TW202144343A - Jak抑制劑化合物之結晶水合物 - Google Patents

Jak抑制劑化合物之結晶水合物 Download PDF

Info

Publication number
TW202144343A
TW202144343A TW110106884A TW110106884A TW202144343A TW 202144343 A TW202144343 A TW 202144343A TW 110106884 A TW110106884 A TW 110106884A TW 110106884 A TW110106884 A TW 110106884A TW 202144343 A TW202144343 A TW 202144343A
Authority
TW
Taiwan
Prior art keywords
crystalline hydrate
lung
compound
disease
pneumonia
Prior art date
Application number
TW110106884A
Other languages
English (en)
Inventor
吉尼 提摩西 法斯
Original Assignee
美商施萬生物製藥研發 Ip有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商施萬生物製藥研發 Ip有限責任公司 filed Critical 美商施萬生物製藥研發 Ip有限責任公司
Publication of TW202144343A publication Critical patent/TW202144343A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Abstract

本文提供一種式1 化合物之結晶水合物:

Description

JAK抑制劑化合物之結晶水合物
本文中提供一種適用於治療呼吸道疾病及其他疾病之JAK抑制劑化合物之結晶水合物形式。本文中亦提供包含此類結晶形式之醫藥組合物、使用該結晶形式治療例如呼吸道疾病之方法及適用於製備此類結晶形式之方法。
細胞介素為細胞間傳訊分子,其包括趨化介素、干擾素、介白素、淋巴介質及腫瘤壞死因子。細胞介素對於正常細胞生長及免疫調節為至關重要的且亦驅動免疫介導之疾病並有助於惡性細胞生長。許多細胞介素之較高含量已牽涉到大量疾病或病況,特定言之表徵為炎症之彼等疾病之病變。視經由轉錄因子之訊息轉導子及轉錄活化因子(STAT)家族傳訊之Janus酪胺酸激酶(JAK)家族而定,牽涉疾病之許多細胞介素經由傳訊路徑起作用。
JAK家族包含四個成員JAK1、JAK2、JAK3及酪胺酸激酶2 (TYK2)。細胞介素結合至JAK依賴性細胞介素受體誘導受體二聚,此使得JAK激酶上之酪胺酸殘基磷酸化,從而影響JAK活化。磷酸化JAK轉而結合各種STAT蛋白質且使各種STAT蛋白質磷酸化,該等STAT蛋白質在細胞核中二聚、內化且直接調節基因轉錄,在其他作用中,產生與發炎性疾病相關之下游作用。JAK通常與細胞介素受體成對締合作為均二聚體或異二聚體。特定細胞介素與特定JAK對相關。JAK家族之四個成員中之每一者牽涉與發炎相關的細胞介素中之至少一者之傳訊。
哮喘為氣道之慢性疾病,其無預防或治癒方法。該疾病之特徵在於氣道之發炎、纖維化、高反應性及重構,其皆促成氣流限制。全世界估計有3億人罹患哮喘,且據估計,截至2025年,患有哮喘之人數將增長超過1億。儘管大多數患者可藉由使用可與白三烯改質劑及/或長效β促效劑組合之吸入式皮質類固醇來達成對哮喘症狀之控制,但仍有患有重度哮喘之患者亞群的疾病不受習知療法控制。牽涉經由JAK-STAT路徑傳訊之哮喘發炎的細胞介素包括IL-2、IL-3、IL-4、IL-5、IL-6、IL-9、IL-11、IL-13、IL-23、IL-31、IL-27、胸腺基質淋巴生成素(TSLP)、干擾素-γ (IFNγ)及粒細胞-巨噬細胞群落刺激因子(GM-CSF)。除哮喘以外,氣道發炎亦為其他呼吸道疾病所特有的。慢性阻塞性肺病(COPD)、囊腫性纖維化(CF)、肺炎、間質肺病(包括自發性肺纖維化)、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫及阻塞性細支氣管炎亦為呼吸道疾病,其中咸信病理生理學與JAK傳訊細胞介素相關。
JAK傳訊細胞介素亦在T細胞活化中起主要作用,T細胞為對許多免疫過程重要的免疫細胞亞型。病理性T細胞活化在多種呼吸道疾病之病因中至關重要。自體反應性T細胞在阻塞性細支氣管炎伴機化性肺炎(亦稱為COS)中起作用。與COS類似,肺移植排斥反應之病因與所移植供體肺的接受者之T細胞之異常T細胞活化有關。肺移植排斥反應可早期以原發性移植物功能障礙(PGD)、機化性肺炎(OP)、急性排斥反應(AR)或淋巴球性細支氣管炎(LB)形式出現,或其可在肺移植後數年以慢性肺同種異體移植物功能障礙(CLAD)形式出現。CLAD先前稱為阻塞性細支氣管炎(BO),但現在被視為可具有不同病理學表現之症候群,包括BO、限制性CLAD (rCLAD或RAS)及嗜中性同種異體移植物功能障礙。慢性肺同種異體移植物功能障礙(CLAD)為肺移植接受者之長期管理中的主要挑戰,此係因為其導致所移植肺逐漸失去功能(Gauthier等人,Curr.Transplant.Rep. ,2016 , 3(3), 185-191)。CLAD對治療之反應不佳,且因此,仍需要能夠預防或治療此病況的有效化合物。諸如IFNγ及IL-5之若干JAK依賴性細胞介素在CLAD及肺移植排斥反應中上調(Berastegui等人,Clin. Transplant. 2017 , 31, e12898)。此外,在JAK依賴性IFN傳訊下游之CXCR3趨化介素(諸如CXCL9及CXCL10)的高肺含量與肺移植患者之惡化結果有關(Shino等人,PLOS One ,2017 , 12 (7), e0180281)。已展示全身性JAK抑制在腎移植排斥反應中有效(Vicenti等人,American Journal of Transplantation ,2012 , 12, 2446-56)。因此,JAK抑制劑有可能有效預防或延遲肺移植排斥反應及CLAD。如描述為肺移植排斥反應之基礎的類似T細胞活化事件亦被視為造血幹細胞移植後可能發生的肺移植物抗宿主病(GVHD)之主要驅動因子。與CLAD類似,肺GVHD為一種慢性進行性病況,其結果極其不佳且目前尚無經批准之治療。對95位接受全身性JAK抑制劑盧佐替尼(ruxolitinib)作為補救治療之患有類固醇難治性急性或慢性GVHD的患者之回溯性多中心調查研究表明,大多數患者(包括患有肺GVHD之彼等患者)對盧佐替尼完全或部分反應(Zeiser等人,Leukemia ,2015 , 29, 10, 2062-68)。
2019年9月3日申請之共同轉讓的美國申請案序列號16/559,077揭示適用作JAK抑制劑之一些二甲基胺基吖呾醯胺化合物。特定言之,化合物(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮(化合物1 ):
Figure 02_image006
特定而言在該申請案中揭示為一種適用於治療、預防及/或延遲發炎呼吸道疾病之強效非全身性泛JAK抑制劑,該等發炎呼吸道疾病包括哮喘及肺移植排斥反應。
為有效地將此化合物用作治療劑,將需要具有結晶固態鹽形式。舉例而言,將高度需要具有在適當高溫下熱穩定的物理形式,藉此有助於材料之加工及儲存。結晶固體一般優於非晶形式,以提昇製品之純度及穩定性。然而,有機化合物之結晶形式之形成為高度不可預測的。尚不存在可靠方法來預測有機化合物之何種形式(若存在)將結晶。此外,尚不存在方法來預測何種結晶形式(若存在)將具有用作藥劑所需要之物理特性。因此,需要化合物1 之結晶形式。
本文提供一種式1 化合物之結晶水合物:
Figure 02_image008
本文亦提供醫藥組合物,其包含本發明之結晶水合物及醫藥學上可接受之載劑。
本文提供一種製備本發明之結晶水合物的方法,以及治療、預防、延遲及/或緩解適合於用JAK抑制劑進行治療之疾病,特定言之呼吸道疾病及肺移植排斥反應的方法。
本文亦提供結晶水合物形式之用途,其用於醫學療法中及用於製造用於治療、預防、延遲及/或緩解適合於用JAK抑制劑進行治療之疾病,特定言之呼吸道疾病及肺移植排斥反應的調配物或藥劑。
相關申請案之交叉參考 本申請案主張2020年3月2日申請的美國臨時申請案第62/983,931號之權益,該臨時申請案之揭示內容以全文引用之方式併入本文中。
定義 除非另外指示,否則當描述本發明(包括其各種態樣及實施例)時,以下術語具有以下含義。
術語「約」意謂指定值之±5%。
術語「水合物」意謂由水分子及本發明化合物之分子形成的複合物或聚集物,通常呈結晶形式,其中水分子與化合物分子之比可為1:1、小於1:1或大於1:1。
當參考例如X射線繞射圖案、DSC跡線或TGA跡線時,術語「實質上」包括不必與本文中所描繪之彼等圖案或跡線相同,但當由一般熟習此項技術者考慮時處於實驗誤差或偏差之限值內的圖案或跡線。
術語「治療有效量」意謂當向需要治療之患者投與時足以實現治療的量。
術語「治療(treating/treatment)」意謂緩解或抑制患者(特定言之人類)的正經治療之醫學病況、疾病或病症(例如,呼吸道疾病);或減輕醫學病況、疾病或病症之症狀。
必須注意,如本說明書及所附申請專利範圍中所使用,除非另外明確規定內容,否則單數形式「一(a/an)」、「一個」及「該」可包括複數個參考物。
命名 公約 化合物1 係根據如實施於ChemDraw軟體(PerkinElmer, Inc., Cambridge, MA)中之IUPAC公約命名為(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮。
此外,在化合物1 之結構中的四氫咪唑并吡啶部分之咪唑并部分以下文針對實例1 之化合物之片段所說明的互變異構形式存在。
Figure 02_image010
根據IUPAC公約,此等圖示產生咪唑部分之原子之不同編號:(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-1H -咪唑并[4,5-c]吡啶-6-基)甲酮(結構A)與(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮(結構B)。將理解,雖然結構以特定形式來展示或命名,但本發明亦包括其互變異構體。
化合物 1 之結晶形式 本文提供一種式1 化合物之結晶水合物(形式I):
Figure 02_image012
在一個實施例中,結晶水合物之特徵在於包含2θ值為5.68±0.20、10.43±0.20、10.94±0.20及13.08±0.20之繞射峰的粉末X射線繞射(PXRD)圖案。結晶水合物之特徵可進一步在於具有2θ值為8.49±0.20之一個另外的繞射峰的PXRD圖案。結晶水合物之特徵可進一步在於具有2θ值係選自11.55±0.20、12.20±0.20、17.06±0.20及26.29±0.20之兩個或更多個另外的繞射峰的PXRD圖案。結晶水合物之特徵可進一步在於具有2θ值為11.55±0.20、12.20±0.20、17.06±0.20及26.29±0.20之另外的繞射峰的PXRD圖案。
結晶水合物之特徵可在於具有2θ值係選自5.68±0.20、8.49±0.20、10.43±0.20、10.94±0.20、11.55±0.20、12.20±0.20、13.08±0.20、15.94±0.20、16.24±0.20、17.06±0.20、17.60±0.20、18.41±0.20、18.82±0.20、18.96±0.20、21.90±0.20、22.08±0.20、22.27±0.20、24.55±0.20及26.29±0.20之2個、3個、4個、5個、6個、7個、8個、9個或10個繞射峰的PXRD圖案。
如粉末X射線繞射之領域中所熟知,與相對峰高度相比,PXRD光譜之峰位置對實驗細節(諸如樣品製備及儀器幾何結構之細節)相對更不敏感。因此,在一個實施例中,結晶水合物之特徵在於其中峰位置實質上與圖1中所展示之彼等峰位置一致的粉末x射線繞射圖案。
在另一實施例中,結晶水合物之特徵在於在暴露於高溫時的其行為。如圖2中所顯示,在10℃/分鐘之加熱速率下記錄的差示掃描熱量測定(DSC)跡線展現出起始於約55.1℃且在約139.4℃下達到峰值之脫水吸熱,及鑑別為起始於約198.6℃且在約212.4℃下達到峰值之熔融轉變的吸熱流峰。在一個實施例中,結晶水合物形式(形式I)之特徵在於在10℃/分鐘之加熱速率下記錄的差示掃描熱量測定跡線在212.4±3℃之溫度下展示吸熱流最大值。在另一實施例中,吸熱流最大值係在212.4±2℃之溫度下。在另一實施例中,吸熱流最大值係在212.4±1℃之溫度下。
在一個實施例中,結晶水合物為單水合物。
圖3之熱重分析(TGA)跡線展示,達100.0℃時,重量損失為約3.4%。化合物在約27℃之起始溫度下脫水。可在約248.2℃之起始溫度下看出與分解相關之重量損失。
已證實本發明之結晶水合物具有可逆的吸附/解吸附特徵曲線。固體為中度吸濕的。如圖4中所展示,當在室溫下暴露於0%與90%之間的相對濕度範圍時,結晶水合物展現出約5.3%之總水分吸收。
形式I之特徵在於如藉由單晶X射線結晶學所測定具有以下尺寸之單位晶胞:a=20.8736(5) Å;b=9.15021(19) Å;c=15.7412(3) Å;a=90°;b =98.4786(18)°;且g=90°。在100(2) K之溫度下分析的形式I之單晶之特徵在於具有以下尺寸的單斜晶系:a=20.8736(5) Å;b=9.15021(19) Å;c=15.7412(3) Å;a=90°;b =98.4786(18)°;g=90°;晶胞體積(V)為2973.67(11) Å3 ,及空間群C2。
形式I在如實例10中所展示的溫度及相對濕度之加速條件下展現出良好的穩定性。
合成程序 可由易於獲得的起始材料使用以下實例中所描述的程序或使用本申請案之先前技術章節中所列的共同轉讓之美國申請案中所描述的程序來製備化合物1
形式I可藉由以下來製備: (a)在55℃±10℃之溫度下將(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮溶解於醇溶劑中以得到溶液; (b)使步驟(a)中獲得之溶液冷卻至10℃±10℃以產生懸浮液; (c)在惰性氣體條件下自步驟(b)之懸浮液中分離固體; (d)在60℃±15℃下乾燥步驟(c)中獲得之固體; (e)使步驟(d)中獲得之固體經受環境濕度及溫度條件以得到結晶水合物。
在一些實施例中,醇溶劑為甲醇。在一些實施例中,醇溶劑為乙醇。
在一些實施例中,添加形式I之晶種以在步驟(b)中初始形成懸浮液。
醫藥組合物 本發明之結晶水合物固體形式可以醫藥組合物或調配物之形式使用。此類醫藥組合物可有利地藉由吸入投與至患者。另外,可藉由任何可接受的投與途徑投與醫藥組合物,該投與途徑包括但不限於經口、局部(包括經皮)、經直腸、經鼻及非經腸投與模式。
因此,在一個實施例中,本文中提供一種醫藥組合物,其包含醫藥學上可接受之載劑或賦形劑及化合物1 之結晶水合物(形式I)。視情況,必要時此類醫藥組合物可含有其他治療劑及/或調配劑。當論述組合物及其用途時,化合物1 之結晶水合物(形式I)在本文中亦可稱為「活性劑」。
本發明之醫藥組合物通常含有治療有效量的化合物1 之結晶水合物(形式I)。然而,熟習此項技術者將認識到,醫藥組合物可含有超過治療有效量(亦即主體組合物)或小於治療有效量(亦即經設計以用於多次投與以達成治療有效量的個別單位劑量)。
通常,此類醫藥組合物將含有約0.01重量%至約95重量%之活性劑;包括例如約0.05重量%至約30重量%;及約0.1重量%至約10重量%之活性劑。
任何習知載劑或賦形劑可用於本發明之醫藥組合物中。特定載劑或賦形劑或載劑或賦形劑之組合的選擇將視正用於治療特定患者或特定類型之醫學病況或疾病病狀的投與模式而定。就此而言,針對特定投與模式製備適合的醫藥組合物很好地在熟習醫藥學技術者之範疇內。另外,本發明之醫藥組合物中所使用之載劑或賦形劑為可商購的。藉助於進一步說明,習知調配技術描述於Remington: The Science and Practice of Pharmacy, 第20版, Lippincott Williams & White, Baltimore, Maryland (2000); 及H.C. Ansel等人, Pharmaceutical Dosage Forms and Drug Delivery Systems, 第7版, Lippincott Williams & White, Baltimore, Maryland (1999)中。
可充當醫藥學上可接受之載劑的材料之代表性實例包括但不限於以下:糖,諸如乳糖、葡萄糖及蔗糖;澱粉,諸如玉米澱粉及馬鈴薯澱粉;纖維素,諸如微晶纖維素及其衍生物,諸如羧甲基纖維素鈉、乙基纖維素及乙酸纖維素;粉末狀黃蓍;麥芽;明膠;滑石;賦形劑,諸如可可脂及栓劑蠟;油,諸如花生油、棉籽油、紅花油、芝麻油、橄欖油、玉米油及大豆油;二醇,諸如丙二醇;多元醇,諸如丙三醇、山梨醇、甘露醇及聚乙二醇;酯,諸如油酸乙酯及月桂酸乙酯;瓊脂;緩衝劑,諸如氫氧化鎂及氫氧化鋁;褐藻酸;無熱原質水;等張生理食鹽水;林格氏溶液(Ringer's solution);乙醇;磷酸鹽緩衝溶液;及用於醫藥組合物中之其他無毒相容物質。
通常藉由將活性劑與醫藥學上可接受之載劑及一或多種視情況選用之成分充分且緊密地混合或摻合來製備醫藥組合物。隨後可使用習知工序及設備使所得均勻摻合之混合物成形為錠劑、膠囊、丸劑及其類似物或裝載至其中。
在一個實施例中,醫藥組合物適用於吸入投與。用於吸入投與之醫藥組合物通常呈氣霧劑或粉末之形式。此類組合物一般使用吸入劑遞送裝置投與,該等吸入劑遞送裝置諸如乾粉吸入器(DPI)、定量吸入器(MDI)、噴霧器吸入器或類似遞送裝置。
在一特定實施例中,醫藥組合物係藉由吸入使用乾粉吸入器投與。此類乾粉吸入器通常以在吸氣期間分散於患者之氣流中的自由流動粉末形式投與醫藥組合物。為獲得自由流動粉末組合物,治療劑通常將與適合的賦形劑一起調配,該賦形劑諸如乳糖、澱粉、甘露醇、右旋糖、聚乳酸(PLA)、聚乳酸交酯-共聚-乙交酯(PLGA)或其組合。通常,使治療劑微粉化且與適合的載劑組合以形成適用於吸入之組合物。
用於乾粉吸入器中之代表性醫藥組合物包含乳糖及呈微粉化形式的化合物1 之結晶水合物。此類乾粉組合物可例如藉由將乾燥研磨乳糖與治療劑組合,且接著乾摻合組分來製得。接著通常將組合物裝載至乾粉施配器中或裝載至與乾粉遞送裝置一起使用之吸入套筒或膠囊中。
適用於藉由吸入投與治療劑的乾粉吸入劑遞送裝置描述於此項技術中且此類裝置之實例為可商購的。舉例而言,代表性乾粉吸入劑遞送裝置或產品包括Aeolizer (Novartis);Airmax (IVAX);ClickHaler (Innovata Biomed);Diskhaler (GlaxoSmithKline);Diskus/Accuhaler (GlaxoSmithKline);Ellipta (GlaxoSmithKline);Easyhaler (Orion Pharma);Eclipse (Aventis);FlowCaps (Hovione);Handihaler (Boehringer Ingelheim);Pulvinal (Chiesi);Rotahaler (GlaxoSmithKline);SkyeHaler/Certihaler (SkyePharma);Twisthaler (Schering-Plough);Turbuhaler (AstraZeneca);Ultrahaler (Aventis);及其類似者。
