzilumab)、糠酸氟替卡松、三氟甲磺酸威兰特罗(vilanterol trifenatate)、丙酸氟替卡松、沙美特罗(salmeterol)、PT-007、PRS-060、瑞姆添塞-L(remestemcel-L)、瓜胺酸、RPC-4046、氧化氮、DS-102、吉瑞利单抗(gerilimzumab)、Actair、糠酸氟替卡松、芜地溴铵、威兰特罗、AG-NPP709、Gamunex、英利昔单抗(infliximab)、Ampion、阿库马莫(acumapimod)、康纳单抗(canakinumab)、INS-1007、CYP-001、思鲁库单抗(sirukumab)、丙酸氟替卡松、美泊利单抗(mepolizumab)、匹伐他汀(pitavastatin)、索利霉素(solithromycin)、依那西普(etanercept)、依伐卡托(ivacaftor)、阿那白滞素(anakinra)、MPC-300-IV、格隆溴铵(glycopyrronium bromide)、阿地溴铵(aclidinium bromide)、FP-025、里森基单抗(risankizumab)、格隆铵、反丁烯二酸福莫特罗、Adipocell、YPL-001、噻托溴铵(tiotropium bromide)、格隆溴铵、顺丁烯二酸茚达特罗(indacaterol maleate)、安德卡西单抗(andecaliximab)、奥达特罗(olodaterol)、埃索美拉唑(esomeprazole)、尘螨疫苗、艾蒿花粉过敏原疫苗、万莫龙(vamorolone)、吉法匹先(gefapixant)、瑞芬那新(revefenacin)、吉非替尼(gefitinib)、ReJoin、泰鲁斯特(tipelukast)、贝多拉君(bedoradrine)、SCM-CGH、SHP-652、RNS-60、布罗达单抗(brodalumab)、BIO-11006、芜地溴铵、三氟甲磺酸威兰特罗、异丙托溴铵(ipratropium bromide)、塔罗金单抗(tralokinumab)、PUR-1800、VX-561、VX-371、奥洛他定(olopatadine)、妥布特罗(tulobuterol)、反丁烯二酸福莫特罗、曲安奈德(triamcinolone acetonide)、瑞利珠单抗(reslizumab)、羟萘甲酸沙美特罗、丙酸氟替卡松、二丙酸倍氯米松、反丁烯二酸福莫特罗、噻托溴铵、利盖利珠单抗(ligelizumab)、RUTI、柏替木单抗(bertilimumab)、奥马珠单抗、格隆溴铵、SENS-111、二丙酸倍氯米松、CHF-5992、LT-4001、茚达特罗、格隆溴铵、糠酸莫米松、菲索芬那定(fexofenadine)、格隆溴铵、阿奇霉素(azithromycin)、AZD-7594、福莫特罗、CHF-6001、贝特芬特罗(batefenterol)、OATD-01、奥达特罗、CJM-112、罗格列酮(rosiglitazone)、沙美特罗、塞提普兰特(setipiprant)、吸入干扰素β、AZD-8871、普卡那肽(plecanatide)、氟替卡松、沙美特罗、二十碳五烯酸单甘油酸酯、雷布瑞奇单抗(lebrikizumab)、RG-6149、QBKPN、莫米松、茚达特罗、AZD-9898、丙酮酸钠、齐留通(zileuton)、CG-201、咪达那新(imidafenacin)、CNTO-6785、CLBS-03、莫米松、RGN-137、丙卡特罗(procaterol)、福莫特罗、CCI-15106、POL-6014、茚达特罗、倍氯米松、MV-130、GC-1112、Allergovac depot、MEDI-3506、QBW-251、ZPL-389、乌地那非(udenafil)、GSK-3772847、左旋西替利嗪(levocetirizine)、AXP-1275、ADC-3680、提马普兰特(timapiprant)、阿贝二醇(abediterol)、AZD-7594、异丙托溴铵、硫酸沙丁胺醇、他迪克宁α(tadekinig alfa)、ACT-774312、脱氧核糖酶α、伊洛前列素(iloprost)、贝特芬特罗、糠酸氟替卡松、阿利卡弗森(alicaforsen)、环索奈德(ciclesonide)、绿酰胺(emeramide)、阿福莫特罗(arformoterol)、SB-010、奥扎格雷(Ozagrel)、BTT-1023、德崔库单抗(Dectrekumab)、左旋沙丁胺醇(levalbuterol)、普仑司特(pranlukast)、玻尿酸、GSK-2292767、福莫特罗、NOV-14、卢辛安坦(Lucinactant)、沙丁胺醇、泼尼龙(prednisolone)、依巴司汀(ebastine)、地塞米松塞帕塞勒特(dexamethasone cipecilate)、GSK-2586881、BI-443651、GSK-2256294、VR-179、VR-096、hdm-ASIT+、布地奈德(budesonide)、GSK-2245035、VTX-1463、依美斯汀(Emedastine)、右旋普拉克索(dexpramipexole)、左旋沙丁胺醇、N-6022、地塞米松磷酸钠、PIN-201104、OPK-0018、TEV-48107、甲磺司特(suplatast)、BI-1060469、金碧露卡斯(Gemilukast)、干扰素γ、达拉扎德(dalazatide)、比拉斯汀(bilastine)、丙酸氟替卡松、羟萘甲酸沙美特罗、RP-3128、苯环喹溴铵(bencycloquidiumbromide)、瑞利珠单抗、PBF-680、CRTH2拮抗剂、普仑司特、羟萘甲酸沙美特罗、丙酸氟替卡松、噻托溴铵单水合物、马鲁斯特(masilukast)、RG-7990、多索茶碱(Doxofylline)、阿贝二醇、格隆溴铵、TEV-46017、ASM-024、丙酸氟替卡松、格隆溴铵、羟萘甲酸沙美特罗、沙丁胺醇、TA-270、氟尼缩松(Flunisolide)、色甘酸钠、Epsi-gam、ZPL-521、沙丁胺醇、阿肽地尔(aviptadil)、TRN-157、扎鲁司特(Zafirlukast)、Stempeucel、哌罗来斯钠(pemirolastsodium)、纳多洛尔(nadolol)、丙酸氟替卡松+羟萘甲酸沙美特罗、RV-1729、硫酸沙丁胺醇、二氧化碳+全氟溴辛烷、APL-1、德崔库单抗(dectrekumab)+VAK-694、离胺酸乙酰基水杨酸盐、齐留通、TR-4、人类同种异体脂肪组织衍生的间质先驱细胞治疗、MEDI-9314、PL-3994、HMP-301、TD-5471、NKTT-120、哌罗来斯、二丙酸倍氯米松、川汀特罗(trantinterol)、α流明诺单钠、IMD-1041、AM-211、TBS-5、ARRY-502、塞曲司特、重组密蒂斯酶(recombinantmidismase)、ASM-8、地夫可特(deflazacort)、班布特罗(bambuterol)、RBx-10017609、异丙托铵+非诺特罗(ipratropium+fenoterol)、氟替卡松+福莫特罗、依匹斯汀(epinastine)、WIN-901X、VALERGEN-DS、OligoG-COPD-5/20、妥布特罗、奥克斯都保(oxis Turbuhaler)、DSP-3025、ASM-024、咪唑司汀(mizolastine)、布地奈德+沙美特罗、LH-011、AXP-E、组胺人类免疫球蛋白、YHD-001、茶碱、胺溴素+厄多司坦、雷马曲班(ramatroban)、孟鲁司特(montelukast)、普仑司特、AG-1321001、妥布特罗、异丙托铵+沙丁胺醇、曲尼司特(tranilast)、磺庚甲泼尼龙(methylprednisolone suleptanate)、科尔福辛达洛巴特(colforsin daropate)、瑞吡司特(repirinast)和多索茶碱(doxofylline)。
本文中还提供一种包含化合物1或其药学上可接受的盐和一或多种其它治疗剂的药物组合物。治疗剂可选自上文规定的药剂类别和上文所述的特定试剂的清单。在一些实施例中,药物组合物适于递送到肺。在一些实施例中,药物组合物适于吸入或喷雾投与。在一些实施例中,药物组合物是干粉或液体组合物。
另外,在一方法方面,本发明提供一种治疗哺乳动物疾病或病症的方法,其包含向所述哺乳动物投与化合物1或其药学上可接受的盐和一或多种其它治疗剂。
当用于组合疗法中时,药剂配制成单一药物组合物,或药剂可提供在单独的组合物中,所述组合物同时或在不同时间通过相同或通过不同的投与途径投与。这类组合物可单独地包装或可作为试剂盒共同包装。试剂盒中的两种或更多种治疗剂可通过相同投与途径或通过不同投与途径来投与。
本发明化合物已表明为酶结合检定中的JAK1、JAK2、JAK3和TYK2酶的强力抑制剂以在细胞检定中具有强功能活性,而无细胞毒性,并且在临床前模型中发挥JAK抑制的药效动力学作用,如以下实例中所描述。
实例
提供以下合成和生物实例以说明本发明,并且不以任何方式解释为限制本发明的范围。除非另外指示,否则在以下实例中,以下缩写具有以下含义。以下未定义的缩写具有其一般可接受的含义。
CAN= 乙腈
DCC= 二环己基碳化二亚胺
DIPEA= N,N-二异丙基乙胺
DMF= N,N-二甲基甲酰胺
EtOAc= 乙酸乙酯
HATU= 六氟磷酸N,N,N',N'-四甲基-O-(7-氮杂苯并三唑-1-基)脲鎓
LDA= 二异丙胺基锂
min= 分钟
MTBE= 甲基叔丁基醚
NBS= N-溴丁二酰亚胺
RT= 室温
THF= 四氢呋喃
双(频哪醇)二硼= 4,4,5,5,4',4',5',5'-八甲基-[2,2']联[[1,3,2]二氧杂环戊硼烷基
Pd(dppf)Cl2-CH2Cl2= 二氯(1,1'-双(二苯膦基)-二茂铁)-二钯(II)与二氯甲烷的复合物
试剂和溶剂购自商业供应商(奥尔德里奇公司(Aldrich)、弗卢卡公司(Fluka)、西格玛公司(Sigma)等)并且未经进一步纯化即使用。通过薄层色谱(TLC)、分析型高效液相色谱(anal.HPLC)和质谱分析监测反应混合物的进展。如在各反应中具体描述来处理反应混合物;通常通过萃取和其它纯化方法(如温度依赖性和溶剂依赖性结晶和沉淀)来纯化反应混合物。另外,通过柱色谱或通过制备型HPLC,通常地使用C18或BDS柱填充和常规洗脱剂来常规纯化反应混合物。下文描述典型的制备型HPLC条件。
通过质谱和1H-NMR光谱常规地进行反应产物的表征。对于NMR分析,样品溶解于氘化溶剂(如CD3OD、CDCl3或d6-DMSO)中,并且在标准观察条件下用瓦里安(Varian)Gemini2000仪器(400MHz)获得1H-NMR光谱。通过电喷雾电离法(ESMS)用耦接到自动纯化系统的应用生物系统(Applied Biosystems)(加利福尼亚州福斯特城(Foster City,CA))型号API150EX仪器或沃特世(Waters)(马萨诸塞州米尔福德(Milford,MA))3100仪器,来进行化合物的质谱鉴定。
制备型HPLC条件
柱: C18,5μm 21.2×150mm或C18,5μm 21×250或C14,5μm 21×150mm
柱温度: 室温
流动速率: 20.0mL/min
移动相: A=水+0.05%TFA
B=ACN+0.05%TFA,
注射体积: (100-1500μL)
检测器波长: 214nm
粗制化合物以约50mg/mL溶解于1:1水:乙酸中。使用2.1×50mm C18柱进行4分钟分析规模的测试操作,接着使用100μL注射液用基于分析规模的测试操作的B滞留%进行15或20分钟制备型规模操作。准确梯度依赖于样品。用21×250mm C18柱和/或21×150mm C14柱检测具有紧密操作杂质的样品以进行最佳分离。通过质谱分析鉴定含有所期望产物的洗脱份。
分析型HPLC条件
方法A
柱: 安捷伦(Agilent)Zorbax Bonus-RP C18,150×4.60nm,3.5微米
柱温度: 40℃
流动速率: 1.5mL/min
注射体积: 5μL
样品制备: 溶解于1:1ACN:1M HCl中
移动相: A=水:TFA(99.95:0.05)
B=ACN:TFA(99.95:0.05)
检测器波长: 254nm和214nm
梯度: 总共26分钟(时间(分钟)/B%):0/5、18/90、22/90、22.5/90、26/5
方法B
柱: 安捷伦Poroshell 120Bonus-RP,4.6×150mm,2.7μm
柱温度: 30℃
流动速率: 1.5mL/min
注射体积: 10μL
移动相: A=ACN:水:TFA(2:98:0.1)
B=ACN:水:TFA(90:10:0.1)
样品制备: 溶解于移动相B中
检测器波长: 254nm和214nm
梯度: 总共60分钟(时间(分钟)/B%):0/0、50/100、55/100、55.1/0、60/0
制备1:1-苯甲基-4-亚胺基-1,4-二氢吡啶-3-胺
在25℃至15℃下,将吡啶-3,4-二胺(445g,4.078mol)与ACN(11.0L)的混合物搅拌80min。在20min内添加苯甲基溴(485mL,4.078mol),并在20℃下将反应混合物搅拌隔夜。将反应混合物冷却到10℃并过滤。向反应器中添加冷却到10℃的ACN(3L)。用反应器清洗液洗涤滤饼,并用升温到25℃的ACN(3L)再次洗涤。在过滤器上将固体在氮气下干燥24h,在55℃下在真空下干燥2h,并且接着在RT下干燥隔夜和4天,以得到标题化合物的HBr盐(1102.2g,3.934mol,96%产率)。HPLC方法A滞留时间4.12min。
制备2:5-苯甲基-2-(6-溴-1H-吲唑-3-基)-5H-咪唑并[4,5-c]吡啶
(a)5-苯甲基-2-(6-溴-1H-吲唑-3-基)-5H-咪唑并[4,5-c]吡啶
将6-溴-1H-吲唑-3-甲醛(550g,2.444mol)、1-苯甲基-4-亚胺基-1,4-二氢吡啶-3-胺HBr(721g,2.333mol)和DMAc(2.65L)的溶液搅拌60min,并且添加亚硫酸氢钠(257g,2.468mol)。将反应混合物加热到135℃并保持3h,并且使其冷却到20℃并在20℃下保持隔夜。添加乙腈(8L),并且在15℃下搅拌反应混合物4h。在压力过滤器上以中等过滤速率过滤浆液。向反应器中添加ACN(1L),用ACN反应器洗液洗涤滤饼并在氮气下干燥隔夜,并且接着在真空下在50℃下干燥24h以得到呈致密湿润米色/棕色固体状的标题化合物的HBr盐(1264g,2.444mol,100%产率,94%纯度)。HPLC方法A滞留时间8.77min。
将先前步骤的产物(1264g,2.444mol)、MeTHF(6L)与水(2.75L)的混合物加热到65℃,并且在5min内添加氢氧化钠50wt%(254g,3.177mol),并且在65℃下搅拌反应混合物1h,冷却到室温,接着冷却到5℃并保持2h。过滤浆液并用MeTHF(1L)洗涤反应器和滤饼。在过滤器上在氮气下干燥所得米色至黄色固体3天以得到呈米色/黄色固体状的标题化合物(475g,1.175mmol,48%产率)。将母液(约8L)浓缩到约2L,于是固体开始沉淀。将浆液加热到50℃,保持2h,在2h内冷却到5℃,搅拌隔夜,并过滤。用MeTHF(100mL)洗涤滤饼并在真空下在40℃下干燥隔夜以得到额外标题化合物(140g,0.346mol,14%产率)。
在20℃下搅拌先前步骤的总产物与相同规模的第二批产物(1500g,3.710mol)和MeTHF(4L)组合的混合物2h并过滤。用MeTHF(1.5L)洗涤反应器和滤饼。在氮气下干燥所得米色至黄色固体3天以得到呈米黄色固体状的标题化合物(1325g,3.184mol,86%产率(68%总产率),97%纯度)。HPLC方法A滞留时间8.77min。
制备3:5-苯甲基-2-(6-溴-1H-吲唑-3-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶
向15L烧瓶中添加5-苯甲基-2-(6-溴-1H-吲唑-3-基)-5H-咪唑并[4,5-c]吡啶(440g,1.088mol),接着添加MeTHF(4.5L)、甲醇(2.25L)和水(1.125L)。将浆液冷却到20℃,搅拌1h,并添加NaBH4(247g,6.530mol)。在25℃下搅拌反应混合物18h。添加水(1.125L),接着添加20wt%氯化钠溶液(1.125L),并且搅拌混合物30min,并使各层分离。排出水层。添加NaOH(522g)与水(5L)的预混合溶液并搅拌反应混合物60min;使各层分离并排出水层。以相同规模制备两个额外批料。
在减压下于夹套设定在50℃下、内部温度为20℃的15L夹套反应器中浓缩一个批料的有机层。将额外批料添加到反应器中并且一次浓缩一个批料,产生体积约6L的浆液。将浆液加热到50℃,添加IPAc(6L)并使混合物在60℃下保持1.5h,冷却到20℃持续10h,加热到60℃持续50h,在5小时内冷却到20℃,接着冷却到5℃并保持3h。过滤混合物,并且用预冷却到5℃的IPAc(1L)与MeTHF(1L)的预混合溶液洗涤反应器和滤饼。在氮气下在过滤器上在40℃下干燥固体3天以得到呈灰白色固体状的标题化合物(1059g,2.589mol,79%产率)。材料在真空烘箱中在50-60℃下进一步干燥8h并在27℃下干燥2天以得到标题化合物(1043g,2.526mol,77%产率,99%纯度)。HPLC方法A滞留时间6.73min。
制备4:(4-(苯甲氧基)-2-乙基-5-氟苯基)三氟硼酸钾
(a)2-(4-(苯甲氧基)-2-乙基-5-氟苯基)-4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷
用氮气吹扫1-(苯甲氧基)-4-溴基-5-乙基-2-氟苯(520g,1682mmol)与二噁烷(5193mL)的混合物,并且接着添加双(频哪醇根基)二硼(641g,2523mmol),接着添加乙酸钾(495g,5046mmol)。用氮气吹扫反应混合物;添加Pd(dppf)Cl2(41.2g,50.5mmol);用氮气吹扫反应混合物,在氮气下在103℃下加热5h;并冷却到室温。通过真空蒸馏浓缩反应混合物,并且分配于乙酸乙酯(5204mL)与水(5212mL)之间。经由硅藻土过滤反应混合物;用盐水(2606mL)洗涤有机层,接着通过真空蒸馏去除溶剂以得到呈粘稠黑色油状的粗产物(约800g)。
使粗产物溶解于DCM(1289mL)中,并且通过硅胶色谱(于己烷中预浆化的2627g氧化硅,用20%乙酸乙酯/己烷(10.35L)洗脱)纯化。通过真空蒸馏去除溶剂,得到淡黄色油(600g)。HPLC方法B滞留时间33.74min。
(b)(4-(苯甲氧基)-2-乙基-5-氟苯基)三氟硼酸钾
将先前步骤的产物(200g,561mmol)与丙酮(1011mL)混合直到完全溶解为止,并且添加甲醇(999mL),接着添加溶解于水(1310mL)中的3M二氟化氢钾(307g,3930mmol)。搅拌反应混合物3.5h。通过真空蒸馏去除大部分有机溶剂。添加水(759mL),并且搅拌所得粘稠浆液30min并过滤。用水(506mL)洗涤滤饼并在过滤器上干燥固体30min。固体于丙酮(1237mL)中浆化并搅拌1h。过滤所得浆液并用丙酮(247mL)洗涤固体。通过真空蒸馏浓缩丙酮溶液,并且通过缓慢添加甲苯(2983mL)保持恒定体积(2L)直到蒸馏出所有丙酮和水为止。通过旋转蒸发将甲苯溶液蒸馏成粘稠黄色浆液,在此期间产物沉淀为白色固体。将甲苯的额外部分(477mL)添加到混合物中并搅拌1h。接着过滤混合物并用甲苯(179mL)冲洗,并在真空下在50℃下干燥24h以得到呈自由流动的蓬松浅灰白色固体状的标题化合物(104g,310mmol,55%产率)。HPLC方法B滞留时间27.71min。
制备5:5-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1H-吲唑-3-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶
(a)5-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1H-吲唑-3-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶
将双(频哪醇)二硼(250g,984mmol)与IPA(1.88L)的混合物搅拌至溶解,并且接着在10min内逐份添加二氟化氢钾(538g,6.891mol)于水(2.31L)中的溶液。搅拌反应混合物1h并过滤。用水(1.33L)浆化凝胶类固体直到混合物形成澄清水凝胶为止,并且接着再浆化45min。过滤所得固体/凝胶,接着于丙酮(1.08L)中再浆化,过滤,在过滤器上风干30min,并且干燥隔夜以得到蓬松的白色固体(196.7g)。
向5L烧瓶中添加5-苯甲基-2-(6-溴-1H-吲唑-3-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶(135g,331mmol)、(4-(苯甲氧基)-2-乙基-5-氟苯基)-三氟硼酸钾(133g,397mmol)和先前步骤的白色固体产物(40.5g),接着添加MeTHF(1.23L)和MeOH(1.75L)。所得浆液用氮气脱气三次。向浆液中添加碳酸铯(431g,1.323mol)于水(1.35L)中的脱气溶液。将浆液脱气两次,添加Pd(amphos)2Cl2(11.71g,16.53mmol),再次将浆液脱气两次,并且在67℃下搅拌反应混合物隔夜并冷却到20℃。分离各层并用MeTHF(550mL)反萃取。合并有机层,并且通过旋转蒸发浓缩直到固体沉淀为止。添加MeTHF(700mL)并在65℃下搅拌反应混合物。分离各层并用MeTHF(135mL)反萃取水相。合并有机相,并且浓缩到约300mL,产生粘稠橙色浆液。向浆液中添加MeOH(270mL),接着在20℃下在快速搅拌下添加1M HCl(1.325L)。搅拌反应混合物5min并添加水(1L),并且搅拌所得浆液1h。过滤固体,用水(150mL)洗涤,在过滤器上干燥10min并在45℃下在氮气下干燥16h以得到呈淡黄色固体状的标题化合物的2HCl盐(221.1g,351mmol,92.2%纯度)。HPLC方法B滞留时间23.41min。
制备6:5-乙基-2-氟-4-(3-(4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚
向1L烧瓶中添加呈乙醇(348mL)中浆液型式的5-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1H-吲唑-3-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶2HCl(40g,63.4mmol)和含1.25M HCl的MeOH(101mL)和水(17.14mL)。反应混合物用氮气脱气5min并添加10wt%Pd/C、50wt%H2O(4.05g,1.903mmol)。密封反应器,用H2吹扫,加压到1-2psi.,升温到50℃,并且搅拌反应混合物隔夜并经由硅藻土过滤。用甲醇(100mL)洗涤反应器和过滤器。
将过滤的溶液与第二批产品在98mmol规模下组合,并且浓缩到390g。在搅拌下缓慢添加EtOAc(2.04L),并且接着在搅拌下将溶液冷却到5℃。过滤固体,用EtOAc(510mL)洗涤,并且在45℃下在氮气下干燥隔夜以得到呈灰白色固体状的标题化合物的2HCl盐(58g,80%产率)。HPLC方法B滞留时间12.83min。
实例1:5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚的结晶水合物
在搅拌下向3L烧瓶中添加NMP(239mL)和5-乙基-2-氟-4-(3-(4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚2HCl(74.5g,165mmol),接着添加NMP(74mL)。添加乙酸(31.3mL)并将反应混合物升温到55℃持续10min,并且接着冷却到25℃。一次性添加1-甲基哌啶-4-酮(61.0mL,496mmol),并且在25℃下搅拌反应混合物30min并冷却到15℃。添加三乙酰氧基硼氢化钠(98g,463mmol),并且在5min之后将外部夹套设定为20℃。3h后,在45min内逐滴添加氢氧化铵(365mL,5790mmol),温度维持在25℃以下。在20℃下搅拌反应混合物1.5h,从而形成灰白色浆液。添加甲醇(709mL)并在55℃下缓慢搅拌反应混合物隔夜。历经30min在55℃下添加水(1.19L)并将混合物冷却到10℃,搅拌2h并过滤。用1:1MeOH:水(334mL)洗涤滤饼,在过滤器上干燥20min并在45℃下在真空下,在氮气渗出的情况下干燥以得到黄色固体(87g)。
在55℃下在缓慢搅拌下向固体中添加5%水/丙酮(1.5L),并且在55℃下加热反应混合物6h,冷却到10℃,过滤,并用5%水/丙酮(450mL)洗涤。在50℃下在真空下在氮气渗出的情况下将固体干燥隔夜,于空气中平衡20h,于真空烘箱中干燥48h并用空气平衡以得到呈自由流动淡黄色固体状的标题化合物(71.3g,91%产率)。HPLC方法B滞留时间12.29min。
实例2:粉末X射线衍射
用Bruker D8-Advance X射线衍射仪,使用Cu-Kα辐射在45kV的输出电压和40mA的电流下,获得实例1产物的粉末X射线衍射(PXRD)图案。于Bragg-Brentano几何中操作仪器,其中设定入射、发散度和散射狭缝以使样品处的强度最大化。对于测量,将少量粉末(5-25mg)轻缓地按压于样品固持器上以形成光滑表面,并且经历X射线暴露。以2θ-2θ模式从2°至40°以2θ扫描样品,其中步长为0.02°并且扫描速度为每步0.30°秒。通过Bruker DiffracSuite测量软件控制数据获取,并且通过Jade软件(7.5.1版)分析。用刚玉标准物在±0.02°2θ角内校准仪器。所观察到的PXRD 2θ峰位置和d-间距展示于表1中。
表1:结晶水合物的PXRD数据
生物检定
5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(化合物1)已表征于以下生物检定中。
检定1:生物化学JAK激酶检定
将四种LanthaScreen JAK生物化学分析的组(JAK1、2、3和Tyk2)载于常见激酶反应缓冲液(50mM HEPES,pH 7.5,0.01%Brij-35,10mM MgCl2,和1mM EGTA)中。重组GST标记的JAK酶和GFP标记的STAT1肽底物获自生命技术公司(Life Technologies)。
在环境温度下在白色384孔微量培养板(康宁公司(Corning))中,使连续稀释的化合物与四种JAK酶中的每一种和底物一起预培育1h。接着添加总体积为10μl、具有1%DMSO的ATP以引发激酶反应。JAK1、2、3和Tyk2的最终酶浓度分别为4.2nM、0.1nM、1nM和0.25nM;所使用的相应Km ATP浓度为25μM、3μM、1.6μM和10μM;而对于所有四种检定,底物浓度均为200nM。在环境温度下使激酶反应物进行1小时,之后添加EDTA(10mM最终浓度)和Tb抗pSTAT1(pTyr701)抗体(生命技术公司,2nM最终浓度)于TR-FRET稀释缓冲液(生命技术公司)中的10μl制备液。在环境温度下将培养板培育1h,之后在EnVision读取器(珀金埃尔默公司(Perkin Elmer))上读取。记录发射比信号(520nm/495nm),并将其用以基于DMSO和背景对照计算抑制百分比值。
对于剂量反应分析,相较于化合物浓度绘制抑制百分比数据,并且用Prism软件(格拉夫派德软件公司(GraphPad Software))由4参数稳固拟合模型测定IC50值。结果表示为pIC50(IC50的负对数),并且接着使用程-普鲁萨福方程(Cheng-Prusoff equation)转换为pKi(解离常数Ki的负对数)。
本发明化合物呈现以下酶效能。
表2
检定2:细胞JAK效能检定:抑制IL-13
通过测量BEAS-2B人类肺上皮细胞(ATCC)中的白介素-13(IL-13,安迪系统公司(R&D Systems))诱导的STAT6磷酸化,来进行AlphaScreen JAKI细胞效能分析。将抗STAT6抗体(细胞信号传导技术公司(Cell Signaling Technologies))结合于AlphaScreen受体珠粒(珀金埃尔默公司),同时使用EZ-Link Sulfo-NHS-生物素(赛默科技公司(ThermoScientific))对抗pSTAT6(pTyr641)抗体(细胞信号转导技术公司)进行生物素标记。
在37℃下在5%CO2含湿气培育箱中,在补充有10%FBS(Hyclone)、100U/mL青霉素、100μg/mL链霉素(生命技术公司)和2mM GlutaMAX(生命技术公司)的50%DMEM/50%F-12培养基(生命技术公司)中,使BEAS-2B细胞生长。在检定第1天,在具有25μL培养基的白色聚D离胺酸涂布的384孔培养板(康宁公司)中,以7,500个细胞/孔的密度接种细胞,并且在培育箱中使其黏附隔夜。在检定第2天,将培养基去除,并且用含有测试化合物的剂量反应的12μL分析缓冲液(汉克氏平衡盐溶液(Hank's Balanced Salt Solution)/HBSS,25mMHEPES和1mg/ml牛血清白蛋白/BSA)替换。将化合物连续稀释于DMSO中,并且接着在培养基中再稀释1000倍,以使最终DMSO浓度达到0.1%。在37℃下将细胞与测试化合物一起培育1h,并且接着添加12μL预温热的IL-13(80ng/mL于分析缓冲液中)以用于刺激。在37℃下培育30min后,去除分析缓冲液(含有化合物和IL-13),和10μL细胞溶解缓冲液(25mM HEPES、0.1%SDS、1%NP-40、5mM MgCl2、1.3mM EDTA、1mM EGTA,并且补充有Complete Ultra微蛋白酶抑制剂和来自罗氏诊断公司(Roche Diagnostics)的PhosSTOP)。在环境温度下振荡培养板30min,之后添加检测试剂。首先添加生物素抗pSTAT6和抗STAT6结合的受体珠粒的混合物,并且在环境温度下培育2h,接着添加抗生蛋白链菌素结合的供体珠粒(珀金埃尔默公司)。培育最少2h后,在EnVision板式读取器上读取检定培养板。记录AlphaScreen荧光信号,并将其用以基于DMSO和背景对照计算抑制百分比值。