在另一特定實施例中,醫藥組合物係藉由吸入使用定量吸入器來投與。此類定量吸入器通常使用壓縮推進劑氣體排出量測量之治療劑。因此,使用定量吸入器投與之醫藥組合物通常包含治療劑於液化推進劑中之懸浮液。可採用任何適合的液化推進劑,包括氫氟烷烴(HFA),諸如1,1,1,2-四氟乙烷(HFA 134a)及1,1,1,2,3,3,3-七氟-正丙烷(HFA 227);及氯氟碳化物,諸如CCl3 F。在一特定實施例中,推進劑為氫氟烷烴。在一些實施例中,氫氟烷烴調配物含有共溶劑,諸如乙醇或戊烷;及/或界面活性劑,諸如脫水山梨醇三油酸酯、油酸、卵磷脂及丙三醇。
用於定量吸入器中之代表性醫藥組合物包含約0.01重量%至約5重量%的化合物1 之結晶水合物(形式I);約0重量%至約20重量%之乙醇;及約0重量%至約5重量%之界面活性劑;其中剩餘部分為HFA推進劑。此類組合物通常藉由向含有治療劑、乙醇(若存在)及界面活性劑(若存在)之適合的容器中添加經冷卻或經加壓之氫氟烷烴來製備。為製備懸浮液,將治療劑微粉化,且接著與推進劑組合。接著將組合物裝載至氣霧劑罐中,其通常形成定量吸入器裝置之一部分。
適用於藉由吸入投與治療劑之定量吸入器裝置描述於此項技術中且此類裝置之實例為可商購的。舉例而言,代表性定量吸入器裝置或產品包括AeroBid吸入器系統(Forest Pharmaceuticals);Atrovent吸入氣霧劑(Boehringer Ingelheim);Flovent (GlaxoSmithKline);Maxair吸入器(3M);Proventil吸入器(Schering);Serevent吸入氣霧劑(GlaxoSmithKline);及其類似者。
在另一特定實施例中,醫藥組合物係藉由吸入使用噴霧器吸入器來投與。此類噴霧器裝置通常產生促使醫藥組合物以載送至患者之呼吸道之霧滴形式噴霧的高速度空氣流。因此,當調配用於噴霧器吸入器中時,治療劑可經微粉化或奈米研磨且與適合的載劑組合形成懸浮液。
用於噴霧器吸入器中之代表性醫藥組合物包含懸浮液,其包含約0.05 μg/mL至約20 mg/mL的本發明之結晶水合物及與霧化調配物相容的賦形劑。在一個實施例中,溶液具有約3至約8之pH。
適用於藉由吸入投與治療劑之噴霧器裝置描述於此項技術中且此類裝置之實例為可商購的。舉例而言,代表性噴霧器裝置或產品包括Respimat Softmist吸入器(Boehringer Ingelheim);AERx肺部遞送系統(Aradigm Corp.);PARI LC Plus可再用噴霧器(Pari GmbH);及其類似者。
在又另一實施例中,本發明之醫藥組合物可替代地以意欲用於經口投與之劑型製備。適用於經口投與之醫藥組合物可呈膠囊、錠劑、丸劑、口含錠、扁囊劑、糖衣藥丸、粉末、粒劑之形式;或呈於水性或非水性液體中之懸浮液形式;及其類似者;各自含有預定量的化合物1 之結晶水合物(形式I)作為活性成分。
當意欲以固體劑型用於經口投與時,本發明之醫藥組合物將通常包含活性劑及一或多種醫藥學上可接受之載劑,諸如檸檬酸鈉或磷酸二鈣。視情況或可替代地,此類固體劑型亦可包含:填充劑或增量劑、黏合劑、保濕劑、溶液阻滯劑、吸收加速劑、潤濕劑、吸附劑、潤滑劑、著色劑及緩衝劑。脫模劑(release agent)、潤濕劑、包衣劑、甜味劑、調味劑及芳香劑、防腐劑及抗氧化劑亦可存在於本發明之醫藥組合物中。
形式I亦可調配為用於眼部注射之無菌水性懸浮液。可包括於此水性調配物中之適用賦形劑包括聚山梨醇酯80、羧甲基纖維素、氯化鉀、氯化鈣、氯化鎂、乙酸鈉、檸檬酸鈉、組胺酸、α-α-二水合海藻糖、蔗糖、聚山梨醇酯20、羥丙基-β-環糊精及磷酸鈉。苯甲醇可充當防腐劑,且可包括氯化鈉以調整張力。另外,可將鹽酸及/或氫氧化鈉添加至溶液中以用於pH調節。用於眼部注射之水性調配物可製備為無防腐劑形式。
替代性調配物亦可包括控制釋放調配物、經皮貼片及非經腸調配物。製備此類替代性調配物之習知賦形劑及方法描述於例如前述由Remington所著之參考文獻中。
以下非限制性實例說明了本發明之代表性醫藥組合物。
乾粉組合物 將化合物1 之微粉化結晶水合物(形式I) (1 g)與研磨乳糖(25 g)摻合。接著將此摻合混合物以每劑量足以提供約0.1 mg至約4 mg之間的式1化合物的量裝載至可剝離泡殼封裝之個別泡殼中。使用乾粉吸入器投與泡殼之內含物。
乾粉組合物 將化合物1 之微粉化結晶水合物(形式I) (1 g)與研磨乳糖(20 g)摻合以形成化合物與研磨乳糖之重量比為1:20的主體組合物。將摻合組合物封裝至每劑量能夠遞送約0.1 mg至約4 mg之間的式1化合物之乾粉吸入裝置中。
定量吸入器組合物 將化合物1 之微粉化結晶水合物形式I (10 g)分散於藉由將卵磷脂(0.2 g)溶解於除礦質水(200 mL)中所製備的溶液中。將所得懸浮液噴霧乾燥且接著微粉化以形成包含平均直徑小於約1.5 μm之粒子的微粉化組合物。接著將微粉化組合物裝載至定量吸入器套筒中,該等定量吸入器套筒以當藉由定量吸入器投與時每劑量足以提供約0.1 mg至約4 mg之化合物1 的量含有加壓1,1,1,2-四氟乙烷。
噴霧器組合物 將本發明之結晶水合物形式I (25 mg)懸浮於含有1.5-2.5當量鹽酸之溶液中,隨後添加氫氧化鈉以將pH調節至3.5至5.5,且添加3重量%之甘油。使用每劑量提供約0.1 mg至約4 mg之化合物1 的噴霧器裝置來投與懸浮液。
用於眼部注射之水性調配物 每毫升無菌水性懸浮液包括5 mg至50 mg的化合物1 之結晶水合物(形式I)、氯化鈉(用於張力)、0.99% (w/v)苯甲醇(作為防腐劑)、0.75%羧甲基纖維素鈉及0.04%聚山梨醇酯。可包括氫氧化鈉或鹽酸以將pH調節至5至7.5。
用於眼部注射之水性調配物 無菌無防腐劑水性懸浮液包括於10 mM磷酸鈉、40 mM氯化鈉、0.03%聚山梨醇酯20及5%蔗糖中的5 mg/mL至50 mg/mL的化合物1 之結晶水合物(形式I)。
效用 化合物1 已經設計以用於治療呼吸道發炎及呼吸道纖維變性疾病。特定言之,化合物已經設計以使得能夠將強效抗細胞介素藥劑直接遞送至肺部中的呼吸道疾病之作用位點,同時限制全身性暴露。
化合物1 已展示為以下JAK酶家族之強效抑制劑:JAK1、JAK2、JAK3及TYK2。另外,已證實化合物1 強效抑制促發炎及促纖維化細胞介素。已認識到,JAK抑制劑之廣泛抗發炎性作用可抑制正常免疫細胞功能,從而潛在地導致感染之風險增加。本發明化合物已經最佳化以限制自肺部至血漿中之吸收,因此最小化免疫抑制之風險。
如下文之實驗章節中所描述,化合物1 之吸收及分佈已在臨床前分析中進行剖析。化合物1 在小鼠中進行測試,且在給藥後5小時展示在肺組織中的濃度較高且在血漿中的吸收率較低。已展示化合物1 抑制促發炎細胞介素IL-13在小鼠肺組織中之影響。具體言之,已證實化合物抑制肺組織中IL-13誘導之STAT6磷酸化,此提供局部肺JAK靶標活體內參與之證據。已在投與測試化合物之後4小時投與促發炎細胞介素IL-13時觀測到此作用,從而提供在肺中之顯著滯留的另一證據。
已證實化合物1 在細胞含量及肺組織中之顯著滯留方面皆展現強效抑制活性。本發明者之廣泛研究已證實,雖然有可能鑑別在細胞含量方面有效之化合物或展示在肺中之顯著滯留的化合物,但發現同時展現兩種所要特徵之化合物更加困難。
已在哮喘之臨床前模型中穩固地顯示JAK抑制劑之抗發炎活性(Malaviya等人,Int .Immunopharmacol ,2010 ,10 , 829-836; Matsunaga等人,Biochem.and Biophys.Res.Commun., 2011 ,404 , 261-267;Kudlacz等人,Eur.J.Pharmacol ,2008 ,582 , 154-161)。牽涉經由JAK-STAT路徑傳訊之哮喘發炎的細胞介素包括IL-2、IL-3、IL-4、IL-5、IL-6、IL-9、IL-11、IL-13、IL-23、IL-31、IL-27、胸腺基質淋巴生成素(TSLP)、干擾素-γ (IFNγ)及粒細胞-巨噬細胞群落刺激因子(GM-CSF)。因此,預期化合物1 及其結晶水合物形式I適用於治療發炎性呼吸道病症,特定言之哮喘。哮喘已分類為Th2低亞型及Th2高亞型(Simpson等人,Respirology ,2006 , 11, 54-61)。IL4、IL13、IL5及TSLP牽涉Th2高哮喘,而IL23/IL12、IL6、IL27及IFNγ牽涉Th2低哮喘。基於其泛JAK抑制性特徵曲線,化合物1 強效抑制Th2高哮喘及Th2低哮喘兩者之介體。因此,預期化合物1 之形式I將適用於治療Th2高哮喘及Th2低哮喘兩者。
肺部發炎及纖維化之特徵在於除哮喘以外之其他呼吸道疾病,諸如慢性阻塞性肺病(COPD)、囊腫性纖維化(CF)、肺炎、間質性肺病(包括自發性肺纖維化)、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫、阻塞性細支氣管炎及類肉瘤病。因此,亦預期化合物1 及其結晶水合物形式I適用於治療慢性阻塞性肺病、囊腫性纖維化、肺炎、間質性肺病(包括自發性肺纖維化)、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫、阻塞性細支氣管炎及類肉瘤病。
當與其對應氟類似物(化合物C-1 )相比時,化合物1 已展示具有類似的JAK活性。然而,化合物1 具有產生顯著較少的硫酸化代謝之優點,如分析章節中所證實。此為顯著的,因為硫酸化代謝發生於肺部中,此可能導致快速降低活性母化合物之暴露。
已證實化合物1 抑制與發炎相關之細胞介素。因此,如下詳述,形式I有可能適用於治療某些特定呼吸道疾病。
嗜酸性氣道發炎為統稱為嗜酸性肺病的疾病之特有特徵(Cottin等人,Clin. Chest. Med. ,2016 , 37(3), 535-56)。嗜酸性球性疾病已與IL-4、IL-13及IL-5傳訊相關。嗜酸性肺病包括感染(尤其蠕蟲感染)、藥物誘導之肺炎(例如由諸如抗生素、苯妥英(phenytoin)或l-色胺酸之治療藥物誘導)、真菌誘導之肺炎(例如過敏性支氣管與肺的麴菌病)、過敏性肺炎及嗜酸性球性肉芽腫伴多血管炎(先前稱為徹奇-斯全司症候群(Churg-Strauss syndrome))。未知病因之嗜酸性球性肺病包括自發性急性嗜酸性球性肺炎、自發性慢性嗜酸性球性肺炎、嗜酸性白血球增多症候群及呂弗勒症候群(Löffler syndrome)。
IL-6基因中之多形現象與IL-6含量升高及產生肺動脈高血壓(PAH)之風險增加有關(Fang等人,J. Am. Soc. Hypertens. ,2017 , 11(3), 171-177)。確證IL-6於PAH中之作用,對IL-6受體鏈gp130之抑制緩解了PAH大鼠模型中之疾病(Huang等人,Can. J. Cardiol. ,2016 , 32(11), 1356.e1-1356.e10)。
諸如IFNγ、IL-12及IL-6之細胞介素已牽涉一定範圍之非過敏性肺病,諸如類肉瘤病及淋巴管平滑肌瘤(El-Hashemite等人,Am. J. Respir. Cell Mol. Biol. ,2005 , 33, 227-230,及El-Hashemite等人,Cancer Res. ,2004 , 64, 3436-3443)。亦已展示本發明化合物抑制IL-6及IFNγ傳訊。
支氣管擴張症及浸潤性肺病為與慢性嗜中性發炎有關之疾病。
病理性T細胞活化在多種呼吸道疾病之病因中至關重要。自體反應性T細胞在阻塞性細支氣管炎伴機化性肺炎(亦稱為COS)中起作用。與COS類似,肺移植排斥反應之病因與所移植供體肺的接受者T細胞之異常T細胞活化有關。肺移植排斥反應可早期以原發性移植物功能障礙(PGD)、機化性肺炎(OP)、急性排斥反應(AR)或淋巴球性細支氣管炎(LB)形式出現,或其可在肺移植後數年以慢性肺同種異體移植物功能障礙(CLAD)形式出現。CLAD先前稱為阻塞性細支氣管炎(BO),但現在被視為可具有不同病理學表現之症候群,包括BO、限制性CLAD (rCLAD或RAS)及嗜中性同種異體移植物功能障礙。慢性肺同種異體移植物功能障礙(CLAD)為肺移植接受者之長期管理中的主要挑戰,此係因為其導致所移植肺逐漸失去功能(Gauthier等人, Curr Transplant Rep.,2016 , 3(3), 185-191)。CLAD對治療之反應不佳,且因此,仍需要能夠預防或治療此病況的有效化合物。諸如IFNγ及IL-5之若干JAK依賴性細胞介素在CLAD及肺移植排斥反應中上調(Berastegui等人,Clin. Transplant. 2017 , 31, e12898)。此外,在JAK依賴性IFN傳訊下游之CXCR3趨化介素(諸如CXCL9及CXCL10)的高肺含量與肺移植患者之惡化結果有關(Shino等人,PLOS One ,2017 , 12 (7), e0180281)。已展示全身性JAK抑制在腎移植排斥反應中有效(Vicenti等人,American Journal of Transplantation ,2012 , 12, 2446-56)。因此,JAK抑制劑有可能有效預防或延遲肺移植排斥反應及CLAD。如描述為肺移植排斥反應之基礎的類似T細胞活化事件亦被視為造血幹細胞移植後可能發生的肺移植物抗宿主病(GVHD)之主要驅動因子。與CLAD類似,肺GVHD為一種慢性進行性病況,其結果極其不佳且目前尚無經批准之治療。對95位接受全身性JAK抑制劑盧佐替尼作為補救治療之患有類固醇難治性急性或慢性GVHD的患者之回溯性多中心調查研究表明,大多數患者(包括患有肺GVHD之彼等患者)對盧佐替尼完全或部分反應(Zeiser等人,Leukemia ,2015 , 29, 10, 2062-68)。由於全身性JAK抑制與嚴重不良事件及較小治療指數相關,因而仍需要吸入的肺部定向之非全身性JAK抑制劑來預防及/或延遲肺移植排斥反應或肺GVHD。化合物1 具有滿足此需求所需要之特性。近年來,免疫檢查點抑制劑誘導之肺炎(另一種T細胞介導性肺病)隨著免疫檢查點抑制劑之使用增加而出現。在用此等T細胞刺激劑治療之癌症患者中,可能產生致死性肺炎。
經混合淋巴球反應分析為模擬移植排斥反應之活體外分析。展示化合物1 有效地抑制IFNγ分泌。
因此,在一個實施例中,本發明提供一種治療哺乳動物(例如,人類)之呼吸道疾病的方法,該方法包含向哺乳動物(或人類)投與治療有效量的化合物1 之結晶水合物(形式I)或包含化合物1 之結晶水合物(形式I)的醫藥組合物。
在一個實施例中,呼吸道疾病係選自由以下組成之群:哮喘、慢性阻塞性肺病、囊腫性纖維化、肺炎、自發性肺纖維化、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫、類肉瘤病、嗜酸性球性疾病、肺部感染、蠕蟲感染、肺動脈高血壓、淋巴管平滑肌瘤、支氣管擴張症、浸潤性肺病、藥物誘導之肺炎、真菌誘導之肺炎、過敏性支氣管與肺的麴菌病、過敏性肺炎、嗜酸性球性肉芽腫伴多血管炎、自發性急性嗜酸性球性肺炎、自發性慢性嗜酸性球性肺炎、嗜酸性白血球增多症候群、呂弗勒症候群、阻塞性細支氣管炎伴機化性肺炎、肺移植物抗宿主病及免疫檢查點抑制劑誘導之肺炎。在一些實施例中,呼吸道疾病為哮喘。在一些實施例中,哮喘為中度至重度哮喘。在一些實施例中,哮喘為輕度至中度哮喘。在一些實施例中,醫藥組合物係藉由吸入投與。在一些實施例中,哮喘為Th2高哮喘。在一些實施例中,哮喘為Th2低哮喘。
在一個實施例中,本發明提供一種預防或延遲哺乳動物(例如,人類)之肺移植排斥反應的方法,該方法包含向哺乳動物(或人類)投與治療有效量的化合物1 之結晶水合物(形式I)或包含化合物1 之結晶水合物(形式I)的醫藥組合物。在一些實施例中,肺移植排斥反應係選自由以下組成之群:原發性移植物功能障礙、機化性肺炎、急性排斥反應、淋巴球性細支氣管炎及慢性肺同種異體移植物功能障礙。在一些實施例中,肺移植排斥反應為急性肺移植排斥反應。在一些實施例中,肺移植排斥反應為慢性肺同種異體移植物功能障礙。在一些實施例中,肺移植排斥反應係選自由以下組成之群:阻塞性細支氣管炎、侷限性慢性肺同種異體移植物功能障礙及嗜中性同種異體移植物功能障礙。在一些實施例中,醫藥組合物係藉由吸入投與。
本文中亦提供形式I之用途,其用於醫學療法中及用於製造用於治療、預防、延遲或緩解適合於用JAK抑制劑進行治療之疾病,特定言之呼吸道疾病及肺移植排斥反應的調配物或藥劑。
本發明進一步提供一種治療哺乳動物之哮喘的方法,該方法包含向哺乳動物投與治療有效量的化合物1 之結晶水合物(形式I)或包含醫藥學上可接受之載劑及化合物1 之結晶水合物(形式I)的醫藥組合物。
當用於治療哮喘時,化合物1 之結晶水合物(形式I)將通常以單次每日劑量或每日多次劑量形式投與,但可使用其他投與形式。每劑量投與之活性劑之量或每日投與之總量將通常由醫師鑒於相關情形來決定,包括待治療之病況、所選投與途徑、所投與之實際化合物及其相對活性、個別患者之年齡、體重及反應、患者之症狀之嚴重程度及其類似者。
本發明進一步提供一種治療哺乳動物之呼吸道疾病(包括但不限於本文中所描述之疾病)的方法,該方法包含向哺乳動物投與治療有效量的化合物1 之結晶水合物(形式I),或包含醫藥學上可接受之載劑及化合物1 之結晶水合物(形式I)的醫藥組合物。
當用於治療呼吸道疾病(包括但不限於本文中所描述之疾病)時,化合物1 之結晶水合物(形式I)將通常以單次每日劑量或以每日多次劑量投與,但可使用其他投與形式。每劑量投與之活性劑之量或每日投與之總量將通常由醫師鑒於相關情形來決定,包括待治療之病況、所選投與途徑、所投與之實際化合物及其相對活性、個別患者之年齡、體重及反應、患者之症狀之嚴重程度及其類似者。
人類冠狀病毒為常見呼吸道病原體且通常誘導輕度上呼吸道疾病。兩種高病原性病毒嚴重急性呼吸道症候群相關冠狀病毒(SARS-CoV-1)及中東呼吸道症候群相關冠狀病毒(MERS-CoV)分別引起導致超過10%及35%死亡率之嚴重呼吸道症候群(Assiri等人, N Engl J Med,2013 , 369, 407-1)。新近出現的2019冠狀病毒疾病(COVID-19)及後續大流行已造成全球醫療緊急情況。與SARS-CoV-1及MERS-CoV類似,患者亞群(約16%)可出現表現為導致入ICU(約5%)、呼吸衰竭(約6.1%)及死亡之急性肺損傷(ALI)的嚴重呼吸道疾病(Wang等人, JAMA,2020 , 323, 11, 1061-1069; Guan等人,N Engl J Med .,2020 , 382, 1708-1720; Huang等人,The Lancet ,2020 . 395 (10223), 497-506; Chen等人,The Lancet ,2020 , 395(10223), 507-13)。患有COVID-19之患者亞群似乎患有導致急性肺損傷及急性呼吸窘迫症候群(ARDS)的高發炎性「細胞介素風暴(cytokine storm)」。此細胞介素風暴亦可溢出進入全身循環中且產生敗血症並最終產生多器官功能障礙症候群。COVID-19中出現之失調細胞介素傳訊之特徵在於干擾素(IFN)、介白素(IL)及趨化介素之表現增加從而導致ALI及相關死亡。此高發炎性反應可潛在地藉由肺選擇性泛Janus激酶(JAK)抑制劑進行調節及治療。針對IL-6 (妥珠單抗(tocilizumab)及賽瑞單抗(sarilumab))之單株抗體似乎在治療患有由COVID-19所致之ALI的患者中有效(Xu X, Han M, Li T, Sun W, Wang D, Fu B等人 Effective Treatment of Severe COVID-19 Patients with Tocilizumab,2020 ,PNAS , https://doi.org/10.1073/pnas.2005615117)。儘管COVID-19之活體內模型尚待公佈,但經2003 SARS-CoV-1及2012 MERS-CoV之小鼠適應株感染以及經人類SARS-CoV-1感染的表現人類SARS-CoV-1受體hACE2之轉殖基因小鼠顯示JAK依賴性細胞介素(諸如IFNγ、IL-6及IL-12)及下游趨化介素(諸如趨化介素(C-C模體)配位體10 (CCL10)、CCL2及CCL7)之升高(McCray等人,J Virol. ,2007 , 81(2), 813-21; Gretebeck等人,Curr Opin Virol. 2015 , 13, 123-9.; Day等人,Virology .2009 , 395(2), 210-22)。亦已展示JAK抑制劑在脂多醣或更昔洛韋(ganciclovir)誘導之ALI之小鼠模型中為有益的(Severgnini等人,Am J Respir Crit Care Med. ,2005 , 171(8), 858-67; Jin等人,Am J Physiol-Lung Cell Mol Physiol. ,2018 , 314(5), L882-92)。最終,基於臨床試驗之結果,巴瑞替尼(baricitinib) (JAK抑制劑)已與瑞德西韋(remdesivir)一起接受緊急情況使用授權(emergency use authorization;EUA),以用於治療需要補充氧、有創機械通氣或體外膜式氧合之患者的COVID-19 (https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19#:~:text=Today%2C%20the%20U.S.%20Food%20and,or%20older%20requiring%20supplemental%20oxygen%2C)。在患有COVID-19之住院患者之臨床試驗中,與接受安慰劑與瑞德西韋之患者相比,展示巴瑞替尼聯合瑞德西韋在開始治療之後的29天內縮短恢復時間。
因此,作為肺選擇性吸入泛JAK抑制劑的化合物1 可特別適合於衰減與COVID-19相關之細胞介素風暴。藉由向肺遞送且避免全身性免疫抑制,亦可避免導致死亡率惡化之另外的感染。此在需要通氣支持之彼等患者中尤其如此。由於患有COVID-19之個體的主要死亡原因似乎為合併症及重複感染,因而吸入藥物治療可為一種避免將使患者易置於此等風險下之全身性免疫抑制。
因此,本發明提供一種治療經冠狀病毒(諸如SARS-CoV-1、SARS-CoV-2及MERS-CoV)感染之哺乳動物(或患者)或其症狀的方法,該方法包含向哺乳動物(或患者)投與本發明的化合物1 之結晶水合物(形式I),或包含醫藥學上可接受之載劑及本發明之化合物1 之結晶水合物(形式I)的醫藥組合物。本發明亦提供一種治療由冠狀病毒感染(諸如SARS-CoV-1、SARS-CoV-2及MERS-CoV)造成的哺乳動物(或患者)之ALI及/或ARDS的方法,該方法包含向哺乳動物(或患者)投與本發明的化合物1 之結晶水合物(形式I),或包含醫藥學上可接受之載劑及本發明之化合物1 之結晶水合物(形式I)的醫藥組合物。
JAK抑制劑之作用機制已與治療鼻發炎性疾病有關(Therapeutic Effects of Intranasal Tofacitinib on Chronic Rhinosinusitis with Nasal Polyps in Mice, Joo等人,The Laryngoscope ,2020 , https://doi.org/10.1002/lary.29129)。此外,藉由阻斷IL-4及IL-13傳訊路徑起作用的度匹魯單抗(Dupilumab)已批准用於治療具有鼻息肉之慢性鼻竇炎。
因此,本發明亦提供一種治療哺乳動物(例如,人類)之鼻發炎性疾病的方法,該方法包含向哺乳動物(或人類)投與本發明之化合物1 之結晶水合物(形式I),或包含醫藥學上可接受之載劑及本發明之化合物1 之結晶水合物(形式I)的醫藥組合物。在一些實施例中,鼻發炎性疾病係選自由以下組成之群:具有或不具有鼻息肉之慢性鼻竇炎、具有鼻息肉之鼻竇炎,及鼻炎(非過敏性、過敏性、常年性及血管舒縮性鼻炎)。
作為JAK抑制劑,本發明之化合物1 之結晶水合物(形式I)亦可適用於多種其他疾病。本發明之化合物1 之結晶水合物(形式I)可適用於多種胃腸發炎性適應症,包括但不限於發炎性腸病、潰瘍性結腸炎(直腸乙狀結腸炎、全結腸炎、潰瘍性直腸炎及左側結腸炎)、克羅恩氏病(Crohn's disease)、膠原性結腸炎、淋巴球性結腸炎、白塞氏病(Behcet's disease)、脂瀉病、免疫檢查點抑制劑誘導之結腸炎、回腸炎、嗜伊紅血球食道炎、移植物抗宿主病相關結腸炎及感染性結腸炎。潰瘍性結腸炎(Reimund等人,J.Clin.Immunology ,1996 ,16 , 144-150)、克羅恩氏病(Woywodt等人,Eur.J.Gastroenterology Hepatology ,1999 ,11 , 267-276)、膠原性結腸炎(Kumawat等人,Mol .Immunology ,2013 ,55 , 355-364)、淋巴球性結腸炎(Kumawat等人,2013 )、嗜酸性食道炎(Weinbrand-Goichberg等人,Immunol.Res. ,2013 ,56 , 249-260)、移植物抗宿主病相關結腸炎(Coghill等人,Blood ,2001 ,117 , 3268-3276)、感染性結腸炎(Stallmach等人,Int .J.Colorectal Dis. ,2004 ,19 , 308-315)、白塞氏病(Zhou等人,Autoimmun.Rev. ,2012 ,11 , 699-704)、脂瀉病(de Nitto等人,World J.Gastroenterol. ,2009 ,15 , 4609-4614)、免疫檢查點抑制劑誘導之結腸炎(例如,CTLA-4抑制劑誘導之結腸炎;(Yano等人,J.Translation.Med. ,2014 ,12 , 191),PD-1或PD-L1抑制劑誘導之結腸炎)及回腸炎(Yamamoto等人,Dig.Liver Dis. ,2008 ,40 , 253-259)之特徵在於某些促發炎細胞介素含量之升高。因為許多促發炎細胞介素經由JAK活化傳訊,因此本申請案中所描述之化合物可能能夠緩解發炎且提供症狀減輕。特定言之,本發明之化合物1 之結晶水合物(形式I)可適用於誘導且維持潰瘍性結腸炎之緩解,且適用於治療移植物抗宿主病中之克羅恩氏病、免疫檢查點抑制劑誘導之結腸炎及腸胃不良作用。因此,在一個實施例中,本發明提供一種治療哺乳動物(例如,人類)之胃腸道發炎疾病的方法,該方法包含向哺乳動物投與本發明之化合物1 之結晶水合物(形式I),或包含醫藥學上可接受之載劑及化合物1 之結晶水合物(形式I)的醫藥組合物。
異位性皮膚炎及其他發炎皮膚病與依賴於JAK-STAT路徑之促發炎細胞介素之升高有關。因此,本發明之化合物1 之結晶水合物(形式I)可在多種皮膚發炎或瘙癢病況中為有益的,包括但不限於異位性皮膚炎、斑禿、白斑病、牛皮癬、皮肌炎、皮膚T細胞淋巴瘤(Netchiporouk等人,Cell Cycle 2014 ;13 , 3331-3335)及亞型(塞紮萊症候群(Sezary syndrome)、蕈樣黴菌病、佩吉特樣網狀細胞增多症、肉芽腫性鬆弛皮膚、淋巴瘤樣丘疹病、慢性苔蘚樣糠疹、急性痘瘡樣苔癬樣糠疹、CD30+皮膚T細胞淋巴瘤、繼發性皮膚CD30+大細胞淋巴瘤、非蕈樣黴菌病CD30−皮膚大T細胞淋巴瘤、多形性T細胞淋巴瘤、倫納特淋巴瘤(Lennert lymphoma)、皮下T細胞淋巴瘤、血管中心性淋巴瘤、母細胞性NK細胞淋巴瘤)、結節性癢疹、扁平苔蘚、原發性局部皮膚澱粉樣變性、大皰性類天疱瘡、移植物抗宿主病之皮膚表現、類天疱瘡、盤狀狼瘡、環狀肉芽腫、慢性單純性苔癬、外陰/陰囊/肛周瘙癢病、硬化性苔癬、帶狀疱疹後神經痛、扁平苔蘚及脫髮性毛囊炎。特定言之,異位性皮膚炎(Bao等人,JAK-STAT ,2013 ,2 , e24137)、斑禿(Xing等人,Nat. Med .2014 ,20 , 1043-1049)、白斑病(Craiglow等人,JAMA Dermatol .2015 ,151 , 1110-1112)、結節性癢疹(Sonkoly等人,J.Allergy Clin.Immunol .2006 ,117 , 411-417)、扁平苔癬(Welz-Kubiak等人,J Immunol Res .2015 , ID:854747)、原發性局部皮膚澱粉樣變性(Tanaka等人,Br J Dermatol .2009 ,161 , 1217-1224)、大皰性類天疱瘡(Feliciani等人,Int J Immunopathol Pharmacol .1999 ,12 , 55-61)及移植物抗宿主疾病之皮膚表現(Okiyama等人,J Invest Dermatol .2014 ,134 , 992-1000)之特徵在於經由JAK活化傳訊之某些細胞介素之升高。因此,本發明之化合物1 之結晶水合物(形式I)可能能夠緩解由此等細胞介素驅動之相關皮膚發炎或搔癢病。特定言之,本發明之化合物1 之結晶水合物(形式I)可預期適用於治療異位性皮膚炎及其他發炎性皮膚病。因此,在一個實施例中,本發明提供一種治療哺乳動物(例,如人類)之發炎性皮膚病的方法,該方法包含向哺乳動物之皮膚施加包含本發明之化合物1 之結晶水合物(形式I)及醫藥載劑的醫藥組合物。在一個實施例中,發炎皮膚病為異位性皮膚炎。
已展示許多眼部疾病與依賴於JAK-STAT路徑之促發炎細胞介素之升高相關。因此,化合物1 之結晶水合物(形式I)可適用於治療多種眼部疾病,包括但不限於葡萄膜炎、糖尿病性視網膜病變、糖尿病性黃斑水腫、乾眼病、年齡相關之黃斑變性及異位性角膜結膜炎。特定言之,葡萄膜炎(Horai及Caspi,J.Interferon Cytokine Res. ,2011 ,31 , 733-744)、糖尿病性視網膜病變(Abcouwer,J.Clin.Cell.Immunol. ,2013 ,增刊 1 , 1-12)、糖尿病性黃斑水腫(Sohn等人,American Journal of Opthamology ,2011 ,152 , 686-694)、乾眼病(Stevenson等人,Arch.Ophthalmol. ,2012 ,130 , 90-100)及年齡相關之黃斑變性(Knickelbein等人,Int .Ophthalmol.Clin. ,2015 ,55(3) , 63-78)之特徵在於經由JAK-STAT路徑傳訊的某些促發炎細胞介素之升高。視網膜靜脈栓塞(RVO)為非常盛行的視覺致殘性疾病。視網膜血流堵塞可導致視網膜血管結構損傷、出血及組織局部缺血。儘管RVO之原因係多因素的,但血管以及發炎性介體兩者皆展示出重要性(Deobhakta等人,International Journal of Inflammation ,2013 , 文章ID 438412)。經由JAK-STAT路徑傳訊的細胞介素(諸如IL-6及IL-13)以及其產生部分地藉由JAK-STAT路徑傳訊驅動之其他細胞介素(諸如MCP-1)已在患有RVO之患者之眼部組織中偵測到較高含量(Shchuko等人,Indian Journal of Ophthalmology ,2015 , 63(12), 905-911)。因此,本發明之化合物1 之結晶水合物(形式I)可能能夠緩解相關眼部發炎且逆轉疾病進展或提供此疾病之症狀減輕。雖然患有RVO之許多患者係藉由光凝治療,但此為本質上破壞性療法。亦使用抗VEGF劑,但其僅在一部分患者中有效。亦已展示降低眼部發炎程度之類固醇藥物(曲安奈德(Triamcinolone acetonide)及地塞米松(dexamethasone)植入物)為患有某些形式之RVO的患者提供有益結果,但其亦已展示導致白內障及增加的眼內壓/青光眼。
因此,本發明之化合物1 之結晶水合物(形式I)可能能夠緩解相關眼部發炎且逆轉疾病進展或提供症狀減輕。在一個實施例中,因此,本發明提供一種治療哺乳動物之眼部疾病的方法,該方法包含向哺乳動物之眼部投與包含本發明之化合物1 之結晶水合物(形式I)及醫藥載劑的醫藥組合物。在一個實施例中,眼部疾病為葡萄膜炎、糖尿病性視網膜病變、糖尿病性黃斑水腫、乾眼病、年齡相關之黃斑變性、視網膜靜脈栓塞或異位性角膜結膜炎。在一個實施例中,該方法包含藉由玻璃體內注射來投與本發明之化合物1 之結晶水合物(形式I)。化合物1 之結晶水合物(形式I)亦可與適用於眼部疾病之一或多種化合物組合使用。
化合物1 之結晶水合物(形式I)亦可適用於治療其他疾病,諸如其他發炎性疾病、自體免疫疾病或癌症。本發明之化合物1 之結晶水合物(形式I)可適用於治療以下中之一或多者:關節炎、類風濕性關節炎、青少年類風濕性關節炎、移植排斥反應、乾眼症、牛皮癬性關節炎、糖尿病、胰島素依賴性糖尿病、運動神經元疾病、骨髓發育不良症候群、疼痛、肌肉減少症、惡病質、敗血性休克、全身性紅斑性狼瘡症、白血病、慢性淋巴球性白血病、慢性骨髓細胞性白血病、急性淋巴細胞性白血病、急性骨髓性白血病、僵直性脊椎炎、骨髓纖維化、B細胞淋巴瘤、肝細胞癌、霍奇金氏病(Hodgkins disease)、乳癌、多發性骨髓瘤、黑素瘤、非霍奇金氏淋巴瘤(non-Hodgkin lymphoma)、非小細胞肺癌、卵巢透明細胞癌、卵巢腫瘤、胰臟腫瘤、真性紅細胞增多症、休格連氏症候群(Sjogren's syndrome)、軟組織肉瘤、肉瘤、脾腫大、T細胞淋巴瘤及重型地中海貧血。
組合療法 本發明之化合物1 之結晶水合物(形式I)可與藉由相同機制或藉由不同機制起作用以治療疾病的一或多種藥劑組合使用。不同藥劑可在單獨組合物或相同組合物中依序或同時投與。適用於組合療法之藥劑類別包括但不限於β2腎上腺素受體促效劑、蕈毒鹼受體拮抗劑、糖皮質激素促效劑、G蛋白偶合受體-44拮抗劑、白三烯D4拮抗劑、蕈毒M3受體拮抗劑、組織胺H1受體拮抗劑、免疫球蛋白E拮抗劑、PDE 4抑制劑、IL-4拮抗劑、蕈毒M1受體拮抗劑、組織胺受體拮抗劑、IL-13拮抗劑、IL-5拮抗劑、5-脂肪加氧酶抑制劑、β腎上腺素受體促效劑、CCR3趨化介素拮抗劑、CFTR刺激劑、免疫球蛋白調節劑、介白素33配位體抑制劑、PDE 3抑制劑、磷酸肌醇-3激酶δ抑制劑、凝血脂素A2拮抗劑、彈性蛋白酶抑制劑、Kit酪胺酸激酶抑制劑、白三烯E4拮抗劑、白三烯拮抗劑、PGD2拮抗劑、TNF α配位體抑制劑、TNF結合劑、互補級聯抑制劑、伊紅趨素配位體抑制劑、麩胱甘肽還原酶抑制劑、組織胺H4受體拮抗劑、IL-6拮抗劑、IL2基因刺激劑、免疫球蛋白γ Fc受體IIB調節劑、干擾素γ配位體、介白素13配位體抑制劑、介白素17配位體抑制劑、L-選擇蛋白拮抗劑、白血球彈性酶抑制劑、白三烯C4拮抗劑、白三烯C4合成酶抑制劑、膜銅胺氧化酶抑制劑、金屬蛋白酶-12抑制劑、金屬蛋白酶-9抑制劑、蟎過敏原調節劑、蕈毒受體調節劑、菸鹼乙醯膽鹼受體促效劑、核因子κ B抑制劑、p-選擇蛋白拮抗劑、PDE 5抑制劑、PDGF受體拮抗劑、磷酸肌醇-3激酶γ抑制劑、TLR-7促效劑、TNF拮抗劑、Abl酪胺酸激酶抑制劑、乙醯膽鹼受體拮抗劑、酸性哺乳動物殼質酶抑制劑、ACTH受體促效劑、肌動蛋白聚合調節劑、腺苷A1受體拮抗劑、腺苷酸環化酶刺激劑、腎上腺素受體拮抗劑、促腎上腺皮質荷爾蒙配位體、醇去氫酶5抑制劑、α 1抗胰蛋白酶刺激劑、α 1蛋白酶抑制劑、雄激素受體調節劑、血管收縮素轉化酶2刺激劑、ANP促效劑、Bcr蛋白質抑制劑、β 1腎上腺素受體拮抗劑、β 2腎上腺素受體拮抗劑、β 2腎上腺素受體調節劑、β澱粉狀蛋白調節劑、BMP10基因抑制劑、BMP15基因抑制劑、鈣通道抑制劑、組織蛋白酶G抑制劑、CCL26基因抑制劑、CCR3趨化介素調節劑、CCR4趨化介素拮抗劑、細胞黏附分子抑制劑、伴侶蛋白刺激劑、殼質酶抑制劑、膠原蛋白I拮抗劑、互補C3抑制劑、CSF-1拮抗劑、CXCR2趨化介素拮抗劑、細胞介素受體共用β鏈調節劑、細胞毒性T淋巴球蛋白質-4刺激劑、去氧核糖核酸酶I刺激劑、去氧核糖核酸酶刺激劑、二肽基肽酶I抑制劑、DNA回旋酶抑制劑、DP前列腺素受體調節劑、E-選擇蛋白拮抗劑、EGFR家族酪胺酸激酶受體抑制劑、彈性蛋白調節劑、內皮素ET-A拮抗劑、內皮素ET-B拮抗劑、環氧化物水解酶抑制劑、FGF3受體拮抗劑、Fyn酪胺酸激酶抑制劑、GATA 3轉錄因子抑制劑、葡糖神經醯胺酶調節劑、麩胺酸受體調節劑、GM-CSF配位體抑制劑、鳥苷酸環化酶刺激劑、H+ K+ ATP酶抑制劑、紅血球蛋白調節劑、肝素促效劑、組織蛋白去乙醯酶抑制劑、組織蛋白去乙醯酶-2刺激劑、HMG CoA還原酶抑制劑、I-κ B激酶β抑制劑、ICAM1基因抑制劑、IL-17拮抗劑、IL-17受體調節劑、IL-23拮抗劑、IL-4受體調節劑、免疫球蛋白G調節劑、免疫球蛋白G1促效劑、免疫球蛋白G1調節劑、免疫球蛋白ε Fc受體IA拮抗劑、免疫球蛋白γ Fc受體IIB拮抗劑、免疫球蛋白κ調節劑、胰島素敏化劑、干擾素β配位體、介白素1樣受體拮抗劑、介白素18配位體抑制劑、介白素受體17A拮抗劑、介白素-1 β配位體抑制劑、介白素-5配位體抑制劑、介白素-6配位體抑制劑、KCNA電位閘控鉀通道-3抑制劑、Kit配位體抑制劑、層黏連蛋白-5促效劑、白三烯CysLT1受體拮抗劑、白三烯CysLT2受體拮抗劑、LOXL2基因抑制劑、Lyn酪胺酸激酶抑制劑、MARCKS蛋白質抑制劑、MDR相關蛋白4抑制劑、金屬蛋白酶-2調節劑、金屬蛋白酶-9調節劑、鹽皮質激素受體拮抗劑、蕈毒M2受體拮抗劑、蕈毒M4受體拮抗劑、蕈毒M5受體拮抗劑、利鈉(Natriuretic)肽受體A促效劑、自然殺手細胞受體調節劑、菸鹼ACh受體α 7亞單元刺激劑、NK細胞受體調節劑、核因子κ B調節劑、類鴉片生長因子受體促效劑、P-糖蛋白抑制劑、P2X3嘌呤受體拮抗劑、p38 MAP激酶抑制劑、肽酶1調節劑、磷脂酶A2抑制劑、磷脂酶C抑制劑、纖維蛋白溶酶原活化抑制劑1抑制劑、血小板活化因子受體拮抗劑、PPAR γ促效劑、前列環素促效劑、蛋白酪胺酸激酶抑制劑、SH2域肌醇磷酸酶1刺激劑、訊息轉導抑制劑、鈉通道抑制劑、STAT-3調節劑、幹細胞抗原-1抑制劑、超氧化歧化酶調節劑、T細胞表面糖蛋白CD28抑制劑、T細胞表面糖蛋白CD8抑制劑、TGF β促效劑、TGF β拮抗劑、凝血脂素合成酶抑制劑、胸腺基質淋巴蛋白配位體抑制劑、胸腺素促效劑、胸腺素β 4配位體、TLR-8促效劑、TLR-9促效劑、TLR9基因刺激劑、拓樸異構酶IV抑制劑、肌鈣蛋白I快速骨骼肌刺激劑、肌鈣蛋白T快速骨骼肌刺激劑、I型IL-1受體拮抗劑、II型TNF受體調節劑、離子通道調節劑、子宮球蛋白刺激劑及VIP促效劑。