对于剂量反应分析,相较于化合物浓度绘制抑制百分比数据,并且用Prism软件由4参数稳固拟合模型测定IC50值。结果也可表示为IC50值的负对数,pIC50。本发明化合物在这一检定中呈现8.2的pIC50值。
检定3:细胞JAK效能检定:抑制人类PBMC中IL-2/抗CD3刺激的IFNγ
在从人类全血分离的人类周边血液单核细胞(PBMC)(斯坦福血液中心(StanfordBlood Center))中测量测试化合物抑制白介素-2(IL-2)/抗CD3刺激的干扰素γ(IFNγ)的效能。由于IL-2经由JAK传导信号,因此这一检定提供JAK细胞效能的测量。
(1)使用Ficoll梯度从健康供体的人类全血分离人类周边血液单核细胞(PBMC)。在37℃,5%CO2含湿气培育箱中在补充有10%热灭活胎牛血清(FBS,生命技术公司)、2mMGlutamax(生命技术公司)、25mM HEPES(生命技术公司)和1X Pen/Strep(生命技术公司)的RPMI(生命技术公司)中培养细胞。细胞以200,000个细胞/孔接种于培养基(50μL)中并且培养1h。将化合物连续稀释于DMSO中,并且接着在培养基中再稀释500倍(达到2×最终分析浓度)。将测试化合物(100μL/孔)添加到细胞中,并且在37℃,5%CO2下培育1h,接着在预温热的分析培养基(50μL)中添加IL-2(安迪系统公司;最终浓度100ng/mL)和抗CD3(BD生物科学公司(BD Biosciences);最终浓度1μg/mL)持续24h。
(2)细胞因子刺激之后,细胞在500g下离心5min,并且去除上澄液并在-80℃下冷冻。为了测定测试化合物回应于IL-2/抗CD3的抑制效能,经由ELISA(安迪系统公司)测量上澄液IFNγ浓度。通过分析IFNγ浓度对比化合物浓度的抑制曲线来测定IC50值。数据表示为pIC50(负十进制对数IC50)值。本发明化合物在这一检定中呈现约7.3的pIC50值。
检定4:细胞JAK效能检定:抑制CD4+T细胞中IL-2刺激的pSTAT5
使用流式细胞测量术在从人类全血(斯坦福血液中心)分离的人类周边血液单核细胞(PBMC)中的CD4阳性(CD4+)T细胞中测量测试化合物抑制白介素-2(IL-2)/抗CD3刺激的STAT5磷酸化的效能。由于IL-2经由JAK传导信号,因此这一检定提供JAK细胞效能的测量。
使用藻红素(PE)结合的抗CD4抗体(Clone RPA-T4,BD生物科学公司)鉴别CD4+T细胞,同时使用Alexa Fluor 647结合的抗pSTAT5抗体(pY694,Clone 47,BD生物科学公司)检测STAT5磷酸化。
(1)遵循检定3段落(1)的方法,不同之处在于用抗CD3刺激细胞因子30min而非24h。
(2)细胞因子刺激之后,将细胞用预温热的固定溶液(200μL;BD生物科学公司)在37℃,5%CO2下固定10min,用DPBS缓冲液(1mL,生命技术公司)洗涤两次,并且在4℃下再悬浮于冰冷的Perm Buffer III(1000μL,BD生物科学公司)中30min。细胞用含2%FBS的DPBS(FACS缓冲液)洗涤两次,并且接着在室温下在暗处再悬浮于含有抗CD4 PE(1:50稀释)和抗CD3抗CD3 Alexa Fluor 647(1:5稀释)的FACS缓冲液(100μL)中60min。培育之后,细胞在FACS缓冲液中洗涤两次,接着使用LSRII流式细胞仪(BD生物科学公司)分析。为了测定测试化合物回应于IL-2/抗CD3的抑制效能,在CD4+T细胞中测量pSTAT5的中位荧光强度(MFI)。通过分析MFI对比化合物浓度的抑制曲线测定IC50值。数据表示为pIC50(负十进制对数IC50)值。本发明化合物在这一检定中呈现约7.7的pIC50值。
检定5:细胞JAK效能检定:抑制CD3+T细胞中IL-4刺激的pSTAT6
使用流式细胞测量术在从人类全血(斯坦福血液中心)分离的人类周边血液单核细胞(PBMC)中的CD3阳性(CD3+)T细胞中测量测试化合物抑制白介素-4(IL-4)刺激的STAT6磷酸化的效能。由于IL-4经由JAK传导信号,因此这一检定提供JAK细胞效能的测量。
使用藻红素(PE)结合的抗CD3抗体(Clone UCHT1,BD生物科学公司)鉴别CD3+T细胞,同时使用Alexa Fluor 647结合的抗pSTAT6抗体(pY641,Clone 18/P,BD生物科学公司)检测STAT6磷酸化。
如检定3和4中从健康供体的人类全血分离人类周边血液单核细胞(PBMC)。将细胞以250,000个细胞/孔接种于培养基(200μL)中,培养1h,并且接着再悬浮于含有各种浓度的测试化合物的分析培养基(50μL)(RPMI,其补充有0.1%牛血清白蛋白(西格玛公司)、2mMGlutamax、25mM HEPES和1X Penstrep)中。将化合物连续稀释于DMSO中,并且接着在分析培养基中再稀释500倍(达到2×最终分析浓度)。在37℃,5%CO2下将测试化合物(50μL)与细胞一起培育1h,接着在预温热的分析培养基中添加IL-4(50μL)(安迪系统公司;最终浓度20ng/mL)持续30min。细胞因子刺激之后,将细胞用预温热的固定溶液(100μL)(BD生物科学公司)在37℃,5%CO2下固定10min,用FACS缓冲液(1mL)(含2%FBS之DPBS)洗涤两次,并且在4℃下再悬浮于冰冷的Perm Buffer III(1000μL)(BD生物科学公司)中30min。细胞用FACS缓冲液洗涤两次,并且接着在室温下在暗处再悬浮于含有抗-CD3 PE(1:50稀释)和抗pSTAT6 Alexa Fluor 647(1:5稀释)的FACS缓冲液(100μL)中60min。培育之后,细胞在FACS缓冲液中洗涤两次,接着使用LSRII流式细胞仪(BD生物科学公司)分析。
为了测定测试化合物回应于IL-4的抑制效能,在CD3+T细胞中测量pSTAT6的中位荧光强度(MFI)。通过分析MFI对比化合物浓度的抑制曲线测定IC50值。数据表示为pIC50(负十进制对数IC50)。本发明化合物在这一检定中呈现8.1的pIC50值。
检定6:细胞JAK效能检定:抑制CD3+T细胞中IL-6刺激的pSTAT3
使用类似于检定5的方法来测定测试化合物抑制白介素-6(IL-6)刺激的STAT3磷酸化的效能。使用Alexa Fluor 647结合的抗pSTAT3抗体(pY705,Clone 4/P,BD生物科学公司)检测STAT3磷酸化。
本发明化合物在这一检定中呈现7.4的pIC50值。
检定7:细胞JAK效能检定:抑制IFNγ诱导的pSTAT1
使用流式细胞测量术在源自人类全血(斯坦福血液中心)的CD14阳性(CD14+)单核细胞中测量测试化合物抑制干扰素γ(IFNγ)刺激的STAT1磷酸化的效能。由于IFNγ经由JAK传导信号,因此这一检定提供JAK细胞效能的测量。
使用异硫氰酸荧光素(FITC)结合的抗CD14抗体(Clone RM052,贝克曼库尔特公司(Beckman Coulter))鉴别单核细胞,并且使用Alexa Fluor 647结合的抗pSTAT1抗体(pY701,Clone 4a,BD生物科学公司)检测STAT1磷酸化。
使用Ficoll梯度从健康供体的人类全血分离人类周边血液单核细胞(PBMC)。在37℃,5%CO2含湿气培育箱中在补充有10%胎牛血清(FBS,生命技术公司)、2mM Glutamax(生命技术公司)、25mM HEPES(生命技术公司)和1X Pen/Strep(生命技术公司)的RPMI(生命技术公司)中培养细胞。将细胞以250,000个细胞/孔接种于培养基(200μL)中,培养2h,并且接着再悬浮于含有各种浓度的测试化合物的分析培养基(50μL)(补充有0.1%牛血清白蛋白(西格玛公司)、2mM Glutamax、25mM HEPES和1X Penstrep的RPMI)中。将化合物连续稀释于DMSO中,并且接着在培养基中再稀释1000倍,以使最终DMSO浓度达到0.1%。在37℃,5%CO2下将测试化合物稀释液与细胞一起培育1h,接着在培养基(50μL)中以0.6ng/mL的最终浓度添加预温热的IFNγ(安迪系统公司)持续30min。细胞因子刺激之后,将细胞用预温热的固定溶液(100μL)(BD生物科学公司)在37℃,5%CO2下固定10min,用FACS缓冲液(1mL)(含1%BSA的PBS)洗涤两次,再悬浮于1:10抗CD14 FITC:FACS缓冲液(100μL)中,并且在4℃下培育15min。将细胞洗涤一次,并且接着在4℃下再悬浮于冰冷的Perm Buffer III(BD生物科学公司)(100μL)中30min。细胞用FACS缓冲液洗涤两次,并且接着在RT下在暗处再悬浮于1:10抗pSTAT1 Alexa氟647:FACS缓冲液(100μL)中30min,在FACS缓冲液中洗涤两次,并且使用LSRII流式细胞仪(BD生物科学公司)分析。
为了测定测试化合物的抑制效能,在CD14+单核细胞中测量pSTAT1的中位荧光强度(MFI)。通过分析MFI对比化合物浓度的抑制曲线测定IC50值。数据表示为pIC50(负十进制对数IC50)值。本发明化合物在这一检定中呈现约7.5的pIC50值。
检定8:家兔眼睛中的眼部药物动力学
这一检定的目标为测定测试化合物在家兔眼部组织中的药物动力学。
溶液配制物
将本发明化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚(1)溶解于10%2-羟基丙基-β-环糊精中以获得4mg/mL的目标浓度,或溶解于纯化水中以获得1mg/mL的目标浓度。将测试化合物溶液的双侧玻璃体内注射液(50μL/眼)分别以两个剂量组(针对环糊精和水媒剂配制物分别为200μg/眼和50μg/眼)投与纽西兰白兔。在注射后预定时间点(30分钟、4小时、1天、3天、7天、14天)在以下眼部组织中测量测试化合物浓度:玻璃体、房水(aqueous)、视网膜/脉络膜和虹膜-睫状体。在每一时间点给药两只家兔(四只眼睛)。在玻璃体组织中,化合物1呈现浓度的二阶段降低,表征为半衰期为约12小时的浓度初始降低和终半衰期为约3.6天的最终降低。还发现化合物快速分布于视网膜和脉络膜区域中,并且展示与玻璃体组织中类似的药物动力学概况。