可與本發明化合物1 之結晶水合物(形式I)組合使用的特定藥劑包括但不限於醋酸洛斯普特(rosiptor acetate)、蕪地溴銨(umeclidinium bromide)、塞庫金單抗(secukinumab)、醋酸米特法林(metenkefalin acetate)、醋酸特瑞迪卡泰德(tridecactide acetate)、丙酸氟替卡松(fluticasone propionate)、α-環糊精穩定化蘿蔔硫素、特澤派單抗(tezepelumab)、糠酸莫美他松(mometasone furoate)、BI-1467335、度匹魯單抗、阿地銨(aclidinium)、福莫特羅(formoterol)、AZD-1419、HI-1640V、利維潘(rivipansel)、CMP-001、甘露醇、ANB-020、奧馬珠單抗(omalizumab)、曲加力單抗(tregalizumab)、米替雜可(Mitizax)、苯拉組單抗(benralizumab)、戈利木單抗(golimumab)、羅氟司特(roflumilast)、伊馬替尼(imatinib)、REGN-3500、馬賽替尼(masitinib)、阿普司特(apremilast)、RPL-554、阿克姆(Actimmune)、阿達木單抗(adalimumab)、盧帕他定(rupatadine)、帕羅格列(parogrelil)、MK-1029、二丙酸倍氯米松(beclometasone dipropionate)、反丁烯二酸福莫特羅(formoterol fumarate)、莫格利珠單抗(mogamulizumab)、塞曲司特(seratrodast)、UCB-4144、奈米利塞(nemiralisib)、CK-2127107、非維蘭特(fevipiprant)、達尼立辛(danirixin)、波生坦(bosentan)、阿巴西普(abatacept)、EC-18、德衛利昔(duvelisib)、多西帕斯德(dociparstat)、環丙沙星(ciprofloxacin)、沙丁胺醇(salbutamol) HFA、厄多司坦(erdosteine)、PrEP-001、奈多羅米(nedocromil)、CDX-0158、沙丁胺醇、恩博沙(enobosarm)、R-TPR-022、朗齊魯單抗(lenzilumab)、糠酸氟替卡松(fluticasone furoate)、三氟甲磺酸威蘭特羅(vilanterol trifenatate)、丙酸氟替卡松、沙美特羅(salmeterol)、PT-007、PRS-060、瑞美斯特賽-L (remestemcel-L)、瓜胺酸、RPC-4046、氧化氮、DS-102、吉瑞利單抗(gerilimzumab)、阿塔爾(Actair)、糠酸氟替卡松、蕪地溴銨(umeclidinium)、威蘭特羅(vilanterol)、AG-NPP709、加蒙克斯(Gamunex)、英利昔單抗(infliximab)、安培(Ampion)、阿庫馬莫德(acumapimod)、卡那吉努單抗(canakinumab)、INS-1007、CYP-001、思魯庫單抗(sirukumab)、丙酸氟替卡松、美泊利單抗(mepolizumab)、匹伐他汀(pitavastatin)、索利黴素(solithromycin)、依那西普(etanercept)、艾伐卡托(ivacaftor)、阿那白滯素(anakinra)、MPC-300-IV、格隆溴銨(glycopyrronium bromide)、阿地溴銨(aclidinium bromide)、FP-025、里森基單抗(risankizumab)、格隆銨(glycopyrronium)、反丁烯二酸福莫特羅、阿迪潑賽爾(Adipocell)、YPL-001、噻托溴銨(tiotropium bromide)、格隆溴銨、順丁烯二酸茚達特羅(indacaterol maleate)、安德西單抗(andecaliximab)、奧達特羅(olodaterol)、埃索美拉唑(esomeprazole)、塵蟎疫苗、艾蒿花粉過敏原疫苗、萬莫龍(vamorolone)、吉法匹生(gefapixant)、瑞芬那新(revefenacin)、吉非替尼(gefitinib)、瑞津(ReJoin)、泰魯斯特(tipelukast)、貝多拉君(bedoradrine)、SCM-CGH、SHP-652、RNS-60、布羅達單抗(brodalumab)、BIO-11006、蕪地溴銨、三氟甲磺酸威蘭特羅、異丙托溴銨(ipratropium bromide)、塔羅金單抗(tralokinumab)、PUR-1800、VX-561、VX-371、奧洛他定(olopatadine)、妥布特羅(tulobuterol)、反丁烯二酸福莫特羅、曲安奈德、瑞利珠單抗(reslizumab)、羥萘甲酸沙美特羅(salmeterol xinafoate)、丙酸氟替卡松、二丙酸倍氯米松、反丁烯二酸福莫特羅、噻托溴銨、利蓋利珠單抗(ligelizumab)、RUTI、柏替利木單抗(bertilimumab)、奧馬珠單抗、格隆溴銨、SENS-111、二丙酸倍氯米松、CHF-5992、LT-4001、茚達特羅(indacaterol)、格隆溴銨、糠酸莫美他松、非索非那定(fexofenadine)、格隆溴銨、阿奇黴素(azithromycin)、AZD-7594、福莫特羅、CHF-6001、巴芬特羅(batefenterol)、OATD-01、奧達特羅、CJM-112、羅格列酮(rosiglitazone)、沙美特羅、塞提普蘭特(setipiprant)、吸入干擾素β、AZD-8871、普卡那肽(plecanatide)、氟替卡松、沙美特羅、二十碳五烯酸單甘油酸酯、雷布瑞奇單抗(lebrikizumab)、RG-6149、QBKPN、莫美他松(Mometasone)、茚達特羅、AZD-9898、丙酮酸鈉(sodium pyruvate)、齊留通(zileuton)、CG-201、咪達那新(imidafenacin)、CNTO-6785、CLBS-03、莫美他松、RGN-137、丙卡特羅(procaterol)、福莫特羅、CCI-15106、POL-6014、茚達特羅、倍氯米松(beclomethasone)、MV-130、GC-1112、阿勒格瓦茨得寶(Allergovac depot)、MEDI-3506、QBW-251、ZPL-389、烏地那非(udenafil)、GSK-3772847、左旋西替利嗪(levocetirizine)、AXP-1275、ADC-3680、替馬蘭特(timapiprant)、阿貝特羅(abediterol)、AZD-7594、異丙托溴銨、硫酸沙丁胺醇、塔得克尼α (tadekinig alfa)、ACT-774312、鏈道酶α、伊洛前列素(iloprost)、巴芬特羅、糠酸氟替卡松、阿利卡弗森(alicaforsen)、環索奈德(ciclesonide)、金剛砂胺(emeramide)、阿福莫特羅(arformoterol)、SB-010、奧紮格雷(Ozagrel)、BTT-1023、德克單抗(Dectrekumab)、左旋沙丁胺醇(levalbuterol)、普魯司特(pranlukast)、玻尿酸、GSK-2292767、福莫特羅、NOV-14、蘆西納坦(Lucinactant)、沙丁胺醇、普賴蘇穠(prednisolone)、依巴司汀(ebastine)、地塞米松西匹西雷(dexamethasone cipecilate)、GSK-2586881、BI-443651、GSK-2256294、VR-179、VR-096、hdm-ASIT+、布地奈德(budesonide)、GSK-2245035、VTX-1463、依美斯汀(Emedastine)、右旋普拉克索(dexpramipexole)、左旋沙丁胺醇、N-6022、地塞米松磷酸鈉、PIN-201104、OPK-0018、TEV-48107、司特(suplatast)、BI-1060469、吉米魯司特(Gemilukast)、干擾素γ、達拉紮肽(dalazatide)、比拉斯汀(bilastine)、丙酸氟替卡松、羥萘甲酸沙美特羅、RP-3128、苯環喹溴銨(bencycloquidium bromide)、瑞利珠單抗、PBF-680、CRTH2拮抗劑、普魯司特、羥萘甲酸沙美特羅、丙酸氟替卡松、單水合噻托溴銨、馬魯司特(masilukast)、RG-7990、多索茶鹼(Doxofylline)、阿貝特羅、格隆溴銨、TEV-46017、ASM-024、丙酸氟替卡松、格隆溴銨、羥萘甲酸沙美特羅、沙丁胺醇、TA-270、氟尼縮松(Flunisolide)、色甘酸鈉(sodium chromoglycate)、Epsi-gam、ZPL-521、沙丁胺醇、阿肽地爾(aviptadil)、TRN-157、紮魯司特(Zafirlukast)、斯替姆普賽爾(Stempeucel)、哌羅來斯鈉(pemirolast sodium)、納多洛爾(nadolol)、丙酸氟替卡松+羥萘甲酸沙美特羅、RV-1729、硫酸沙丁胺醇、二氧化碳+全氟辛基溴、APL-1、德克單抗+ VAK-694、離胺酸乙醯基水楊酸鹽、齊留通、TR-4、人類同種異體脂肪衍生間葉細胞母細胞療法、MEDI-9314、PL-3994、HMP-301、TD-5471、NKTT-120、哌羅來斯(pemirolast)、二丙酸倍氯米松、川丁特羅(trantinterol)、單鈉α流明諾(monosodium alpha luminol)、IMD-1041、AM-211、TBS-5、ARRY-502、塞曲司特、重組米迪斯美(midismase)、ASM-8、地夫可特(deflazacort)、班布特羅(bambuterol)、RBx-10017609、異丙托銨(ipratropium)+非諾特羅(fenoterol)、氟替卡松+福莫特羅、依匹斯汀(epinastine)、WIN-901X、VALERGEN-DS、OligoG-COPD-5/20、妥布特羅、奧克斯都保(oxis Turbuhaler)、DSP-3025、ASM-024、咪唑司汀(mizolastine)、布地奈德+沙美特羅、LH-011、AXP-E、組織胺人類免疫球蛋白、YHD-001、茶鹼(theophylline)、胺溴素(ambroxol) +厄多司坦、雷馬曲班(ramatroban)、孟魯司特(montelukast)、普魯司特、AG-1321001、妥布特羅、異丙托銨+沙丁胺醇、曲尼司特(tranilast)、甲基普賴蘇穠舒必坦(methylprednisolone suleptanate)、考福辛達羅帕特(colforsin daropate)、瑞吡司特(repirinast)及多索茶鹼。
本文中亦提供一種醫藥組合物,其包含本發明之化合物1 之結晶水合物(形式I)及一或多種其他治療劑。治療劑可選自上文所指定之藥劑類別及上文所描述之特定藥劑清單。在一些實施例中,醫藥組合物適用於遞送至肺。在一些實施例中,醫藥組合物適用於吸入或霧化投與。在一些實施例中,醫藥組合物為乾粉或液體懸浮劑。
此外,在一方法實施例中,本發明提供一種治療哺乳動物之疾病或病症的方法,其包含向哺乳動物投與本發明之化合物1 之結晶水合物(形式I)及一或多種其他治療劑。
當用於組合療法中時,藥劑可以單一醫藥組合物形式調配,或藥劑可提供於單獨組合物中,該等組合物同時或在不同時間藉由相同或藉由不同投與途徑投與。此類組合物可單獨地封裝或可作為套組封裝在一起。套組中之兩種或更多種治療劑可藉由相同投與途徑或藉由不同投與途徑投與。
實例 提供以下合成及生物實例以說明本發明,且不以任何方式解釋為限制本發明之範疇。除非另外指示,否則在以下實例中,以下縮寫具有以下含義。未在下文定義之縮寫具有其一般可接受的含義。 ACN =               乙腈 calcd =               計算值 DCM =               二氯甲烷 DIPEA    =N,N -二異丙基乙胺 DMF =N,N -二甲基甲醯胺 EtOAc    =        乙酸乙酯 h =                   小時 HATU=N,N,N',N' -四甲基-O-(7-氮雜苯并三唑-1-基)脲鎓六氟磷酸鹽 IPA =                 異丙醇 IPAc =              乙酸異丙酯 KOAc     =        乙酸鉀 MeOH=              甲醇 min   =               分鐘 PdCl2 (dppf) =   二氯(1,1'-雙(二苯膦基)-二茂鐵)二鈀(II) Pd(PPh3 )4 = 肆(三苯膦)鈀(0) RT    =              室溫 TEA  =               三乙胺 TFA  =               三氟乙酸 THF  =               四氫呋喃 雙(
Figure 110106884-A0304-12-01
根基)二硼 =     4,4,5,5,4',4',5',5'-八甲基-[2,2']聯[[1,3,2]二氧硼㖦]
試劑及溶劑係購自商業供應商(Aldrich、Fluka、Sigma等),且不經進一步純化即使用。藉由薄層層析(TLC)、分析型高效液相層析(anal. HPLC)及質譜分析來監測反應混合物之進程。如在各反應中特定描述來處理反應混合物;通常藉由萃取及其他純化方法(諸如溫度依賴性及溶劑依賴性結晶及沈澱)來純化反應混合物。另外,藉由管柱層析或藉由製備型HPLC,通常使用C18或BDS管柱填充物及習知溶離劑以常規方式純化反應混合物。下文描述典型的製備型HPLC條件。
藉由質譜及1 H-NMR光譜以常規方式進行反應產物之表徵。對於NMR分析,將樣品溶解於氘化溶劑(諸如CD3 OD、CDCl3d 6 -DMSO)中,且在標準觀測條件下用Varian Gemini 2000儀器(400 MHz)獲得1 H-NMR光譜。藉由電噴霧電離法(ESMS)用耦接至自動純化系統之Applied Biosystems (Foster City, CA)型號API 150 EX儀器或Waters (Milford, MA) 3100儀器來執化合物之質譜鑑別。
製備型 HPLC 條件 管柱:               C18,5 μ m. 21.2×150 mm或C18,5 μ m 21×250或C14,5 μ m 21×150 mm 管柱溫度:        室溫 流動速率:        20.0 mL/min 移動相:            A=水+0.05% TFA B = ACN + 0.05 % TFA, 注射體積:        (100 µL-1500 µL) 偵測器波長:     214 nm
將粗化合物以約50 mg/mL溶解於1:1水:乙酸中。使用2.1×50 mm C18管柱進行4分鐘分析規模測試運行,隨後使用100 µL注射液用基於分析規模測試運行之B滯留%的梯度進行15或20分鐘製備型規模運行。確切梯度為樣品依賴性的。用21×250 mm C18管柱及/或21×150 mm C14管柱檢查具有緊密運行雜質之樣品以進行最佳分離。藉由質譜分析來鑑別含有所要產物之溶離份。
分析型 HPLC 條件 方法 A 管柱:              Agilent Zorbax Bonus-RP C18,150×4.60 nm,3.5微米 管柱溫度:        40℃ 流動速率:        1.5 mL/min 注射體積:        5 μL 樣品製備:        溶解於1:1 ACN:1 M HCl中 行動相:            A=水:TFA (99.95:0.05) B=ACN:TFA (99.95: 0.05) 偵測器波長:     254 nm及214 nm 梯度:               總共26 min (時間(min)/% B):0/5、18/90、22/90、22.5/90、26/5方法 B 管柱:              Agilent Poroshell 120 Bonus-RP,4.6×150 mm,2.7 μm 管柱溫度:        30℃ 流動速率:        1.5 mL/min 注射體積:        10 μL 行動相:            A=ACN:水:TFA (2:98:0.1) B=ACN:水:TFA (90:10:0.1) 樣品製備:        溶解於行動相B中 偵測器波長:     254 nm及214 nm 梯度:               總共60 min (時間(min)/% B):0/0、50/100、55/100、55.1/0、60/0方法 C 管柱:              Agilent Poroshell 120 Bonus-RP,4.6×150 mm,2.7 μm 管柱溫度:        30℃ 流動速率:        1.5 mL/min 注射體積:        10 μL 行動相:            A=ACN:水:TFA (2:98:0.1) B=ACN:水:TFA (90:10:0.1) 樣品製備:        溶解於行動相B (0.15 mL)中,接著用行動相A (0.85 mL)稀釋 偵測器波長:     245 nm 梯度:               總共46 min (時間(分鐘)/% B):0/0、25/50、35/100、40/100、40.1/0、46/0
製備 1 (4-( 苯甲氧基 )-2- 乙基苯基 ) 三氟 4 - 硼烷 鉀鹽 I-5
Figure 02_image014
(a)  1-(苯甲氧基)-3-乙苯(I-2) 在室溫下向3-乙酚(I-1) (25.0 g,204.0 mmol)於ACN (250 mL,10體積)中之攪拌溶液中添加碳酸鉀(42.0 g,306 mmol)。將所得反應塊狀物在室溫下攪拌15分鐘,隨後以逐滴方式添加苯甲基溴(24.0 mL,204 mmol)。將所得反應混合物在室溫下攪拌6小時。在反應完成(TLC監測)後,將所得反應塊狀物倒入水(1.0 L)中,隨後用EtOAc (2×2 L)萃取化合物。將合併之有機物用冷水、鹽水溶液洗滌,且經硫酸鈉乾燥,過濾並在減壓下蒸發。接著藉由矽膠管柱層析(100-200 M)藉由使用溶離劑2% EtOAc/己烷來純化粗產物,以得到呈淡黃色油性化合物之所要產物(I-2) (35.0 g,81%)。1 H NMR (400 MHz, 氯仿-d) δ 7.46-7.44 (m, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.34-7.31 (m, 1H), 7.21 (t, J = 7.6 Hz), 6.86-6.80 (m, 3H), 5.07 (s, 2H), 2.64 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H)。
(b) 4-(苯甲氧基)-1-溴-2-乙苯(I-3) 歷經15分鐘之時段,向1-(苯甲氧基)-3-乙苯(I-2) (35.0 g,164 mmol)於ACN (525 mL,15體積)中之冰冷攪拌溶液中逐份添加N-溴丁二醯亞胺(32.0 g,181mmol)。將所得反應混合物在室溫下攪拌下一個1小時。在反應完成(TLC監測)之後,將所得反應塊狀物倒入冰冷水(1.50 L)中,隨後用EtOAc (2×1 L)萃取化合物。將合併之有機物用水洗滌,且經硫酸鈉乾燥,過濾並在減壓下蒸發以獲得粗產物。將正己烷(250 mL)添加至粗材料,從而產生漿液,隨後經由燒結漏斗過濾。在減壓下蒸發母液以獲得呈淡黃色油性化合物之所要產物I-3 (42.0 g,87%)。1 H NMR (400 MHz, 氯仿-d) δ 7.52-7.29 (m, 7H), 6.88 (s, 1H), 6.68 (d, J = 6.0 Hz, 1H), 5.04 (s, 2H), 2.69 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.5 Hz, 3H)。
(c)  2-(4-(苯甲氧基)-2-乙基苯基)-4,4,5,5-四甲基-1,3,2-二氧硼㖦(I-4) 藉由吹掃N2 (g)持續15 min使4-(苯甲氧基)-1-溴-2-乙苯(I-3) (42.0 g,144 mmol)、雙(
Figure 110106884-A0304-12-01
根基)二硼(44.0 g,173 mmol)及乙酸鉀(28 g,288 mmol)於二㗁烷(440 mL)中之攪拌溶液脫氣,隨後添加PdCl2 (dppf) DCM錯合物(11.0 g,15 mmol)。將所得反應混合物加熱至80℃持續下一個16 h。在反應完成(TLC監測)之後,使反應塊狀物經由矽藻土床過濾,且在減壓下蒸發母液以獲得粗產物。藉由矽膠管柱層析(100-200 M)藉由使用溶離劑1% EtOAc/己烷來純化粗殘餘物,以得到呈淡黃色油性化合物之所要產物(I-4) (32.0 g,66%)。1 H NMR (400 MHz, 氯仿-d) δ 7.74 (d, J = 8.4 Hz, 1H), 7.45-7.36 (m, 5H), 6.84-6.78 (m, 2H), 5.08 (s, 2H), 2.91 (q, J = 7.6 Hz), 1.33 (s, 12H), 1.19 (t, J = 7.6 Hz, 3H)。
(d) (4-(苯甲氧基)-2-乙基苯基)三氟-λ4 -硼烷,鉀鹽(I-5) 向化合物2-(4-(苯甲氧基)-2-乙基苯基)-4,4,5,5-四甲基-1,3,2-二氧硼㖦(I-4) (20 g,59.0 mmol)於丙酮:甲醇(200 mL,1:1比率,10體積)中之攪拌溶液中添加3M氟化氫鉀溶液(23.0 g,295 mmol,溶解於98.0 mL之水中)。將所得反應混合物在室溫下攪拌16小時。在反應完成(TLC監測)之後,將所得反應塊狀物在減壓下蒸發。將由此獲得之固體溶解於水(100 mL)中,且在室溫下攪拌30 min。將所得反應塊狀物經由燒結漏斗過濾,用正己烷洗滌,並在減壓下乾燥以得到呈白色固體狀之所要產物(I-5) (14.0 g,74%)。1 H NMR (400 MHz, 氯仿-d) δ 7.43 (d, J = 7.2 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.30 (t, J = 7.1 Hz, 1H), 7.22 (d, J = 8.0 Hz), 6.58 (s, 1H), 6.53 (d, J = 7.9 Hz, 1H), 5.00 (s, 2H), 2.65 (q, J = 7.5 Hz, 2H), 1.07 (t, J = 7.4 Hz, 3H)。
製備 2 (S )-3- 苯甲基 -3,4,6,7- 四氫 -5H- 咪唑并 [4,5-c] 吡啶 -5,6- 二甲酸 6- 苯甲酯 5-( 三級丁 ) (I-11)
Figure 02_image016
(a)  (S )-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸,鹽酸鹽(I-7) 向L-組胺酸(I-6) (5.0 kg,32.14 mol)於水(40 L,8體積)中之冰冷攪拌懸浮液中添加濃鹽酸(3.93 L,33.75 mol),隨後以逐滴方式添加甲醛(5.50 L,67.5mol,37%水溶液)。將所得溶液在相同溫度下攪拌30分鐘且接著在80℃下加熱8小時。藉由LCMS監測反應進程。在減壓下移除水以獲得粗產物且將所得粗物質在甲苯(20 L)中攪拌2小時。在減壓下移除有機物以移除過量水且將化合物共沸乾燥。接著將所得材料放入乙醚(20 L)中且攪拌2小時。接著將固體材料過濾且空氣乾燥以獲得呈灰白色固體狀之所要產物(I-7) (6.50 Kg,85%)。1 H NMR (400 MHz, D2O) δ 8.69 (s, 1H), 4.56 (d, J = 15.4 Hz, 1H), 4.42 (d, J = 15.5 Hz, 1H), 4.20 (dd, J = 5.5, 5.2 Hz, 1H), 3.42 (dd, J = 5.0, 17.0 Hz, 1H), 3.11 (dd, J = 10.2, 16.8 Hz, 1H)。
(b) (S )-3,5-雙(三級丁氧基羰基)-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸(I-8) 向(S )-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸二鹽酸鹽(I-7) (6.10 Kg,25.40 mol)於1,4-二㗁烷(48 L,8體積)及水(48 L,8體積)中之冰冷攪拌溶液中逐滴添加三乙胺(12.36 L,89 mol),隨後歷經30 min之時段添加二碳酸二三級丁酯(18.07 L,78.74 mol,溶解於5 L之1,4-二㗁烷中)。將所得反應混合物在室溫下攪拌下一個16小時。在反應完成(TLC與LCMS監測)之後,將淺黃色反應混合物用水(10 L)稀釋,且連續用乙醚(2×10 L)及EtOAc (2×7.50 L)洗滌。丟棄有機相。將水層冷卻,且用6N HCl溶液使其達至pH約3;用EtOAc (3×10 L)萃取水相。將合併之有機物用鹽水溶液洗滌,經硫酸鈉乾燥,且在減壓下濃縮。使油性殘餘物自30% EtOAc:己烷結晶以得到呈灰白色固體狀之所要產物(I-8) (5.1 Kg,55%)。(m/z):C17 H25 N3 O6 之[M+H]+計算值368.18,實驗值368.21。
(c)  (S )-6,7-二氫-3H-咪唑并[4,5-c]吡啶-3,5,6(4H)三甲酸6-苯甲酯3,5-二三級丁酯(I-9) 向(S )-3,5-雙(三級丁氧基羰基)-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸(I-8) (5.1 Kg,13.88 mol)於DCM (51 L,10體積)中之冰冷溶液中依序添加飽和碳酸氫鈉水溶液(41.0 L,8體積)、四丁基碘化銨(5.13 Kg,13.88 mol)及苯甲基溴(2.47 L,20.82 mol)。將所得反應混合物在室溫下攪拌下一個16小時。在反應完成(TLC與LCMS監測)之後,分離二相溶液。用DCM (3×10 L)萃取水層。將合併之有機物用鹽水溶液洗滌,經硫酸鈉乾燥,過濾且在減壓下濃縮以獲得粗產物,藉由矽膠管柱層析(100-200 M)藉由使用溶離劑40% EtOAc/己烷純化該粗產物以得到呈黏稠油狀物之所要產物(I-9) (4.50 Kg,72%)。(m/z):C24 H31 N3 O6 之[M+H]+計算值458.22,實驗值458.60。
(d) (S )-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-10) 向(S )-6,7-二氫-3H-咪唑并[4,5-c]吡啶-3,5,6(4H)-三甲酸6-苯甲酯3,5-二三級丁酯(I-9) (4.50 Kg,9.84 mol)於IPA (45 L,10體積)中之冰冷溶液中逐滴添加氫氧化銨(36 L,8體積)。將所得反應混合物進一步在室溫下攪拌下一個16小時。在反應完成(TLC與LCMS監測)之後,將所得混合物用水(25 L)稀釋,隨後用EtOAc (3×20 L)萃取。將合併之有機物用鹽水溶液洗滌,經硫酸鈉乾燥,過濾且在減壓下濃縮以得到粗產物,藉由矽膠管柱層析(100-200 M)藉由使用溶離劑2% MeOH/DCM純化該粗產物以獲得呈濃稠黏性油狀物之所要產物(I-10) (2.70 Kg,77%)。(m/z):C19 H23 N3 O4 之[M+H]+計算值358.17,實驗值358.33。
(e)  (S )-3-苯甲基-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-11) 向(S )-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-10) (2.70 kg,7.55 mol)於DCM (32.4 L,12體積)中之冰冷溶液中添加1N氫氧化鈉水溶液(24.3 L,9體積),隨後依序添加四丁基碘化銨(2.80 Kg,7.55 mol)及苯甲基溴(0.99 L,8.31 mol)。將所得反應混合物在室溫下攪拌下一個2小時。在反應完成(TLC與LCMS監測)之後,分離二相溶液。用DCM (3×10 L)萃取水層。將合併之有機物用鹽水溶液洗滌,經硫酸鈉乾燥,過濾且在減壓下濃縮以得到粗產物,藉由矽膠管柱層析(100-200 M)藉由使用溶離劑40% EtOAc/己烷純化該粗產物以獲得呈黏性油狀物之所要產物(I-11) (1.70 Kg,63%)。(m/z):C26 H29 N3 O4 之[M+H]+計算值448.22,實驗值448.20。
製備 3 (S )-3- 苯甲基 -2-(6-(4-( 苯甲氧基 )-2- 乙基苯基 )-1H- 吲唑 -3- )-3,4,6,7- 四氫 -5H- 咪唑并 [4,5-c] 吡啶 -5,6- 二甲酸 6- 苯甲酯 5-( 三級丁酯 ) (I-16)
Figure 02_image018
(a)  4-溴-2-氟苯甲醯氯(I-13) 向4-溴-2-氟苯甲酸(I-12) (1.25 Kg,5.71 mol)於DCM (12.5 L,15體積)中之冰冷攪拌溶液中以逐滴方式添加乙二醯氯(0.98 L,11.42 mol)。將所得反應混合物在相同溫度下攪拌10 min。接著將DMF (150 mL)以逐滴方式添加至反應混合物。將所得反應塊狀物升溫至室溫且攪拌2小時。在反應完成(藉由TLC監測)之後,在氮氣氛圍下在減壓下移除過量乙二醯氯以獲得粗產物(I-13) (1.08 Kg,80%),該粗產物不經進一步純化即用於下一步驟中。
(b) (S )-3-苯甲基-2-(4-溴-2-氟苯甲醯基)-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-14) 在室溫下向(S )-3-苯甲基-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-11) (1.70 Kg,3.80 mol)於ACN (13.6 L,8體積)中之攪拌溶液中添加三乙胺(2.11 L,15.2 mol),隨後添加4-溴-2-氟苯甲醯氯(I-13) (1.08 Kg,4.56 mol於3.4 L ACN中,2體積)。在添加完成之後,所得反應混合物顏色自淡黃色變為棕色。將所得反應混合物在相同溫度下攪拌30 min,且藉由TLC監測反應進程。將所得反應混合物用冰冷水(10 L)淬滅,隨後用EtOAc (3×5 L)萃取,且將合併之有機物用鹽水溶液洗滌。使有機物經硫酸鈉乾燥,過濾且在減壓下濃縮以得到粗產物,藉由矽膠管柱層析(100-200 M)藉由使用溶離劑20% EtOAc/己烷純化該粗產物以獲得所要產物(I-14) (1.74 Kg,71%)。(m/z):C33 H31 BrFN3 O5 之[M+H]+計算值648.14,實驗值648.20。
(c)  (S )-3-苯甲基-2-(6-溴-1H-吲唑-3-基)-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-15) 在室溫下向(S )-3-苯甲基-2-(4-溴-2-氟苯甲醯基)-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-14) (1.74 Kg,2.68 mol)於THF (26.0 L,15體積)中之攪拌溶液中添加水合肼(0.705 L,13.4 mol)。將所得反應混合物在60℃下加熱3小時。在反應完成(TLC監測)之後,將所得反應塊狀物倒入冰冷水(10 L)中,隨後用EtOAc (3×10 L)萃取化合物。將合併之有機物用鹽水洗滌,且經硫酸鈉乾燥,過濾,並在減壓下蒸發以得到粗產物,藉由矽膠管柱層析(100-200M)藉由使用溶離劑20% EtOAc/己烷純化該粗產物以獲得呈灰白色固體狀之所要產物(I-15) (1.12 Kg,65%)。(m/z):C33 H32 BrN5 O4 之[M+H]+計算值642.16,實驗值642.21。
(d) (S )-3-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基苯基)-1H-吲唑-3-基)-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-16) 將雙(
Figure 110106884-A0304-12-01
根基)二硼(250 g,984 mmol)與丙-2-醇(1882 mL,2.46E+04 mmol)一起裝入先前使用氟化學物質蝕刻之5 L 3頸單壁燒瓶中,且攪拌混合物直至完全溶解為止。溶解為吸熱的(-4℃)。在先前使用氟化學物質蝕刻之4 L錐形瓶中,將氟化鉀氫氟酸鹽(538 g,6891 mmol)溶解於水(2.306 L,1.28E+05 mmol)中以形成3M溶液。溶解為吸熱的(-12℃)。接著過濾溶液以自氟化鉀氫氟酸鹽移除少量不溶的材料。一旦兩種溶液完全溶解,則歷經15分鐘將錐形瓶之內含物逐份裝入至單壁燒瓶中。觀測到適度放熱(+10℃)。在添加期間,溶液變為濃稠及半不透明的灰色漿液,且延長攪拌以保持內含物良好混合。將混合物攪拌1.5 h,且接著經由粗糙的玻璃燒結漏斗(4 L,先前經蝕刻)過濾。需要30-45分鐘來完成過濾。丟棄透明的二相濾液。將白色固體在濾紙上乾燥10分鐘(觀測到濾餅開裂)。將固體轉移回至經清潔的5 L 3頸單壁燒瓶中且用水(1.33 L,7.38E+04 mmol)重新漿化。將漿液攪拌2 h,此後其形成透明的均質水凝膠。將溶液再攪拌1 h,隨即使用4 L粗糙的玻璃漏斗(先前經蝕刻)濾除固體/凝膠。使固體在濾紙上乾燥30分鐘。將固體轉移回至經清潔的5 L 3頸單壁燒瓶且用丙酮(1.084 L,1.48E+04 mmol)重新漿化。將白色/灰色漿液攪拌1 h且接著在4 L粗糙的玻璃漏斗(先前經蝕刻)上過濾。需要20分鐘來完成過濾,且接著在漏斗上乾燥另外1 h。在此時間期間,偶爾攪動固體以確保均勻乾燥。淡白色粉末在乾燥之後保留於濾紙上。將固體在55℃下在真空下隨著緩慢氮氣滲出乾燥20 h,以得到疏鬆白色固體(收集到200.3 g)。
向(S )-3-苯甲基-2-(6-溴-1H-吲唑-3-基)-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-15) (10.0 g,16.0 mmol)於2-甲基四氫呋喃(100 mL,10體積)中之攪拌溶液中添加(4-(苯甲氧基)-2-乙基苯基)三氟-λ4 -硼烷,鉀鹽(I-5) (8.0 g,20 mmol)及上文獲得之疏鬆白色固體(0.20 g)。使所得反應混合物經氮氣脫氣30分鐘。向此溶液中添加所製備之碳酸銫水溶液(20.0 g,62.0 mmol於60 mL水中,6體積)。將所得反應混合物進一步脫氣15分鐘,隨後添加雙(二三級丁基(4-二甲胺基苯基)膦)二氯鈀(II) (0.66 g,0.93 mmol),且將反應混合物在真空下抽空並藉由氮氣吹掃。將所得反應混合物在110℃下加熱20小時。在反應完成(TLC與LCMS監測)之後,將所得反應混合物冷卻至室溫,且經由矽藻土床過濾,接著進一步用EtOAc (3×0.5 L)洗滌。將合併之有機物用1N氫氧化鈉溶液(3×0.5 L)洗滌。接著將合併之有機物用鹽水洗滌,且經硫酸鈉乾燥,過濾,且在減壓下蒸發以得到粗產物,藉由矽膠管柱層析(100-200M)藉由使用溶離劑20% EtOAc/己烷純化該粗產物以獲得呈淡黃色固體狀之所要產物(I-16) (作為N-苯甲基區位異構體之混合物) (8.0 g,66%)。(m/z):C48 H47 N5 O5 之[M+H]+計算值774.36,實驗值774.59。
製備 4 (S )-2-(6-(2- 乙基 -4- 羥苯基 )-1H- 吲唑 -3- )-4,5,6,7- 四氫 -3H- 咪唑并 [4,5-c] 吡啶 -6- 甲酸 鹽酸鹽 (I-18)
Figure 02_image020
(a)  (S )-3-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基苯基)-1H-吲唑-3-基)-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸苯甲酯,鹽酸鹽(I-17) 將(S )-3-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基苯基)-1H-吲唑-3-基)-3,4,6,7-四氫-5H-咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)(I-16) (1.0 g,1.292 mmol)溶解於二㗁烷(8 mL)及水(1.5 mL)中,隨後添加含氯化氫溶液4 M之二㗁烷(7 mL,28.0 mmol),且將反應混合物在室溫下攪拌3小時(藉由LCMS監測反應進程)。接著冷凍且凍幹反應混合物,且將粗產物(I-17) 直接用於下一反應中(假設定量產率)。(m/z):C43 H39 N5 O3 之[M+H]+計算值674.31,實驗值674.3。
(b) (S )-2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸,鹽酸鹽(I-18) 在50℃下將(S )-3-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基苯基)-1H-吲唑-3-基)-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸苯甲酯,鹽酸鹽(I-17) (0.918 g,1.292 mmol)溶解於2-丙醇(15 mL)、含氯化氫溶液5 M之水(0.258 mL,1.292 mmol)及水(0.25 mL)中,隨後添加鈀(10重量%於碳上)、50%水(0.138 g,0.065 mmol)。接著用氮氣吹掃反應燒瓶,連接氫氣氣囊,且將反應混合物在50℃下攪拌4天,其中視需要補充氫氣氣囊(藉由LCMS監測反應進程)。接著藉由過濾移除所有固體,且濃縮所得溶液。將殘餘物溶解於1:1 ACN/水中,冷凍且凍幹。所得粉末(I-18) 不經進一步純化即使用(假設定量產率)。(m/z):C22 H21 N5 O3 之[M+H]+計算值404.17,實驗值404.2。
製備 5 (S )-2-(6-(2- 乙基 -4- 羥苯基 )-1H- 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H- 咪唑并 [4,5-c] 吡啶 -6- 甲酸 (I-19)
Figure 02_image022
將(S )-2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸,HCl(I-18) (0.25 g,0.568 mmol)懸浮於DMF (2.5 mL)及丙酮(2.5 mL)中,隨後添加乙酸(0.098 mL,1.705 mmol)及氰基硼氫化鈉(0.179 g,2.84 mmol),且將反應混合物在室溫下攪拌24小時(藉由LCMS監測反應進程)。濃縮反應混合物,接著藉由逆相層析(5-70% ACN/水梯度,50 g C18aq管柱)純化粗產物以得到標題化合物之TFA鹽(149 mg,47%產率)。(m/z):C25 H27 N5 O3 之[M+H]+計算值446.21,實驗值446.3。
實例 1 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -4- 羥苯基 )-1H- 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H- 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮
Figure 02_image024
將(S )-2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸,TFA(I-19) (50 mg,0.089 mmol)、3-(二甲胺基)吖呾二氫氯化物(23.20 mg,0.134 mmol)及DIPEA (0.078 mL,0.447 mmol)溶解於DMF (1.5 mL)中,接著添加HATU (51.0 mg,0.134 mmol),且將反應混合物在室溫下攪拌3小時(藉由LCMS監測反應進程)。添加肼(0.014 mL,0.447 mmol)以分解非所要副產物,且將溶液在室溫下攪拌10分鐘。接著濃縮反應混合物,且藉由製備型HPLC (5-70% ACN/水梯度,C18管柱)純化粗產物以得到標題化合物之TFA鹽(25 mg,37%產率)。(m/z):C30 H37 N7 O2 之[M+H]+計算值528.30,實驗值528.3。1 H NMR (400 MHz, DMSO-d6) δ 13.09 (s, 1H), 9.40 (s, 1H), 8.27 (d, J = 8.31, 1H), 7.30 (s, 1H), 7.04 (m, 2H), 6.71 (d, J = 2.54, 1H), 6.64 (dd, J = 2.53, 8.26, 1H), 4.26 (m, 1H), 4.06 (m, 2H), 3.82 (m, 2H), 3.64 (m, 2H), 3.03 (m, 2H), 2.74 (m, 2H), 2.47 (q, J = 7.56, 2H), 2.07 (d, J = 3.69, 6H), 1.07 (m, 6H), 1.00 (t, J = 7.50, 3H)。