悬浮液配制物
通过使实例1的结晶化合物1与0.5%羟丙基甲基纤维素(HPMC E5)+0.02%Tween80组合以获得10mg/mL的目标浓度来制备悬浮液配制物。向纽西兰白兔(500μg/眼)投与测试化合物的悬浮液的双侧玻璃体内注射液(50μL/眼)。在注射后30分钟、2周、4周、6周和8周,在如悬浮液配制物检定中的眼部组织中测量测试化合物浓度。化合物展示玻璃体中的药物浓度从30分钟至6周线性降低,其中清除速率为约3μg/mL/天。所述行为与媒剂中化合物1的溶解度和溶液配制物的眼部药物动力学行为一致。测量血浆中的药物浓度,并且发现其比玻璃体组织中的浓度低至少3个数量级。
检定9:药效动力学检定:抑制大鼠中IL6诱导的pSTAT3
在大鼠视网膜/脉络膜匀浆中测量测试化合物的单次玻璃体内投与抑制IL-6诱导的pSTAT3的能力。
通过使实例1的结晶化合物1与含0.5%羟丙基甲基纤维素(HPMC E5 LV)、0.02%Tween 80和0.9%氯化钠的纯化水组合以获得3mg/mL和10mg/mL的目标浓度来制备悬浮液配制物。
雌性路易士(Lewis)大鼠用悬浮液配制物或用药物媒剂玻璃体内(IVT)给药(5μL/眼)。三天后,玻璃体内投与IL-6(派普泰克公司(Peprotech);0.1mg/mL;5μL/眼)或媒剂以诱导pSTAT3。用IL-6第二次IVT注射一小时后剥离眼部组织。使视网膜/脉络膜组织均质化,并且使用ELISA(细胞信号传导技术公司y)来测量pSTAT3水平。相较于媒剂/媒剂组和媒剂/IL-6组计算IL-6诱导的pSTAT3的抑制百分比。大于100%的抑制反映pSTAT3水平降低到低于媒剂/媒剂组中所观察到的那些水平。
在IL-6刺激之前进行3天预处理的情况下,通过悬浮液配制物投与的15μg剂量和50μg剂量的本发明化合物在视网膜/脉络膜组织中将IL-6诱导的pSTAT3分别抑制33%和109%。
检定10:药效动力学检定:抑制家兔中IFNγ诱导的IP-10
在家兔玻璃体和视网膜/脉络膜组织中测量单次玻璃体内投与测试化合物抑制干扰素γ(IFNγ)诱导的IP-10蛋白质水平的能力。
如检定8中制备实例1的化合物1的浓度为1mg/mL和4mg/mL的溶液配制物。通过使实例1的结晶化合物1与含0.5%羟丙基甲基纤维素(HPMC E5 LV)、0.02%Tween 80和9mg/mL氯化钠的纯化水组合以获得20mg/mL的目标浓度来制备悬浮液配制物。
将雄性纽西兰白兔(印度利旺生物学实验室(Liveon Biolabs,India))用于研究。在到达研究机构(印度祖比伦生物合成公司(Jubilant Biosys Ltd.,India))后使动物适应环境。以50μL/眼的总剂量体积为每只家兔提供总共两次玻璃体内(IVT)注射。第一次IVT注射(45μL/眼)在规定时间点(即,针对溶液配制物为24小时,或针对悬浮液配制物为1周)递送测试化合物或媒剂。第二次IVT注射(5μL/眼)递送用于诱导IP-10的IFNγ(1μg/眼;储备溶液1mg/mL;翠鸟生物技术公司(Kingfisher Biotech))或媒剂。简言之,在注射当天,通过肌肉内注射氯胺酮(35mg/kg)和甲苯噻嗪(5mg/kg)麻醉家兔。一旦深入麻醉,则用无菌盐水冲洗各眼,并且使用具有31号规格的针的0.5mL胰岛素注射器(50单位=0.5mL)在双眼的鼻侧上通过布朗斯坦(Braunstein)固定卡尺(2 3/4”)标记而在距直肌3.5mm并距角膜缘4mm的位置进行IVT注射。
用IFNγ进行第二次IVT注射后24小时收集组织。收集玻璃体液(VH)和视网膜/脉络膜组织(R/C)并均质化,并且使用家兔CXCL10(IP-10)ELISA试剂盒(翠鸟生物技术公司)来测量IP-10蛋白质水平。相较于媒剂/媒剂组和媒剂/IFNγ组计算IFNγ诱导的IP-10的抑制百分比。
当以溶液型式给药时,在IFNγ刺激之前进行24小时预处理的情况下,45μg化合物1在玻璃体液和视网膜/脉络膜组织中将IFNγ诱导的IP-10分别抑制70%和86%,而180μg化合物在玻璃体液和视网膜/脉络膜组织中将IFNγ诱导的IP-10分别抑制91%和100%。
在IFNγ刺激之前进行1周预处理的情况下,化合物1的结晶悬浮液配制物在玻璃体液和视网膜/脉络膜组织两者中皆将IFNγ诱导的IP-10抑制100%。
检定11:小鼠的血浆和肺中的药物动力学
以以下方式测定测试化合物的血浆和肺脏水平以及其比率。在分析中使用来自查尔斯河实验室(Charles River Laboratories)的BALB/c小鼠。测试化合物以0.2mg/mL的浓度单独地配制于含20%丙二醇的pH 4柠檬酸盐缓冲液中,并且通过经口抽吸将50μL的给药溶液引入小鼠气管中。在给药后的多个时间点(典型地0.167、2、6、24小时),经由心脏穿刺取出血液样品,并且从小鼠切除完整肺脏。在4℃下以约12,000rpm使血液样品离心(艾本德(Eppendorf)离心机,5804R)4分钟以收集血浆。肺脏经填塞干燥、称取并以1:3的稀释度于无菌水中均质化。通过LC-MS分析,对照在测试基质中构建成标准曲线的分析型标准品,来确定测试化合物的血浆和肺脏水平。肺与血浆比率测定为肺AUC(以μg hr/g为单位)与血浆AUC(以μg hr/mL为单位)的比率,其中AUC常规地定义为测试化合物浓度对比时间的曲线下面积。
在小鼠中,本发明化合物在肺脏中的暴露量比在血浆中的暴露量高约55倍。
检定12:肺组织中IL-13诱导的pSTAT6诱导的鼠类(小鼠)模型
Il-13是哮喘的病理生理学潜在的重要细胞因子(库德拉克兹(Kudlacz)等人欧洲药理学杂志(Eur.J.Pharmacol),2008,582,154-161)。IL-13与细胞表面受体结合,使激酶的杰纳斯家族(JAK)的成员活化,其接着使STAT6磷酸化并接着进一步活化转录路径。在所描述的模型中,将一定剂量的IL-13局部递送到小鼠肺脏中以诱导STAT6的磷酸化(pSTAT6),接着作为终点来测量。
在分析中使用来自哈兰公司(Harlan)的成年balb/c小鼠。在研究当天,轻轻地用异氟醚麻醉动物,并且经由经口抽吸投与媒剂或测试化合物(0.5mg/mL,50μl总体积,经由若干次呼吸)。在给药后,将动物侧卧放置,并且在返回其饲养笼之前监测到从麻醉完整恢复。四小时后,再次简单麻醉动物,并且在监测到从麻醉恢复和返回到其饲养笼之前经由经口抽吸用媒剂或IL-13(0.03μg总递送剂量,50μL总体积)进行刺激。在媒剂或IL-13投与之后一小时,收集肺脏以用于使用抗pSTAT6 ELISA进行的两个pSTAT6检测(兔单抗捕获/包被抗体;小鼠单抗检测/报导抗体:抗pSTAT6-pY641;二级抗体:抗小鼠IgG-HRP),并且如上文检定11中所描述分析总药物浓度。
相比于经过媒剂处理、IL-13刺激的对照动物,在5小时时经过处理的动物的肺脏中存在的pSTAT6水平降低证明所述模型中的活性。经过媒剂处理、IL-13刺激的对照动物与经过媒剂处理、媒剂刺激的对照动物之间的差异在任何给定实验中分别指示0%和100%抑制性作用。本发明化合物在IL-13刺激后4小时呈现对STAT6磷酸化约60%的抑制。
检定13:互隔交链孢霉(Alternaria alternata)诱发的肺脏嗜酸性炎症的鼠类模型
呼吸道嗜酸性细胞增多症是人类哮喘的标志。互隔交链孢霉是可能加重人类哮喘并且在小鼠肺脏中诱发嗜酸性细胞性炎症的真菌气源性致敏原(哈瓦克斯(Havaux)等人临床与实验免疫学(Clin Exp Immunol.)2005,139(2):179-88)。在小鼠中,已表明,交链孢霉间接活化肺脏中的组织驻留2型先天性淋巴细胞,其对JAK依赖性细胞因子(例如IL-2和IL-7)作出反应并且释放JAK依赖性细胞因子(例如IL-5和IL-13)并调和嗜酸性细胞性炎症(巴特梅斯(Bartemes)等人免疫学杂志(J Immunol.)2012,188(3):1503-13)。
在所述研究中使用来自泰康利公司(Taconic)的七至九周龄雄性C57小鼠。在研究当天,轻轻地用异氟醚麻醉动物,并且经由口咽抽吸投与媒剂或测试化合物(0.1-1.0mg/mL,50μl总体积,经由若干次呼吸)。在给药后,将动物侧卧放置,并且在返回其饲养笼之前监测到从麻醉完整恢复。一小时后,再次简单麻醉动物,并且在监测到从麻醉恢复和返回到其饲养笼之前经由口咽抽吸用媒剂或交链孢霉萃取物(200μg总递送萃取物,50μL总体积)进行刺激。在交链孢霉投与四十八小时之后,收集支气管肺泡灌洗液(BALF)并使用Advia120血液学系统(西门子公司(Siemens))对BALF中的嗜酸性细胞进行计数。
通过相比于经过媒剂处理、交链孢霉刺激的对照动物,四十八小时时经过处理动物的BALF中存在的嗜酸性细胞水平降低证明所述模型中的活性。数据表示为经过媒剂处理、交链孢霉刺激的BALF嗜酸性细胞反应的抑制百分比。为了计算抑制百分比,将每一条件的BALF嗜酸性细胞的数目转化成平均经过媒剂处理、交链孢霉刺激的BALF嗜酸性细胞的百分比并且从百分之百中减去。本发明化合物在交链孢霉刺激后四十八小时呈现对BALF嗜酸性细胞数约88%的抑制。
检定14:肺脏模型的LPS/G-CSF/IL-6/IFNγ混合物诱导的呼吸道嗜中性细胞炎症的鼠类模型
呼吸道嗜中性细胞增多症是一系列人类呼吸道疾病的标志。使用诱发呼吸道嗜中性细胞增多症的LPS/G-CSF/IL-6/IFNγ混合物在嗜中性细胞性呼吸道炎症的模型中测试化合物1。
在所述研究中使用来自杰克逊实验室(Jackson Laboratory)的七至九周龄雄性Balb/C(野生型)小鼠。在研究当天,轻轻地用异氟醚麻醉动物,并且经由口咽抽吸投与媒剂或测试化合物(1.0mg/mL,50μl总体积,经由若干次呼吸)。在给药后,将动物侧卧放置,并且在返回其饲养笼之前监测到从麻醉完整恢复。一小时后,再次简单麻醉动物,并且经由口咽抽吸(OA)用媒剂或LPS;0.01mg/kg/G-CSF;5μg/IL-6;5μg/IFNγ;5μg(100μL总体积)进行刺激。投与LPS/G-CSF/IL-6/IFNγ混合物后二十四小时,收集支气管肺泡灌洗液(BALF)并对嗜中性细胞计数。