製備 6 (S )-1- 苯甲基 -2-(6-(4-( 苯甲氧基 )-2- 乙基苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -1H - 咪唑并 [4,5-c] 吡啶 -6- 甲酸苯甲酯 (I-21)
Figure 02_image026
步驟 1 在3頸乾燥圓底燒瓶中添加I-16 (550 g,0.71莫耳)。將化合物在室溫(24-25℃)下溶解於DCM (4125 mL)中,以得到透明淡黃色溶液。歷經下一個30分鐘使溶液冷卻至0℃(冰鹽混合物) (外部溫度為-5℃)。接著經由滴液漏斗歷經45 min緩慢添加TFA (1375 mL)。將反應物在相同溫度(0℃)下攪拌10 min。將反應塊狀物升溫至30℃,且在相同溫度下攪拌1.5 h。藉由TLC以及藉由LCMS監測反應進程。在反應完成之後,在40℃下在減壓下蒸發反應混合物以得到呈淡棕色濃稠黏性塊狀物之粗材料。藉由每次添加2.5 L庚烷且蒸發至乾燥將庚烷汽提進行兩次。接著在高真空下乾燥化合物。獲得呈濃稠黏性液體狀之所要產物I-20 (641 g,100%產率,LCMS=94.35%純)。
步驟 2 在3頸乾燥圓底燒瓶中,在室溫(25℃)下在惰性氛圍下一次性裝入分子篩4A° (641 g,w/w),隨後添加8體積丙酮(5.13 L)。觀測到白色懸浮液。歷經10分鐘將步驟1中獲得之材料(641 g,0.71 mol,溶解於7.690 L (12體積)之丙酮中)緩慢添加至燒瓶中,以避免在燒瓶內部形成膠狀塊狀物。針對反應塊狀物觀測到淡黃色。在25℃下逐滴添加CH3 COOH (15.4 mL,0.266 mol),且將所得反應塊狀物在相同溫度下攪拌30 min。觀測到暗黃色懸浮液。在25℃下歷經30 min之時段逐份添加三乙醯氧基硼氫化鈉(297 g,1.4 mol)。溫度自25℃上升至31℃,且反應塊狀物顏色亦自暗黃色變為淡黃色。將所得反應混合物在30℃下攪拌下一個30 min。藉由LCMS及TLC監測反應進程。在反應完成之後,將反應混合物冷卻至10℃且再攪拌20 min。接著經由矽藻土床過濾反應塊狀物以移除分子篩及三乙醯氧基硼氫化鈉。將用於過濾之矽藻土床用2-Me-THF 10體積(6.41 L)洗滌,且單獨獲取2-Me-THF。將上文獲得之丙酮母液在減壓下蒸發至乾燥以得到濃稠黏性液體。將所獲得之黏性液體溶解於用於矽藻土床洗滌之2-Me-THF (6.41 L)中。向有機層(2-Me-THF)添加10% NaHCO3 水溶液(約5.5 L)以使pH達至約7.02。此時,觀測到輕微氣體逸出,其在5分鐘內停止。分離二相層及有機層。進一步用水(2.0 L,兩次)洗滌有機層。有機層經Na2 SO4 乾燥,過濾且在減壓下在45℃下蒸發,以得到呈輕微淺黃色多泡固體狀之(S )-1-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-1H -咪唑并[4,5-c]吡啶-6-甲酸苯甲酯(I-21) (500 g),95.73%純(藉由HPLC)。執行了11個相同規模的批次,且將所獲得之材料組合。製備化合物於庚烷(5體積)中之漿液,且將該漿液在室溫下攪拌2小時。將化合物過濾且用庚烷(2體積)洗滌。在不施加任何外部溫度之情況下將濕濾餅在真空盤式乾燥器中乾燥24小時以得到5.40 kg之化合物I-21
製備 7 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -4- 羥苯基 )-1H- 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H- 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮 (1)
Figure 02_image028
步驟 1 在25℃下在攪拌下向3頸圓底燒瓶中裝入(S)-1-苯甲基-2-(6-(4-(苯甲氧基)-2-乙基苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-1H-咪唑并[4,5-c]吡啶-6-甲酸苯甲酯(1,350 g,1886 mmol)及四氫呋喃(2025 mL)以得到均質透明黃色/橙色溶液。在攪拌下向溶液中添加丙-2-醇(11,475 mL)及6M氯化氫(水溶液) (1257 mL)以在25℃下得到均質溶液。使用氮氣鼓泡以使自由攪拌的黃色漿液脫氣30 min。將10 wt %Pd/C、50 wt % H2 O (202.5 g,95 mmol)添加至反應器中。斷開氮氣,隨即將反應溶液用H2 鼓泡吹掃,且升溫至65℃內部溫度。HPLC顯示反應在210 min之後完成。使反應混合物經由10公克矽藻土墊過濾以移除大量催化劑。收集到透明的黃色溶液。向濾液中裝入10% (w/w) SiliaMetS硫醇(101.25 g,953 mmol) (白色固體),且在50℃下歷經1小時攪拌混合物以清除Pd之剩餘部分。在1小時之後,經由0.2微米濾紙濾出SiliaMetS硫醇以得到淡黃色均質溶液。接著將濾液濃縮至3× (體積)且保持處於50℃。向50℃濃縮溶液中添加3當量之12M HCl (471 ml,5657 mmol)。在50℃下歷經5 min攪拌之後,添加2.025公克晶種,且保持處於50℃下超過1小時。漿液顯著增稠。歷經120 min緩慢添加15× (體積)之乙腈(20250 mL)。接著將批料保持處於50℃超過2小時,接著歷經3小時冷卻至20℃,且在攪拌下保持隔夜。接著過濾漿液,且將濾餅用ACN沖洗五次,且在高真空下在50℃下乾燥隔夜。
一旦卸載,則獲得呈(S )-2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸,2HCl (850 g,1640 mmol,87%產率)形式之淺橙色固體的濾餅。
對1.115 kg之化合物I-21 進行類似流程以得到另外700 g之化合物I-22 。合併所獲得之兩個批次。
步驟 2 在20℃下向20 L夾套反應器中裝入N,N-二甲基吖呾-3-胺,2HCl (432 g,2497 mmol)及N,N-二甲基乙醯胺(3750 ml,4.00E+04 mmol)。在20℃下歷經約5 min添加DIPEA (2699 ml,1.55E+04 mmol)。將混合物在20℃下攪拌15 min以得到混濁溶液,在以200 rpm之攪拌下將該混濁溶液冷卻至10-15℃。將(S)-2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-甲酸,2.2HCl (1250 g,2378 mmol)添加至批料,同時使溫度維持低於20℃。在添加期間觀測到放熱反應(觀測到約7℃之放熱)。獲得漿液,將其在15-25℃下攪動約15 min。在15 min之後,仍觀測到稀漿液。在17℃之內部溫度下,歷經約5分鐘添加HATU (994 g,2615 mmol),同時在20±5℃下以350 rpm混合。在添加期間,溫度上升至22℃。在添加HATU之後獲得稀漿液。將批料保持處於20-25℃,且在攪拌下以215 rpm攪動直至反應達至完成,亦即2h。向已完成反應物中裝入用1體積水(1.25L)稀釋之1M HCl水溶液(4993 ml,4993 mmol)的預混合冷卻(5℃)溶液,同時使批料溫度維持低於30℃。
將5體積乙酸異丙酯(6,250 mL)裝入批料中且將混合物攪動約15 min。停止攪動。將酸性水層分離且轉移至反應器中。丟棄有機層。水層之pH經測定為4-5.0。將5體積乙酸異丙酯(6,250 mL)添加至批料且在20℃下進行攪動持續約15 min。使混合物在20℃下靜置。將酸性水層分離且轉移至反應器中。丟棄有機層。將5體積乙酸異丙酯(6,250 mL)添加至批料,將其在20℃下攪動約15 min,接著使其在20℃下靜置。將酸性水層分離且轉移至反應器中。丟棄有機層。在20℃下將酸性水層儲存隔夜。將30體積水(37.5kg)裝入反應器中。添加碳酸氫鈉(1238 g,1.47E+04 mmol),且攪動混合物直至實現完全溶解。停止攪動,且將溶液保持處於20℃隔夜。在攪拌下,將10體積2-甲基四氫呋喃(12,500 mL)添加至水溶液中。觀測到放熱事件。將內部溫度調整至20±5℃。歷經約10 min將酸性水層添加至反應器。觀測到1℃之輕度放熱。將混合物在20℃下攪動約15 min,接著使其在20℃下靜置。將底部水層移除且添加至反應器。將有機層移除,且藉由裝入5體積2-甲基四氫呋喃(6,250 mL)進行萃取並在20℃下混合約15 min。將合併之有機層在50℃浴溫下用旋轉蒸發器濃縮至3體積(3.75 L)。添加10體積2-甲基四氫呋喃(12,500 mL),且在50℃浴溫下用旋轉蒸發器將混合物濃縮至3體積(3.75 L)。將乙腈(2.00E+04 mL)添加至25 L夾套反應器中,且在以215 rpm之混合的情況下將其內部溫度調整至0-5℃。在0-5℃下歷經約1小時將濃縮批料(約3.75 L)添加至經冷卻乙腈中。使混合物在0℃下老化隔夜,同時以215 rpm之混合。將其過濾,且在0℃下用4體積預冷卻乙腈(5,000 mL)洗滌濾餅。在N2 氣壓力下歷經2小時在濾紙上乾燥濾餅。將濕濾餅在50℃下在高真空下(伴隨輕微N2 吹掃)進一步乾燥隔夜,以得到呈非晶形固體之(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-基)甲酮(1150 g,2179 mmol,92%產率)。遵循相同方法製備第二批材料,以得到1036g的呈非晶形固體(藉由PXRD確認)之(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-基)甲酮,且將兩個批次合併。
實例 2 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -4- 羥苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮之結晶水合物 ( 形式 I) 在30℃下將(S)-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-基)甲酮(95 g,180 mmol)溶於1M HCl (水溶液) (950 mL)及乙酸異丙酯(950 ml)中。將批料保持處於30℃超過30 min,接著分離各層。此重複三次,始終保留底部水層且丟棄乙酸異丙酯層。在水層之第四次乙酸異丙酯萃取之後,添加2-甲基四氫呋喃(950 ml,9419 mmol),隨後添加足夠的10%碳酸氫鈉以使pH=7.5。將混合物攪拌超過30 min且分離各層。用2-甲基四氫呋喃(250mL)萃取水層。合併2-甲基四氫呋喃層。進行自2-甲基四氫呋喃至乙腈之溶劑交換以自溶液沈澱出產物。在過濾及乾燥之後,獲得89公克之粗物質(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮的濾餅。將此固體(89公克)溶於445mL之甲醇中。在攪拌至完全溶解之後,經由0.2µm濾紙過濾批料。接著將濾液加熱至55℃之內部溫度,且在攪拌下保持處於此溫度超過60 min。一些沈澱物開始形成以得到略微混濁的溶液。接著將溫度以0.2℃/min線性冷卻至15℃之最終內部溫度,接著保持處於15℃超過8小時。此時,批料顯著增稠,且在氮氣層下使用高真空過濾漿液。將濕濾餅卸載且歷經18小時在高真空(28mm Hg)下在溫度設定為65℃之真空烘箱中乾燥。接著卸載乾燥濾餅,且使其平衡至環境濕度及溫度以得到(S)-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-基)甲酮水合物形式I(75 g,140 mmol,78%產率)之最終的白色至灰白色結晶濾餅。
實例 3 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -4- 羥苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮 ( 化合物 1) 之結晶水合物, 形式 I 向20 L夾套反應器中添加製備7中獲得之(S)-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮(化合物1 ,2186 g,4143 mmol),隨後添加甲醇(10930 mL)。將所獲得之漿液攪拌且加熱至55℃以得到透明的均質溶液。將溶液保持處於55℃超過30 min且接種(用先前實例中獲得之2.186 g材料)。將溶液在55℃下再保持一小時。結晶及增稠發生。接著歷經450分鐘將混合物冷卻至10℃。使批料內部地保持處於10℃超過12小時,接著過濾。在5℃下用預冷卻甲醇(2186 mL)洗滌濕濾餅。將濾餅在真空下在氮氣吹掃下在過濾乾燥器上乾燥,且將加熱夾套設定為55℃。使濾餅在此等乾燥條件下保持超過19小時。接著將濾餅在乾燥盤中卸載且展開,且歷經30小時使其平衡至環境RH條件,以得到呈灰白色至淺黃色固體狀之(S)-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-基)甲酮(1411.6 g,2587 mmol,62.4%產率)之結晶水合物,形式I。
實例 4 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -4- 羥苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮 ( 化合物 1) 之結晶水合物 形式 I 將甲醇(1.250 mL)添加至以與實例2中所展示類似的方式獲得之250 g的粗物質(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮(化合物1)中,且將所獲得之漿液加熱至55℃持續約30分鐘以得到均質溶液。經由0.2 µm濾紙過濾溶液。將濾液在55℃下攪拌約3小時以引發結晶。將所得稀漿液之溫度調整至5℃持續約250分鐘。將增稠漿液在5℃下攪拌隔夜。接著使用壓力過濾器分離固體。將濾餅在5℃下用預冷卻之甲醇(250 mL)洗滌,且接著在高真空下在55℃下乾燥隔夜以得到180 g之結晶材料。向所獲得之180 g結晶材料中添加甲醇(900 mL)。將攪拌漿液之溫度調整至55℃持續約30分鐘。將漿液在55℃下攪拌約3小時。接著將漿液之溫度調整至5-15℃持續約200分鐘。將漿液在5-15℃下再攪拌約2小時。在惰性條件下使用壓力過濾器分離固體。將濾餅用在5-15℃下預冷卻之甲醇(300 mL)洗滌,且接著在真空烘箱中在55-65℃下在高真空下乾燥約12小時。將乾燥濾餅在環境溫度、壓力及相對濕度下保持約12小時,以得到165.7 g的呈灰白色至淡黃色固體狀之結晶單水合物(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮(形式I),純度為97.7% (基於HPLC資料)。
實例 5 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -4- 羥苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮 ( 化合物 1) 之結晶水合物 形式 I 藉由遵循與製備7步驟2中所展示類似的製備來獲得(S)-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H-咪唑并[4,5-c]吡啶-6-基)甲酮。在50℃下歷經5小時將所獲得之固體(0.100 g,0.183 mmol)溶解於乙醇(0.5 ml,0.183 mmol)中,此時形成漿液。將漿液在彼溫度下在惰性條件下過濾,且在真空下在60℃下在烘箱中乾燥超過12小時,隨後在環境室溫及壓力下平衡超過12小時以得到形式I (0.06 g)。
實例 6-10 結晶形式之特性 藉由粉末X射線繞射(PXRD)、差示掃描熱量測定(DSC)、熱重分析(TGA)、動態濕氣吸附(DMS)及單晶X射線繞射來分析(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮(化合物1)之結晶水合物,形式I之樣品。
實例 6 粉末 X 射線繞射 用配備有Lynxeye 1D偵測器之Bruker D8-Advance X射線繞射儀使用具有45 kV之輸出電壓及40 mA之電流的Cu-K α輻射(λ=1.54051 Å)來獲得圖1之粉末X射線繞射圖案。以Bragg-Brentano幾何模式操作儀器,其中設定入射、發散度及散射狹縫以最大化樣品處之強度。對於量測,將少量粉末(5-25 mg)平緩地按壓於樣品固持器上以形成光滑表面且使其經受X射線暴露。以2θ-2θ模式自2°至35°的2θ以0.02°之步長大小及2秒/步長之掃描速率掃描樣品持續總共1小時掃描時間。藉由Bruker DiffracSuite量測軟體控制資料獲取,且藉由Jade軟體(版本7.7)進行分析。化合物1 之結晶水合物,形式I的所觀測PXRD 2θ峰位置及d 間距展示於表1中。 1 結晶水合物形式 I PXRD 資料
d(Å) 面積 A%
5.68 15.56 40.1 100.0
8.49 10.40 10.6 26.4
10.43 8.47 18.2 45.5
10.94 8.08 13.2 32.9
11.55 7.65 8.1 20.3
12.20 7.25 6.9 17.3
13.08 6.76 13.7 34.3
15.94 5.56 15.1 37.6
16.24 5.45 3.3 8.2
17.06 5.19 6.2 15.6
17.60 5.04 745.5 4.8
18.41 4.82 2.3 5.6
18.82 4.71 2.3 5.8
18.96 4.68 4.3 10.6
21.90 4.06 2.5 6.1
22.08 4.02 4.4 11.1
22.27 3.99 5 12.6
24.55 3.62 4.3 10.9
26.29 3.39 3.4 8.4
實例 7 熱分析 使用TA Instruments Model Discovery DSC執行差示掃描熱量測定(DSC)。用TRIOS軟體收集資料,且使用TA Instruments Universal Analysis軟體進行分析。將結晶形式之樣品準確稱取至覆蓋有TZero氣密針孔封蓋之鋁盤中。將樣品最初冷卻至-20℃,其後使用10℃/min之線性加熱斜升將樣品自-20℃加熱至250℃。形式I之代表性DSC熱分析圖展示於圖2中。
使用配備有高解析度能力之TA Instruments Model Discovery TGA模組執行熱重分析(TGA)量測。使用TA Instruments TRIOS軟體收集資料,且使用TA Instruments Universal Analysis軟體進行分析。將所稱取樣品置於鉑盤上,且以10℃/分鐘之加熱速率自環境溫度至260℃進行掃描。在使用期間,用氮氣流吹掃其餘部分及鍋爐室。形式I之代表性TGA跡線展示於圖3中。在27℃與100℃之間觀測到約3.4%之重量損失,且該重量損失對應於單水合物形式之脫水。
實例 8 動態濕氣吸附評定 使用VTI大氣壓微量天平SGA-100系統(VTI Corp., Hialeah, FL 33016)執行動態濕氣吸附(DMS)量測。使用所稱取樣品,且濕度在分析開始時為最低可能值(接近0% RH)。DMS分析由以下組成:進行初始乾燥步驟(約0% RH)持續16小時,隨後在5% RH/步長之掃描速率下在5% RH至90% RH之濕度範圍內進行兩次吸附及解吸附循環。在25℃下以等溫方式執行DMS運行。形式I之代表性DMS跡線展示於圖4中。