在用化合物1进行OA处理后,呼吸道嗜中性细胞在统计学上显著降低(与经过媒剂处理的小鼠相比,84%),证实阻断JAK依赖性信号传导对嗜中性呼吸道炎症有效。
检定15:抑制人类3D呼吸道培养物中IFNγ和IL-27诱导的趋化因子CXCL9和CXCL10
EpiAirway组织培养物获自马泰克公司(Mattek)(AIR-100)。培养物来源于哮喘供体。在细胞培养插入物中,人类来源的气管/支气管上皮细胞在多孔膜载体上生长和分化,使得气液界面具有细胞下方的温热培养基和上述气态测试氛围。在维持培养基(马泰克公司,AIR-100-MM)中在37℃,5%CO2含湿气培育箱中培养组织。测试四个供体。在第0天,组织培养物用10μM、1μM和/或0.1μM测试化合物处理。化合物在二甲亚砜(DMSO,西格玛公司)中稀释至最终浓度0.1%。0.1%DMSO用作媒剂对照。在37℃,5%CO2下将测试化合物与培养物一起培育1小时,接着添加含有IFNγ(安迪系统公司)或IL-27(安迪系统公司)的预温热培养基,最终浓度为100ng/ml。组织培养物保留8天。培养基每2天用含有化合物和IFNγ或IL-27的新鲜培养基替换。在第8天,收集组织培养物和上澄液用于分析。使用流式荧光检测术(luminex)分析(EMD密理博公司(EMD Millipore))检定上澄液样品的CXCL10(IP-10)和CXCL9(MIG)。数据表示为抑制%+/-标准差(±STDV)。抑制百分比由化合物针对IFNγ或IL-27诱导的CXCL10或CXCL9分泌的抑制效能与经过媒剂处理的细胞相比来确定。数据为来自3或4个供体的平均值。当相较于媒剂对照组时,化合物1能够将IFNγ诱导的CXCL10分泌抑制99%±2.0(在10μM下)、71%±19(在μM下)和17%±12(在0.1μM下)。与媒剂对照组相比,化合物1能够将IFNγ诱导的CXCL9分泌抑制100%±0.3(在10μM下)、99%±0.9(在1μM下)和74%±17(在0.1μM下)。与媒剂对照组相比,化合物1能够将IL-27诱导的CXCL10分泌抑制108%±11(在10μM下)、98%±10(在1μM下)和73%±8.5(在0.1μM下)。与媒剂对照相比,化合物1能够将IL-27诱导的CXCL9分泌抑制100%±0(在10μM下)、95%±3.7(在1μM下)和75%±3.5(在0.1μM下)。
检定16:IL-5介导的嗜酸性细胞存活率检定
在从人类全血(AllCells)分离的人类嗜酸性细胞中测量测试化合物对IL-5介导的嗜酸性细胞存活率的效能。由于IL-5经由JAK传导信号,因此这一检定提供JAK细胞效能的测量。
从健康供体的新鲜人类全血(AllCells)分离人类嗜酸性细胞。将血液与4.5%聚葡萄糖(西格玛-奥尔德里奇公司)混合于0.9%氯化钠溶液(西格玛-奥尔德里奇公司)中。将红细胞沉降35分钟。去除富含白细胞的上层并在Ficoll-Paque(GE Healthcare)上分层,并且在600g下离心30分钟。在用水溶解颗粒细胞层之前去除血浆和单核细胞层,以去除任何污染的红细胞。使用人类嗜酸性细胞分离试剂盒(Miltenyi Biotec)进一步纯化嗜酸性细胞。在4℃下在暗处将一部分纯化的嗜酸性细胞与抗CD16 FITC(Miltenyi Biotec)一起培育10分钟。使用LSRII流式细胞仪(BD生物科学公司)分析纯度。
在37℃,5%CO2含湿气培育箱中在补充有10%热灭活胎牛血清(FBS,生命技术公司)、2mM Glutamax(生命技术公司)、25mM HEPES(生命技术公司)和1X Pen/Strep(生命技术公司)的RPMI 1640(生命技术公司)中培养细胞。将细胞以10,000个细胞/孔接种于培养基(50μL)中。培养板在300g下离心5分钟,并且去除上澄液。将化合物连续稀释于DMSO中,并且接着在培养基中再稀释500倍达到2×最终分析浓度。将测试化合物(50μL/孔)添加到细胞中,并且在37℃,5%CO2下培育1小时,接着在预温热的分析培养基(50μL)中添加IL-5(安迪系统公司;最终浓度1ng/mL和10pg/ml)持续72小时。
细胞因子刺激之后,细胞在300g下离心5min,并且用冷DPBS(生命技术公司)洗涤两次。为了达到存活和细胞凋亡,将细胞与碘化丙啶(赛默飞世尔科技公司(Thermo FisherScientific))和APC Annexin V(BD生物科学公司)一起培育,并且使用LSRII流式细胞仪(BD生物科学公司)进行分析。通过分析细胞存活率%对比化合物浓度的存活率曲线来测定IC50值。数据表示为pIC50(负十进制对数IC50)值。化合物1的pIC50值在10pg/ml IL-5存在下为7.9±0.5,并且在1ng/ml IL-5存在下pIC50值为6.5±0.2。
检定17:药效动力学检定:抑制家兔眼睛中IFNγ诱导的pSTAT1
在家兔视网膜/脉络膜组织中测量单次玻璃体内投与测试化合物抑制干扰素γ(IFNγ)诱导的STAT1蛋白质(pSTAT1)磷酸化的能力。
通过使实例1的化合物1与含0.5%羟丙基甲基纤维素(HPMC E5)、0.02%Tween 80和9mg/mL氯化钠的纯化水组合以获得20mg/mL的目标浓度来制备悬浮液配制物。
将雄性纽西兰白兔(印度利旺生物学实验室)用于研究。在到达研究机构(印度祖比伦生物合成公司)后使动物适应环境。以50μL/眼的总剂量体积为每只家兔提供总共两次玻璃体内(IVT)注射。第一次IVT注射(45μL/眼)递送0.9mg测试化合物或媒剂。一周后,第二次IVT注射(5μL/眼)递送用于诱导IP-10的IFNγ(1μg/眼;储备溶液1mg/mL;翠鸟生物技术公司)或媒剂。在注射当天,通过肌肉内注射氯胺酮(35mg/kg)和甲苯噻嗪(5mg/kg)麻醉家兔。一旦深入麻醉,则用无菌盐水冲洗各眼,并且使用具有31号规格的针的0.5mL胰岛素注射器(50单位=0.5mL)在双眼的鼻侧上通过布朗斯坦固定卡尺(23/4”)标记而在距直肌3.5mm并距角膜缘4mm的位置进行IVT注射。
用IFNγ进行第二次IVT注射后2小时收集组织。收集视网膜/脉络膜组织(R/C)并均质化,并且在ProteinSimple WES仪器上通过定量蛋白质印迹法测量pSTAT1水平。相较于媒剂/媒剂组和媒剂/IFNγ组,计算IFNγ诱导的pSTAT1的抑制百分比。
在IFNγ刺激之前进行1周预处理的情况下,实例1的化合物1的悬浮液配制物将IFNγ诱导的pSTAT1抑制85%。
虽然本发明已参考其特定方面或实施例进行描述,但所属领域的一般技术人员应了解,可进行各种变化或可代入等效物,而不偏离本发明的真实精神和范围。另外,在由适用的专利状况和规定允许的程度上,本文中所引用的所有公开案、专利和专利申请以全文引用的方式并入本文中,所述引用的程度如同将每一文件单独地以引用的方式并入本文中一般。

Claims (25)

1.一种治疗哺乳动物眼部疾病的方法,所述方法包含向所述哺乳动物眼部投与包含5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐和药学上可接受的载剂的药物组合物。
2.根据权利要求1所述的方法,其中所述眼部疾病是眼色素层炎、糖尿病性视网膜病变、糖尿病性黄斑水肿、干眼病、年龄相关黄斑变性或异位性角膜结膜炎。
3.根据权利要求2所述的方法,其中所述眼部疾病是眼色素层炎或糖尿病性黄斑水肿。
4.根据权利要求1所述的方法,其中所述药物组合物通过注射投与。
5.一种化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐,其用于治疗哺乳动物眼部疾病。
6.根据权利要求5所述的化合物,其中所述眼部疾病是眼色素层炎、糖尿病性视网膜病变、糖尿病性黄斑水肿、干眼病、年龄相关黄斑变性或异位性角膜结膜炎。
7.一种5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐的用途,其用于制造供治疗哺乳动物眼部疾病用的药剂。
8.一种治疗哺乳动物呼吸道疾病的方法,所述方法包含向所述哺乳动物投与包含5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐和药学上可接受的载剂的药物组合物,其中所述呼吸道疾病是肺部感染、蠕虫感染、肺部动脉高血压、类肉瘤病、肺淋巴血管平滑肌增生症、支气管扩张症或浸润性肺病。
9.根据权利要求8所述的方法,其中所述药物组合物通过吸入投与。
10.根据权利要求9所述的方法,其中所述药物组合物通过喷雾器吸入器投与。
11.根据权利要求9所述的方法,其中所述药物组合物通过干粉吸入器投与。
12.一种治疗哺乳动物呼吸道疾病的方法,所述方法包含向所述哺乳动物投与包含5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐和药学上可接受的载剂的药物组合物,其中所述呼吸道疾病是药物诱发的肺炎、真菌诱发的肺炎、过敏性支气管肺曲霉病、过敏性肺炎、嗜酸性肉芽肿伴多血管炎、特发性急性嗜酸性肺炎、特发性慢性嗜酸性肺炎、嗜酸性细胞增多综合征、吕弗勒综合征、阻塞性细支气管炎伴机化性肺炎或免疫检查点抑制剂诱发的肺炎。
13.根据权利要求12所述的方法,其中所述药物组合物通过吸入投与。
14.根据权利要求13所述的方法,其中所述药物组合物通过喷雾器吸入器投与。
15.根据权利要求13所述的方法,其中所述药物组合物通过干粉吸入器投与。
16.一种化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐,其用于治疗哺乳动物呼吸道疾病,其中所述呼吸道疾病是肺部感染、蠕虫感染、肺部动脉高血压、类肉瘤病、肺淋巴血管平滑肌增生症、支气管扩张症或浸润性肺病。
17.一种化合物5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐,其用于治疗哺乳动物呼吸道疾病,其中所述呼吸道疾病是药物诱发的肺炎、真菌诱发的肺炎、过敏性支气管肺曲霉病、过敏性肺炎、嗜酸性肉芽肿伴多血管炎、特发性急性嗜酸性肺炎、特发性慢性嗜酸性肺炎、嗜酸性细胞增多综合征、吕弗勒综合征、阻塞性细支气管炎伴机化性肺炎或免疫检查点抑制剂诱发的肺炎。
18.一种5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐的用途,其用于制造供治疗哺乳动物呼吸道疾病用的药剂,其中所述呼吸道疾病是肺部感染、蠕虫感染、肺部动脉高血压、类肉瘤病、肺淋巴血管平滑肌增生症、支气管扩张症或浸润性肺病。
19.根据权利要求18所述的用途,其中所述药剂适于通过吸入投与。
20.根据权利要求19所述的用途,其中所述药剂适于通过喷雾器吸入器投与。
21.根据权利要求19所述的用途,其中所述药剂适于通过干粉吸入器投与。
22.一种5-乙基-2-氟-4-(3-(5-(1-甲基哌啶-4-基)-4,5,6,7-四氢-1H-咪唑并[4,5-c]吡啶-2-基)-1H-吲唑-6-基)苯酚或其药学上可接受的盐的用途,其用于制造供治疗哺乳动物呼吸道疾病用的药剂,其中所述呼吸道疾病是药物诱发的肺炎、真菌诱发的肺炎、过敏性支气管肺曲霉病、过敏性肺炎、嗜酸性肉芽肿伴多血管炎、特发性急性嗜酸性肺炎、特发性慢性嗜酸性肺炎、嗜酸性细胞增多综合征、吕弗勒综合征、阻塞性细支气管炎伴机化性肺炎或免疫检查点抑制剂诱发的肺炎。
23.根据权利要求22所述的用途,其中所述药剂适于通过吸入投与。
24.根据权利要求23所述的用途,其中所述药剂适于通过喷雾器吸入器投与。
25.根据权利要求24所述的用途,其中所述药剂适于通过干粉吸入器投与。
CN201880028764.8A 2017-05-01 2018-04-30 使用jak抑制剂化合物的治疗方法 Active CN110573157B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762492568P 2017-05-01 2017-05-01
US62/492,568 2017-05-01
PCT/US2018/030140 WO2018204233A1 (en) 2017-05-01 2018-04-30 Methods of treatment using a jak inhibitor compound

Publications (2)

Publication Number Publication Date
CN110573157A true CN110573157A (zh) 2019-12-13
CN110573157B CN110573157B (zh) 2023-04-04

Family

ID=62165728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880028764.8A Active CN110573157B (zh) 2017-05-01 2018-04-30 使用jak抑制剂化合物的治疗方法

Country Status (16)

Country Link
US (4) US10406148B2 (zh)
EP (1) EP3609498A1 (zh)
JP (2) JP7153031B2 (zh)
KR (1) KR102568333B1 (zh)
CN (1) CN110573157B (zh)
AU (1) AU2018261588A1 (zh)
BR (1) BR112019022665A2 (zh)
CA (1) CA3059785A1 (zh)
CL (1) CL2019003126A1 (zh)
MX (1) MX2019012950A (zh)
PH (1) PH12019502345A1 (zh)
RU (1) RU2764979C2 (zh)
SG (1) SG11201909019SA (zh)
TW (1) TW201900170A (zh)
WO (1) WO2018204233A1 (zh)
ZA (1) ZA201906817B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3371186A1 (en) 2015-11-03 2018-09-12 Theravance Biopharma R&D IP, LLC Jak kinase inhibitor compounds for treatment of respiratory disease
AU2018231035B2 (en) 2017-03-09 2021-09-09 Theravance Biopharma R&D Ip, Llc Fused imidazo-piperidine JAK inhibitors
AR111495A1 (es) 2017-05-01 2019-07-17 Theravance Biopharma R&D Ip Llc Compuestos de imidazo-piperidina fusionada como inhibidores de jak
CA3059785A1 (en) * 2017-05-01 2018-11-08 Theravance Biopharma R&D Ip, Llc Methods of treatment using a jak inhibitor compound
EP3837258B1 (en) 2018-09-04 2024-04-24 Theravance Biopharma R&D IP, LLC Dimethyl amino azetidine amides as jak inhibitors
KR20210056382A (ko) 2018-09-04 2021-05-18 세라밴스 바이오파마 알앤디 아이피, 엘엘씨 Jak 억제제 및 이의 중간체를 제조하는 방법
IL281150B2 (en) 2018-09-04 2024-03-01 Theravance Biopharma R& D Ip Llc Heterocyclic amides with 5 to 7 atoms as JAK inhibitors
US10968222B2 (en) 2018-10-29 2021-04-06 Theravance Biopharma R&D Ip, Llc 2-azabicyclo hexane JAK inhibitor compound
CA3132371A1 (en) 2019-03-05 2020-09-10 Incyte Corporation Jak1 pathway inhibitors for the treatment of chronic lung allograft dysfunction
AU2020298130A1 (en) * 2019-06-17 2022-01-20 Biomarck Pharmaceuticals Ltd. Peptides and methods of use thereof in treating uveitis
TW202144343A (zh) 2020-03-02 2021-12-01 美商施萬生物製藥研發 Ip有限責任公司 Jak抑制劑化合物之結晶水合物
CN111973599A (zh) * 2020-08-07 2020-11-24 杭州邦顺制药有限公司 用于眼部疾病治疗的化合物
WO2022204473A1 (en) * 2021-03-26 2022-09-29 Theravance Biopharma R&D Ip, Llc Crystalline form of a dihydrochloride salt of a jak inhibitor compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039825A2 (en) * 2008-10-01 2010-04-08 Array Biopharma Inc. IMIDAZO[1,2-a]PYRIDINE COMPOUNDS AS RECEPTOR TYROSINE KINASE INHIBITORS
CN102470135A (zh) * 2009-07-28 2012-05-23 里格尔药品股份有限公司 抑制jak途径的组合物和方法
CN103717599A (zh) * 2011-07-27 2014-04-09 辉瑞有限公司 吲唑
CN108349972A (zh) * 2015-11-03 2018-07-31 施万生物制药研发Ip有限责任公司 用于治疗呼吸疾病的jak激酶抑制剂化合物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI262914B (en) 1999-07-02 2006-10-01 Agouron Pharma Compounds and pharmaceutical compositions for inhibiting protein kinases
AU2004259012C1 (en) 2003-07-23 2012-08-02 Exelixis, Inc. Anaplastic lymphoma kinase modulators and methods of use
US20050090529A1 (en) 2003-07-31 2005-04-28 Pfizer Inc 3,5 Disubstituted indazole compounds with nitrogen-bearing 5-membered heterocycles, pharmaceutical compositions, and methods for mediating or inhibiting cell proliferation
US7884109B2 (en) 2005-04-05 2011-02-08 Wyeth Llc Purine and imidazopyridine derivatives for immunosuppression
CA2673125C (en) 2006-10-19 2015-04-21 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
US8648069B2 (en) 2007-06-08 2014-02-11 Abbvie Inc. 5-substituted indazoles as kinase inhibitors