實例 9 單晶 X 射線繞射 將具有尺寸0.28×0.11×0.02 mm之化合物1 之結晶水合物(形式I)之晶體安放於玻璃纖維上。
在配備有Oxford Cryosystems Cobra冷卻裝置之Rigaku Atlas CCD繞射儀上收集資料。使用Cu Kα輻射收集資料,且使用Bruker AXS SHELXTL軟體解析且優化晶體結構。連接至碳之氫原子以幾何方式置放且用安放各向同性置換參數使其優化。連接至雜原子之氫原子位於差異傅里葉圖(difference Fourier map)中,且用各向同性置換參數使其自由優化。單位晶胞參數以及晶體系統及空間群細節提供於表2中。資料確認,形式I為單水合物。 2 來自單晶 X 射線繞射分析之資料
資料收集之溫度 100(2) K
用於資料收集之波長 1.54178 Å
晶體系統 單斜
空間群 C2
單位晶胞尺寸 a = 20.8736(5) Å
b = 9.15021(19) Å
c = 15.7412(3) Å
a = 90°
b = 98.4786(18)°
g = 90°
單位晶胞體積 2973.67(11) Å3
最終R指數[F2 >2σ(F2 )] R1 = 0.0368,wR2 = 0.0975
實例 10 穩定性研究 對於如表3及表4中所展示之化合物1 含量及雜質概況,藉由HPLC分析在25℃及60%相對濕度(RH)之加速條件下以及在40℃及75%相對濕度(RH)之加速條件下儲存的形式I之樣品。 RRT=相對滯留時間(相對於化合物1 ) LOQ=定量極限(0.05% a/a),僅報導處於或高於LOQ之峰 3 40 /75% RH 下之化合物 1 及雜質百分比
   T=0 T=1個月 40℃/75% RH T=3個月 40℃/75% RH
RRT % a/a % a/a % a/a
0.77 0.17 0.18 0.18
0.84 0.05 0.06 0.05
0.95       0.05
0.97 0.06 0.07 0.07
化合物1 97.5% 97.5% 97.5%
1.10    0.09   
1.11 0.07 0.12 0.10
1.13       0.05
1.18       0.06
1.25 0.11 0.11 0.14
1.28 0.36 0.35 0.36
1.30 0.21 0.23 0.22
1.35 0.06 0.07 0.11
1.77    0.05   
1.84 0.32 0.32 0.31
1.85 0.13 0.14 0.20
2.11 0.06 0.05 0.05
2.27 0.07 0.09 0.07
4 25 /60% RH 下之 化合物 1 及雜質百分比
   T=0 T=3個月 25℃/60% RH
RRT % a/a % a/a
0.77 0.17 0.18
0.84 0.05 0.05
0.95    0.05
0.97 0.06 0.06
化合物1 97.5% 97.6%
1.11 0.07 0.08
1.25 0.11 0.14
1.28 0.36 0.36
1.30 0.21 0.22
1.35 0.06 0.10
1.84 0.32 0.31
1.85 0.13 0.20
2.11 0.06 0.06
2.27 0.07 0.07
形式I在此等條件下呈現良好的穩定性。
製備 8 2-(4-( 苯甲氧基 )-2- 乙基 -5- 氟苯基 )-4,4,5,5- 四甲基 -1,3,2- 二氧硼㖦
Figure 02_image030
(a) 1-(苯甲氧基)-4-溴-5-乙基-2-氟苯 向4-溴-5-乙基-2-氟苯酚(20 g,910.32 mmol)於ACN (250 mL)中之溶液中添加K2 CO3 (31.55 g,228.3 mmol),隨後逐滴添加苯甲基溴(13.10 mL,109.58 mmol)。將所得反應混合物在80℃下攪拌2小時。將水層用EtOAc萃取(三次),合併且用鹽水洗滌。將有機層經Na2 SO4 乾燥,且在減壓下蒸發以得到呈淺黃色油性液體狀之標題中間物(25 g,89%產率)。1 H NMR (400 MHz, 氯仿-d ) δ 7.48 - 7.30 (m, 5H), 7.27 (d,J = 10.5 Hz, 1H), 6.87 (d,J = 8.7 Hz, 1H), 5.12 (s, 2H), 2.66 (q,J = 7.5 Hz, 2H), 1.16 (t,J = 7.5 Hz, 3H)。
(b) 2-(4-(苯甲氧基)-2-乙基-5-氟苯基)-4,4,5,5-四甲基-1,3,2-二氧硼㖦 向先前步驟之產物(12.5 g,40.45 mmol)於二㗁烷(100 mL)中的溶液中添加雙(
Figure 110106884-A0304-12-01
根基)二硼(15.40 g,60.67 mmol)及KOAc (11.9 g,121.35 mmol)。將反應混合物用氮氣吹掃15 min,隨後添加與二氯甲烷錯合之[1,1′-雙(二苯基膦基)二茂鐵]二氯鈀(II) (1.65 g,2.023 mmol)。將所得反應混合物攪拌且在110℃下加熱3 h,經由矽藻土過濾,且用EtOAc洗滌殘餘物。將濾液用過量EtOAc (200 mL)稀釋,且用水(100 mL),隨後鹽水(100 mL)洗滌,經硫酸鈉乾燥,且在真空中濃縮以得到粗產物,將該粗產物藉由(100-200)矽膠管柱層析純化,用3-5% EtOAc:己烷溶離,以得到呈灰白色固體狀之所要產物(9.50 g,66%產率)。1 H NMR (400 MHz, 氯仿-d ) δ 7.54 - 7.27 (m, 6H), 6.81 (d,J = 7.9 Hz, 1H), 5.16 (s, 2H), 2.84 (q,J = 7.5 Hz, 2H), 1.32 (s, 12H), 1.14 (t,J = 7.5 Hz, 3H)。
製備 9 6-(4-( 苯甲氧基 )-2- 乙基 -5- 氟苯基 )-1-( 四氫 -2H - 哌喃 -2- )-3-( 三甲基錫烷基 )-1H - 吲唑
Figure 02_image032
(a) 6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1-(四氫-2H -哌喃-2-基)-1H -吲唑 向6-溴-1-(四氫-2H -哌喃-2-基)-1H-吲唑(50 g,178.57 mmol)及2-(4-(苯甲氧基)-2-乙基-5-氟苯基)-4,4,5,5-四甲基-1,3,2-二氧硼㖦(76.3 g,214.29 mmol)於DMF:H2 O (480:120 mL)中之溶液中添加K3 PO4 (94.64 g,446.86 mmol)。使反應混合物經氮氣脫氣15 min,接著添加Pd(PPh3 )2 Cl2 催化劑(6.26 g,8.93 mmol),且使混合物再次經氮氣脫氣5 min,攪拌且在100-110℃下加熱5 h。經由矽藻土過濾反應混合物,且用EtOAc洗滌殘餘物。將濾液用EtOAc稀釋,用冷水及鹽水洗滌,經硫酸鈉乾燥,且在真空中濃縮以提供粗產物,藉由急驟管柱層析純化該粗產物以得到呈白色固體狀之標題中間物(65 g,86%產率)。(m/z):C27 H27 FN2 O2 之[M+H]+ 計算值431.21,實驗值431.46。1 H NMR (400 MHz, 氯仿-d ) δ 8.06 - 7.98 (m, 2H), 7.70 (d,J = 8.2 Hz, 1H), 7.51 - 7.32 (m, 5H), 7.08 (dd,J = 809.6, 8.3 Hz, 1H), 7.03 (d,J = 11.9 Hz, 1H), 6.95 (d,J = 8.5 Hz, 1H), 5.76 - 5.64 (m, 1H), 5.20 (s, 2H), 4.04 (d,J = 10.1 Hz, 1H), 3.72 (t,J = 9.7 Hz, 1H), 2.52 (q,J = 7.5 Hz, 2H), 2.22 - 2.02 (m, 3H), 1.80 - 1.71 (m, 3H), 1.06 (t,J = 7.5 Hz, 3H)。
(b) 6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1H -吲唑 向先前步驟之產物(65 g,151.16 mmol)於甲醇(700 mL)中之溶液中添加濃HCl (120 mL),且將所得溶液在60-65℃下加熱3 h,冷卻至RT,並在真空中濃縮。將殘餘物溶解於EtOAc中,且用飽和NaHCO3 水溶液及水洗滌。使有機層經無水Na2 SO4 乾燥,且在真空中濃縮以得到呈白色固體狀之標題中間物(52 g,99% (粗物質))。1 H NMR (400 MHz, 氯仿-d ) δ 8.13 (s, 1H), 7.77 (d,J = 8.3 Hz, 1H), 7.59 - 7.30 (m, 6H), 7.10 (d,J = 8.3 Hz, 1H), 7.01 (d,J = 11.8 Hz, 1H), 6.96 (d,J = 8.4 Hz, 1H), 5.21 (s, 2H), 2.53 (q,J = 7.5 Hz, 2H), 1.05 (t,J = 7.5 Hz, 3H)。
(c) 6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-3-碘-1H -吲唑 向6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1H -吲唑(56 g,161.18 mmol)於DMF (400 mL)中之溶液中添加KOH (36.2 g,647.39 mmol),且將混合物攪拌5 min。在0℃下緩慢添加碘(82.2 g,323.69 mmol)於DMF (100 mL)中之溶液,且在RT下攪拌30 min,用水(3×150 mL)稀釋,並用EtOAc (3×200 mL)萃取。將有機層用飽和偏亞硫酸氫鈉水溶液(3×200 mL)及水(400 mL)洗滌,經無水Na2 SO4 乾燥,且在減壓下濃縮以得到粗產物,藉由急驟管柱層析純化該粗產物以得到呈淡棕色半固體狀之標題中間物(64 g,84%產率)。1 H NMR (400 MHz, 氯仿-d ) δ 10.49 (s, 1H), 7.57 - 7.32 (m, 7H), 7.16 (d,J = 8.3 Hz, 1H), 7.04 - 6.91 (m, 2H), 5.20 (s, 2H), 2.51 (q,J = 7.4 Hz, 2H), 1.04 (t,J = 7.5 Hz, 3H)。
(d) 6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-3-碘-1-(四氫-2H -哌喃-2-基)-1H -吲唑 向先前步驟之產物(60 g,127.12 mmol)於DCM (700 mL)中之冰冷溶液中添加對甲苯磺酸(4.84 g,25.423 mmol),隨後逐滴添加3,4-二氫-2H -哌喃(17.43 mL,190.68 mmol)。將反應混合物在RT下攪拌隔夜,用DCM稀釋,且用飽和NaHCO3 水溶液及鹽水洗滌。使有機層經無水Na2 SO4 乾燥,且在減壓下濃縮以得到粗產物,藉由急驟層析(矽膠)純化該粗產物以得到呈灰白色固體狀之標題中間物(64 g,91%產率)。(m/z):C27 H26 FIN2 O2 之[M+H]+ 計算值557.10,實驗值557.30。1 H NMR (400 MHz, 氯仿-d ) δ 7.56 - 7.31 (m, 7H), 7.14 (d,J = 8.3 Hz, 1H), 7.01 (d,J = 11.8 Hz, 1H), 6.95 (d,J = 8.5 Hz, 1H), 5.68 (d,J = 9.3 Hz, 1H), 5.20 (s, 2H), 4.08 - 3.99 (m, 1H), 3.77 - 3.64 (m, 1H), 2.50 (q,J = 7.2 Hz, 2H), 2.23 - 1.97 (m, 3H), 1.81 - 1.68 (m, 3H), 1.06 (t,J = 7.4 Hz, 3H)。
(e) 6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1-(四氫-2H -哌喃-2-基)-3-(三甲基錫烷基)-1H -吲唑 向6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-3-碘-1-(四氫-2H -哌喃-2-基)-1H -吲唑(20 g,35.97 mmol)於甲苯(150 mL)中之溶液中添加六甲基二錫(9.2 mL,43.17 mmol)。使反應混合物經氮氣脫氣20 min,隨後添加肆(三苯膦)鈀(0) (2.0 g,1.80 mmol),且接著在100℃下攪拌2 h,冷卻至RT,經矽藻土過濾,且用EtOAc洗滌殘餘物。將濾液濃縮,且藉由管柱層析(經由中性氧化鋁)純化,用2-5% EtOAc:己烷溶離,以得到標題化合物(17.50 g,82%產率)。(m/z):C30 H35 FN2 O2 Sn之[M+H]+ 計算值595.17、593.17,實驗值595.49、593.55。1 H NMR (400 MHz, 氯仿-d ) δ 7.68 (d,J = 8.0 Hz, 1H), 7.57 - 7.29 (m, 6H), 7.13 - 7.00 (m, 2H), 6.96 (d,J = 8.4 Hz, 1H), 5.81 - 5.68 (m, 1H), 5.21 (s, 2H), 4.13 - 4.00 (m, 1H), 3.81 - 3.66 (m, 1H), 2.54 (q,J = 7.3 Hz, 2H), 2.23 - 2.00 (m, 2H), 1.87 - 1.59 (m, 4H), 1.08 (t,J = 7.5 Hz, 3H), 0.47 (s, 9H)。
製備 10 (S )-2- -3-((2- 三甲基矽基 ) 乙氧基 ) 甲基 )-3,4,6,7- 四氫 -5H - 咪唑并 [4,5-c] 吡啶 -5,6- 二甲酸 5-( 三級丁酯 ) 6- 甲酯
Figure 02_image034
(a) (S )-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-甲酸 在0℃下向L-組胺酸(50 g,322.24 mmol)於水(420 mL)中之攪拌懸浮液中逐滴添加濃HCl (29 mL),隨後在0℃下一次性添加甲醛(55 mL,676.72 mmol)。將所得反應混合物攪拌30 min,且接著在75℃下加熱6 h並濃縮。將所得粗物質與乙醚一起攪拌2 h,過濾且用IPA:THF (100:300 mL)洗滌以得到呈灰白色固體狀之標題中間物之HCl鹽(75 g,99%產率(粗物質))。(m/z):C7 H9 N3 O2 之[M+H]+ 計算值168.07,實驗值168.17。
(b) (S )-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-甲酸甲酯 在0℃下,向先前步驟之產物(75.0 g,312.5 mmol)於甲醇(1500 mL)中之攪拌溶液中逐滴添加SOCl2 (45.6 mL,625 mmol),且在RT下攪拌16 h,接著加熱直至回流(70℃)持續1 h。藉由蒸餾移除溶劑,且將粗產物用甲醇,隨後乙醚濕磨,以得到呈灰白色固體狀之標題中間物之粗HCl鹽(80 g粗物質)。1 H NMR (400 MHz, DMSO-d 6 ) δ 9.05 (s, 1H), 4.71 (dd,J = 9.4, 5.2 Hz, 1H), 4.36 (d,J = 15.5 Hz, 1H), 4.30 (d,J = 15.6 Hz, 1H), 3.82 (s, 3H), 3.44 - 3.21 (m, 2H)。
(c) (S )-3,4,6,7-四氫-5H -咪唑并[4,5-c]吡啶-5,6-二甲酸5-(三級丁酯) 6-甲酯 在0℃下,向先前步驟之產物(80.0 g,314.96 mmol)於甲醇(1000 mL)中之攪拌溶液中添加DIPEA (282 mL,1574 mmol),隨後添加二碳酸二三級丁酯(172 mL,787.48 mmol)。將反應混合物在RT下攪拌16 h,且接著添加液體NH3 (150 mL,25%於水中),且在室溫下將反應混合物再次攪拌16 h,藉由蒸餾移除甲醇並在DCM (3×200 mL)中萃取殘餘物。使合併之有機萃取物經無水Na2 SO4 乾燥,濃縮且藉由急驟層析(100-200目矽膠)純化,用5% MeOH:DCM溶離,以得到標題中間物(41 g, 46%產率)。(m/z):C13 H19 N3 O4 之[M+H]+ 計算值282.14,實驗值282.21。1 H NMR (400 MHz, DMSO-d 6 ) δ 11.85 (s, 1H), 7.50 (s, 1H), 5.18 (dd,J = 49.3, 5.1 Hz, 1H), 4.51 (t,J = 14.2 Hz, 1H), 4.09 (dd,J = 43.9, 16.1 Hz, 1H), 3.59 (s, 3H), 3.08 (d,J = 15.5 Hz, 1H), 2.94 (d,J = 15.1 Hz, 1H), 1.45 (s, 9H)。
(d) (S )-2-碘-3,4,6,7-四氫-5H -咪唑并[4,5-c]吡啶-5,6-二甲酸5-(三級丁酯) 6-甲酯 在0℃下,向先前步驟之產物(41.0 g,145.9 mmol)於THF (500 mL)中之溶液中添加N -碘丁二醯亞胺(66.0 g,291.8 mmol),且將所得溶液在RT下攪拌4 h,用水稀釋且用乙酸乙酯萃取。用10%硫代硫酸鈉溶液(3×200 mL)洗滌有機部分。使合併之有機層經無水硫酸鈉乾燥,且濃縮以得到標題化合物60 g (粗物質),該標題化合物未經進一步純化即用於下一步驟中。(m/z):C13 H18 IN3 O4 之[M+H]+ 計算值408.03,實驗值408.31。1 H NMR (400 MHz, DMSO-d 6 ) δ 12.48 (s, 1H), 5.34 - 4.97 (m, 1H), 4.67 - 4.35 (m, 1H), 4.12 - 3.95 (m, 1H), 3.60 (s, 3H), 3.14 - 2.82 (m, 2H), 1.44 (s, 9H)。
(e) (S )-2-碘-3-((2-三甲基矽基)乙氧基)甲基)-3,4,6,7-四氫-5H -咪唑并[4,5-c]吡啶-5,6-二甲酸5-(三級丁酯) 6-甲酯 在0℃下,向(S )-2-碘-3,4,6,7-四氫-5H -咪唑并[4,5-c]吡啶-5,6-二甲酸5-(三級丁酯) 6-甲酯(40 g,0.098 mol)於DMF (150 mL)中之攪拌溶液中添加DIPEA (35.1 mL,0.19 mol)。將反應混合物攪拌10 min,接著在0℃下逐滴添加2-(三甲基矽基)-乙氧基甲基氯(19.1 mL,0.10 mol)。將所得反應混合物在RT下攪拌3 h。在4小時之後,添加冷凍水且用EtOAc (2×200 mL)萃取反應混合物。使有機層經無水硫酸鈉乾燥,濃縮,且藉由急驟管柱層析純化,用20-35% EtOAc:己烷溶離,以得到呈淺黃色黏性液體狀之標題產物(27 g)。(m/z):C19 H32 IN3 O5 Si之[M+H]+ 計算值538.12,實驗值538.42。1 H NMR (400 MHz, DMSO-d 6 ) δ 5.33 - 5.04 (m, 3H), 4.79 - 4.56 (m, 1H), 4.54 - 4.14 (m, 1H), 3.60 (s, 3H), 3.47 (t,J = 7.8 Hz, 2H), 3.31 - 3.16 (m, 1H), 2.97 (t,J = 18.9 Hz, 1H), 1.44 (s, 9H), 0.92 - 0.74 (m, 2H), -0.03 (s, 9H)。
製備 11 (6S )-5-( 三級丁氧基羰基 )-2-(6-(2- 乙基 -5- -4- 羥苯基 )-1-( 四氫 -2H - 哌喃 -2- )-1H - 吲唑 -3- )-3-((2-( 三甲基矽基 ) 乙氧基 ) 甲基 )-4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- 甲酸
Figure 02_image036
(a) (6S )-2-(6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1-(四氫-2H -哌喃-2-基)-1H -吲唑-3-基)-3-((2-(三甲基矽基)乙氧基)甲基)-3,4,6,7-四氫-5H- 咪唑并[4,5-c]吡啶-5,6-二甲酸5-(三級丁酯) 6-甲酯 向(S )-2-碘-3-((2-三甲基矽基)乙氧基)甲基)-3,4,6,7-四氫-5H -咪唑并[4,5-c]吡啶-5,6-二甲酸5-(三級丁酯) 6-甲酯(17.0 g,31.65 mmol)於甲苯(500 mL)中之攪拌溶液中添加6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1-(四氫-2H -哌喃-2-基)-3-(三甲基錫烷基)-1H -吲唑(20 g,34.82 mmol)。將反應混合物用氬氣吹掃15 min,添加Pd(PPh3 )4 (3.6 g,3.16 mmol)及碘化銅(1.20 g, 6.33 mmol),且將反應混合物在120℃下攪拌16 h。使反應混合物經由矽藻土過濾,在減壓下濃縮濾液,且藉由矽膠管柱層析(Redisep 80 g管柱,用DCM溶離10 min,且接著用15-20% EtOAc/己烷溶離)純化,以獲得呈黃色固體狀之標題中間物(15.10 g,58%產率)。(m/z):C46 H58 FN5 O7 Si之[M+H]+ 計算值840.41,實驗值840.54。1 H NMR (400 MHz, 氯仿-d ) δ 8.43 (s, 1H), 7.54 - 7.33 (m, 6H), 7.20 (s, 1H), 7.05 (d,J = 11.4 Hz, 1H), 6.95 (d,J = 8.5 Hz, 1H), 6.09 - 5.69 (m, 3H), 5.59 - 5.36 (m, 1H), 5.20 (s, 2H), 4.97 - 4.80 (m, 1H), 4.12 - 3.90 (m, 1H), 3.68 (s, 3H), 3.57 - 3.47 (m, 2H), 3.40 (d, 1H), 3.21 - 3.05 (m, 1H), 2.74 - 2.34 (m, 4H), 2.25 - 2.07 (m, 2H), 1.94 - 1.65 (m, 4H), 1.54 (s, 9H), 1.12 - 0.99 (m, 3H), 0.91 - 0.75 (m, 2H), -0.12 (s, 9H)。
(b) (6S )-2-(6-(4-(苯甲氧基)-2-乙基-5-氟苯基)-1-(四氫-2H -哌喃-2-基)-1H -吲唑-3-基)-3-((2-(三甲基矽基)乙氧基)甲基)-3,4,6,7-四氫-5H -咪唑并[4,5-c]吡啶-5,6-二甲酸6-苯甲酯5-(三級丁酯)
向圓底燒瓶中添加含先前步驟之產物(15.0 g,17.85 mmol)的甲苯(400 mL)、苯甲醇(46.3 mL)及Ti(OEt)4 (7.15 mL,35.70 mmol),且使反應混合物劇烈回流(140℃)持續48 h,用水稀釋且用DCM萃取。過濾懸浮液,將濾液經Na2 SO4 乾燥,在減壓下濃縮且藉由矽膠管柱層析(Redisep 80 g管柱,0-5% EtOAc/己烷)純化20 min,以移除過量苯甲醇,接著用10-15% EtOAc/己烷溶離,以得到標題中間物。1 H NMR與結構一致。(m/z):C52 H62 FN5 O7 Si之[M+H]+ 計算值916.44,實驗值916.86。
(c) (6S )-5-(三級丁氧基羰基)-2-(6-(2-乙基-5-氟-4-羥苯基)-1-(四氫-2H -哌喃-2-基)-1H -吲唑-3-基)-3-((2-(三甲基矽基)乙氧基)甲基)-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-甲酸 向先前步驟之產物(21.0 g,22.92 mmol)於1:1 IPA:THF (400 mL)中之攪拌溶液中添加Pd(OH)2 (5.0 g)。將反應混合物在氫氣氣囊下在RT下攪拌16 h,經由矽藻土過濾,在減壓下濃縮,且藉由矽膠管柱層析(Redisep 80 g管柱,用25-40% EtOAc/己烷溶離)純化,以得到呈灰白色固體狀之標題化合物(6.1 g,8.29 mmol)。(m/z):C38 H50 FN5 O7 Si之[M+H]+ 計算值736.35,實驗值736.5。1 H NMR與結構一致。(m/z):C38 H50 FN5 O7 Si之[M+H]+ 計算值736.35,實驗值736.5。1 H NMR (400 MHz, DMSO-d 6 ) δ 12.94 (s, 1H), 9.86 (s, 1H), 8.34 (t,J = 7.6 Hz, 1H), 7.66 (s, 1H), 7.20 (d,J = 8.7 Hz, 1H), 7.03 (d,J = 11.8 Hz, 1H), 6.93 (d,J = 9.1 Hz, 1H), 6.11 - 5.77 (m, 3H), 5.33 - 5.06 (m, 1H), 4.87 - 4.56 (m, 1H), 4.52 - 4.14 (m, 1H), 3.97 - 3.69 (m, 2H), 3.53 - 3.40 (m, 2H), 3.23 - 3.11 (m, 1H), 3.11 - 2.93 (m, 1H), 2.47 - 2.44 (m, 2H), 2.13 - 1.96 (m, 2H), 1.68 (d,J = 70.9 Hz, 4H), 1.48 (s, 9H), 1.02 (t,J = 7.5 Hz, 3H), 0.86 - 0.68 (m, 2H), -0.17 (s, 9H)。
製備 12 (S )-2-(6-(2- 乙基 -5- -4- 羥苯基 )-1H - 吲唑 -3- )-4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- 甲酸
Figure 02_image038
在0℃下,向(6S )-5-(三級丁氧基羰基)-2-(6-(2-乙基-5-氟-4-羥苯基)-1-(四氫-2H -哌喃-2-基)-1H -吲唑-3-基)-3-((2-(三甲基矽基)乙氧基)-甲基)-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-甲酸(5.7 g,7.75 mmol)於5:1二㗁烷:水(60 mL)中之攪拌溶液中逐滴添加濃HCl (20 mL)。將反應混合物升溫,且在90℃下攪拌16 h,並在真空下蒸餾以得到粗殘餘物,依序用經冷凍之乙醚及乙腈濕磨該粗殘餘物以得到呈淡棕色固體狀之標題化合物之HCl鹽(3.6 g,95%產率)。(m/z):C22 H20 FN5 O3 之[M+H]+ 計算值422.16,實驗值422.24。1 H NMR (400 MHz, D2 O/DMSO-d 6 ) δ 8.22 (d,J = 8.4 Hz, 1H), 7.49 (s, 1H), 7.19 (d,J = 8.1 Hz, 1 H), 6.99 (d,J = 11.9 Hz, 1 H), 6.91 (d,J = 9.0 Hz, 1H), 4.56 - 4.51 (m, 1H), 4.36 (d,J = 15.5 Hz, 1H), 4.30 (d,J = 15.5 Hz, 1H), 3.35 - 3.25 (m, 1H), 3.15 - 3.05 (m, 1H), 2.4 - 2.55 (m, 2H), 0.97 (t,J = 7.5 Hz, 3H)。
製備 13 (S )-2-(6-(2- 乙基 -5- -4- 羥苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- 甲酸
Figure 02_image040
向(S )-2-(6-(2-乙基-5-氟-4-羥苯基)-1H-吲唑-3-基)-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-甲酸,HCl (400 mg,0.874 mmol)、丙酮(0.192 mL,2.62 mmol)及乙酸(0.150 mL,2.62 mmol)於DMF (7 mL)中之溶液中添加氰基硼氫化鈉(274 mg,4.37 mmol),且將反應混合物在RT下攪拌隔夜。添加硼氫化鈉(33 mg,0.874 mmol),將溶液濃縮,且藉由製備型HPLC純化以得到標題化合物之TFA鹽(115 mg,23%產率)。(m/z):C25 H26 FN5 O3 之[M+H]+ 計算值464.20,實驗值464.5。
實例 11 (S )-(3-( 二甲胺基 ) 吖呾 -1- )(2-(6-(2- 乙基 -5- -4- 羥苯基 )-1H - 吲唑 -3- )-5- 異丙基 -4,5,6,7- 四氫 -3H - 咪唑并 [4,5-c] 吡啶 -6- ) 甲酮 C-1
Figure 02_image042
向(S )-2-(6-(2-乙基-5-氟-4-羥苯基)-1H-吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-甲酸,TFA (179 mg,0.310 mmol)、N,N-二甲基吖呾-3-胺,2 HCl (107 mg,0.465 mmol)及DIPEA (0.162 mL 0.930 mmol)於DMF (4 mL)中之溶液中添加HATU (177 mg,0.465 mmol),且將反應混合物在RT下攪拌隔夜。添加肼(5當量),將反應混合物濃縮,且藉由製備型HPLC純化以得到標題化合物之TFA鹽(63 mg,26%產率)。(m/z):C30 H36 FN7 O2 之[M+H]+ 計算值546.29,實驗值546.7。1 H NMR (400 MHz, DMSO-d 6 ) δ 9.90 (s, 1H), 8.29 (dd, 1H), 7.34 (s, 1H), 7.07 (d, 1H), 7.01 (d, 1H), 6.89 (d, 1H), 4.35 - 4.18 (m, 1H), 4.11 - 3.94 (m, 1H), 3.94 - 3.73 (m, 3H), 3.70 - 3.57 (m, 2H), 3.06 - 2.94 (m, 2H), 2.87 - 2.66 (m, 2H), 2.48 - 2.40 (m, 2H), 2.13 - 2.00 (m, 6H), 1.07 (t, 3H), 1.03 - 0.93 (m, 6H)。
生物學分析 化合物1 已在以下生物學分析中表徵。
分析 1 生物化學 JAK 激酶分析 將一組四種LanthaScreen JAK生物化學分析(JAK1、2、3及Tyk2)載於常用激酶反應緩衝液(50 mM HEPES,pH 7.5,0.01% Brij-35,10 mM MgCl2 及1 mM EGTA)中。自Life Technologies獲得重組GST標記之JAK酶及GFP標記之STAT1肽受質。
在環境溫度下在白色384孔微量盤(Corning)中,使連續稀釋之化合物與四種JAK酶中之每一者及受質一起預培育1 h。隨後以具有1% DMSO之10 μL總體積添加ATP以引發激酶反應。JAK1、2、3及Tyk2之最終酶濃度分別為4.2 nM、0.1 nM、1 nM及0.25 nM;所使用之對應Km ATP濃度為25 μM、3 μM、1.6 μM及10 μM;而對於所有四種分析,受質濃度為200 nM。在添加EDTA (10 mM最終濃度)及Tb抗pSTAT1 (pTyr701)抗體(Life Technologies,2 nM最終濃度)於TR-FRET稀釋緩衝液(Life Technologies)中之10 μL製劑之前,使激酶反應在環境溫度下進行1小時。在EnVision讀取器(Perkin Elmer)上讀取之前,使盤在環境溫度下培育1h。記錄且利用發射比訊息(520 nm/495 nm),以基於DMSO及背景對照來計算抑制百分比值。
對於劑量反應分析,相對於化合物濃度繪製抑制百分比資料,且用Prism軟體(GraphPad Software)由4參數穩固擬合模型測定IC50 值。結果表述為pIC50 (IC50 之負對數),且隨後使用Cheng-Prusoff等式轉換為pKi (解離常數Ki之負對數)。
在四種JAK分析中具有較低Ki 值或較高pKi 值之測試化合物展示對JAK活性之較大抑制。
分析 2 抑制 Tall-1 T 細胞中 IL-2 刺激之 pSTAT5 使用AlphaLisa在Tall-1人類T細胞株(DSMZ)中量測測試化合物抑制介白素-2 (IL-2)刺激之STAT5磷酸化的效能。因為IL-2經由JAK1/3傳訊,故此分析提供JAK1/3細胞效能之量測。
經由AlphaLISA SureFire Ultra pSTAT5 (Tyr694/699)套組(PerkinElmer)量測磷酸化STAT5。在37℃,5% CO2 含濕氣培育箱中,在補充有15%熱滅活胎牛血清(FBS,Life Technologies)、2 mM Glutamax (Life Technologies)、25 mM HEPES (Life Technologies)及1× Pen/Strep (Life Technologies)之RPMI (Life Technologies)中培養來自Tall-1細胞株之人類T細胞。將化合物連續稀釋於DMSO中,且以聲學方式分配至空孔中。分配分析培養基(補充有10% FBS (ATCC)之不含酚紅的DMEM (Life Technologies)) (4微升/孔),且將盤以900 rpm振盪10 min。將細胞以45,000個細胞/孔接種於分析培養基中(4微升/孔),且在37℃,5% CO2 下培育1小時,隨後添加含IL-2 (R&D Systems;最終濃度為300 ng/mL)之預溫熱分析培養基(4 μL)持續30分鐘。在細胞介素刺激之後,將細胞用含有1× PhosStop及Complete錠劑(Roche)之6 μl的3× AlphaLisa裂解緩衝液(PerkinElmer)裂解。將裂解物在室溫(RT)下以900 rpm振盪10分鐘。經由pSTAT5 AlphaLisa套組(PerkinElmer)量測磷酸化STAT5。將新製備之受體珠粒混合物在綠色過濾後的<100勒克斯(lux)光下分配至裂解物(5 μL)上。將盤以900 rpm振盪2 min,簡單快速離心,且在暗處在RT下培育2小時。在綠色過濾後的<100勒克斯光下分配供體珠粒(5 μL)。將盤以900 rpm振盪2分鐘,簡單快速離心,且在暗處在RT下培育隔夜。在綠色過濾後的<100勒克斯光下,使用EnVision盤讀取器(PerkinElmer)在689 nm激發及570 nm發射下量測發光。
為測定測試化合物回應於IL-2之抑制效能,在人類T細胞株中量測結合於pSTAT5的珠粒之平均發射強度。由相較於化合物濃度的訊息強度之抑制曲線之分析來測定IC50 值。資料表述為pIC50 (負十進制對數IC50 )值(平均值±標準差)。活體外分析結果 5
化合物 JAK1 pKi JAK2 pKi JAK3 pKi Tyk2 pKi Tall-1 pIC50
1 10.2 10.5 10.2 9.1 8.6
C-1 10.4 10.8 10.1 9.5 8.8
分析 3 肺組織中經 IL-13 誘導之 pSTAT6 誘導之鼠類 ( 小鼠 ) 模型 IL-13為哮喘之病理生理學潛在的重要細胞介素(Kudlacz等人Eur. J. Pharmacol ,2008 ,582 , 154-161)。IL-13結合於細胞表面受體,從而使Janus激酶(JAK)家族之成員活化,此接著使STAT6磷酸化且隨後進一步活化轉錄路徑。在所描述模型中,將IL-13之劑量局部遞送至小鼠肺部中以誘導STAT6磷酸化(pSTAT6),此接著量測為終點。
在分析中使用來自Harlan之成年Balb/c小鼠。在研究當天,用異氟醚將動物輕度麻醉,且經由經口抽吸投與媒劑或測試化合物(1 mg/mL,50 μl總體積,經由若干次呼吸)。在給藥後,將動物側臥置放,且在返回其飼養籠之前監測自麻醉之完全恢復。四小時後,再次簡單麻醉動物,且在監測自麻醉恢復且返回其飼養籠之前經由經口抽吸用媒劑或IL-13 (0.03 μg總遞送劑量,50 μL總體積)刺激。在媒劑或IL-13投與之後一個小時,收集全血及肺,以用於使用Perkin Elmer AlphaLISA®SureFire ®UltraHV p-STAT6 (Tyr641)分析套組進行肺勻漿中之pSTAT6偵測,且用於進行肺及血漿兩者中之總藥物濃度分析。將血液樣品在4℃下以大約12,000 rpm離心(Eppendorf離心機,5804R)持續4分鐘以收集血漿。將肺在杜氏磷酸鹽緩衝鹽水(Dulbecco's Phosphate-Buffered Saline;DPBS)中沖洗,填塞乾燥,急驟冷凍,稱取且以1:3之稀釋度在含0.1%甲酸之HPLC水中均質化。藉由LC-MS分析,針對在測試基質中建構為標準曲線之分析型標準物來測定測試化合物之血漿及肺含量。將肺與血漿比率測定為在5小時時以ng/g為單位之肺濃度與以ng/mL為單位之血漿濃度的比率。
藉由與經媒劑處理、IL-13刺激之對照動物相比,在5小時時存在於經處理動物之肺中的pSTAT6之含量降低來證明模型中之活性。在任何給定實驗中,經媒劑處理、經IL-13刺激之對照動物與經媒劑處理、經媒劑刺激之對照動物之間的差異分別指示0%及100%抑制作用。如下文所記錄,化合物1 在IL-13刺激之後5小時時展現對STAT6磷酸化之抑制。 6 所觀測之 pSTAT6 抑制及血漿 / 肺暴露
化合物 在5 小時 之肺濃度(ng/g) 在5 小時 之血漿濃度(ng/mL) 在5 小時 之肺與血漿比率 在5 小時 時之pSTAT6 抑制
1 10155±1979 24.0±16.2 423 75
小鼠肺中之顯著化合物濃度的觀測結果確認,IL-13誘導之pSTAT6誘導之所觀測抑制為測試化合物活性之結果。在5小時時之肺與血漿比率展示,化合物1 展現在小鼠中之肺中之暴露顯著多於在血漿中之暴露。
分析 4 抑制人類周邊血液單核細胞中之 TSLP 誘發的 TARC 釋放 胸腺基質淋巴生成素(TSLP)以及胸腺及活化調節之趨化介素(TARC)在哮喘氣道中過度表現,且與疾病嚴重程度相關。在肺中,可藉由回應於過敏原及病毒性感染之支氣管上皮細胞釋放TSLP。經由IL-7Rα/TSLPR異二聚體之TSLP訊息發現於廣泛範圍的組織及細胞類型中,包括上皮細胞、內皮細胞、嗜中性球、巨噬細胞及肥大細胞。TSLP與其受體之結合可誘導構形變化,此活化JAK1及JAK2以磷酸化多種轉錄因子,包括STAT3及STAT5。在免疫細胞中,此觸發胞內事件之級聯,此引起細胞增殖、抗細胞凋亡、樹突狀細胞遷移以及Th2細胞介素及趨化介素之產生。在周邊血液單核細胞(PBMC)中,TSLP藉由活化骨髓樹突狀細胞以吸引且刺激T細胞(由化學引誘劑TARC介導之方法)而具有促發炎作用。
在此分析中,顯示TSLP刺激誘導自PBMC釋放TARC,且此反應在用化合物處理時以劑量依賴性方式衰減。量測用於抑制TARC釋放的測試化合物之效能。
將來自3至5種供體之PBMC等分試樣(先前自全血分離且在-80℃下以等分試樣冷凍)在37℃下解凍,且逐滴添加至含40 mL預溫熱無菌過濾之完整RPMI培養基的50 mL Falcon管中。將細胞球粒化且以2.24×106 個細胞/毫升再懸浮於完整培養基