BRPI0910021A2 (pt) 2008-06-20 2015-09-01 Genentech Inc "composto, composição farmacêutica, método para tratar ou atenuar a gravidade de uma doença ou condição responsiva à inibição da atividade jak2 quinas em um paciente, kit para o tratamento de uma doença ou distúrbio responsivo à inibição da jak quinase"
JP2010111624A (ja) 2008-11-06 2010-05-20 Shionogi & Co Ltd Ttk阻害作用を有するインダゾール誘導体
WO2010114971A1 (en) 2009-04-03 2010-10-07 Sepracor Inc. Compounds for treating disorders mediated by metabotropic glutamate receptor 5, and methods of use thereof
CN102821607B (zh) 2009-12-21 2014-12-17 萨穆梅德有限公司 1H-吡唑并[3,4-b]吡啶及其治疗应用
EP2338888A1 (en) 2009-12-24 2011-06-29 Almirall, S.A. Imidazopyridine derivatives as JAK inhibitors
EA024026B1 (ru) 2010-11-25 2016-08-31 Рациофарм Гмбх Новые соли и полиморфные формы афатиниба
PH12017500997A1 (en) 2012-04-04 2018-02-19 Samumed Llc Indazole inhibitors of the wnt signal pathway and therapeutic uses thereof
US20150118229A1 (en) * 2013-10-24 2015-04-30 Abbvie Inc. Jak1 selective inhibitor and uses thereof
JP6192839B2 (ja) 2013-12-05 2017-09-06 ファイザー・インク ピロロ[2,3−d]ピリミジニル、ピロロ[2,3−b]ピラジニル、およびピロロ[2,3−d]ピリジニルアクリルアミド
JP6730932B2 (ja) 2014-04-30 2020-07-29 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. リン保護基ならびにそれらの調製方法および使用
MX2016014878A (es) 2014-05-14 2017-03-08 Pfizer Pirazolopiridinas y pirazolopirimidinas.
WO2016026078A1 (en) 2014-08-19 2016-02-25 Changzhou Jiekai Pharmatech Co., Ltd. Heterocyclic compounds as erk inhibitors
KR101663277B1 (ko) 2015-03-30 2016-10-06 주식회사 녹십자 TNIK, IKKε 및 TBK1 억제제로서의 피라졸계 유도체 및 이를 포함하는 약학적 조성물
EP3371184A1 (en) 2015-11-03 2018-09-12 Topivert Pharma Limited 4,5,6,7-tetrahydro-1h-imidazo[4,5-c]pyridine and 1,4,5,6,7,8-hexahydroimidazo[4,5-d]azepine derivatives as janus kinase inhibitors
CA3037248A1 (en) 2015-11-03 2017-05-11 Topivert Pharma Limited 4,5,6,7-tetrahydro-1h-imidazo[4,5-c]pyridine and 1,4,5,6,7,8-hexahydroimidazo[4,5-d]azepine derivatives as janus kinase inhibitors
AU2018231035B2 (en) 2017-03-09 2021-09-09 Theravance Biopharma R&D Ip, Llc Fused imidazo-piperidine JAK inhibitors
TWI808083B (zh) 2017-05-01 2023-07-11 美商施萬生物製藥研發 Ip有限責任公司 Jak抑制劑化合物之結晶型式
CA3059785A1 (en) 2017-05-01 2018-11-08 Theravance Biopharma R&D Ip, Llc Methods of treatment using a jak inhibitor compound
AR111495A1 (es) 2017-05-01 2019-07-17 Theravance Biopharma R&D Ip Llc Compuestos de imidazo-piperidina fusionada como inhibidores de jak

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039825A2 (en) * 2008-10-01 2010-04-08 Array Biopharma Inc. IMIDAZO[1,2-a]PYRIDINE COMPOUNDS AS RECEPTOR TYROSINE KINASE INHIBITORS
CN102470135A (zh) * 2009-07-28 2012-05-23 里格尔药品股份有限公司 抑制jak途径的组合物和方法
CN103717599A (zh) * 2011-07-27 2014-04-09 辉瑞有限公司 吲唑
CN108349972A (zh) * 2015-11-03 2018-07-31 施万生物制药研发Ip有限责任公司 用于治疗呼吸疾病的jak激酶抑制剂化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田英等: "《常用中成药与西药临床合理联用与禁忌》", 31 May 2016, 吉林科学技术出版社 *

Also Published As

Publication number Publication date
TW201900170A (zh) 2019-01-01
US20200121669A1 (en) 2020-04-23
JP2020518579A (ja) 2020-06-25
MX2019012950A (es) 2019-12-16
US10548886B2 (en) 2020-02-04
US11786517B2 (en) 2023-10-17
US11160800B2 (en) 2021-11-02
EP3609498A1 (en) 2020-02-19
CA3059785A1 (en) 2018-11-08
JP7153031B2 (ja) 2022-10-13
US20180311226A1 (en) 2018-11-01
WO2018204233A1 (en) 2018-11-08
PH12019502345A1 (en) 2020-12-07
AU2018261588A1 (en) 2019-10-31
NZ758109A (en) 2021-09-24
SG11201909019SA (en) 2019-10-30
CL2019003126A1 (es) 2020-01-24
US10406148B2 (en) 2019-09-10
JP2022120147A (ja) 2022-08-17
RU2019138463A3 (zh) 2021-08-03
KR102568333B1 (ko) 2023-08-18
RU2764979C2 (ru) 2022-01-24
KR20190140062A (ko) 2019-12-18
ZA201906817B (en) 2021-10-27
RU2019138463A (ru) 2021-06-02
US20220008403A1 (en) 2022-01-13
BR112019022665A2 (pt) 2020-05-19
US20190350916A1 (en) 2019-11-21
CN110573157B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN110573157B (zh) 使用jak抑制剂化合物的治疗方法
AU2018261591B2 (en) Crystalline forms of a JAK inhibitor compound
CN112739697B (zh) 作为jak抑制剂的二甲基氨基氮杂环丁烷酰胺
US11702415B2 (en) Crystalline hydrate of a JAK inhibitor compound
WO2022178215A1 (en) Amino amide tetrahydro imidazo pyridines as jak inhibitors
CN117083273A (zh) Jak抑制剂化合物的二盐酸盐的晶型
RU2790535C2 (ru) Кристаллические формы соединения-ингибитора jak
NZ758109B2 (en) Methods of treatment using a jak inhibitor compound

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant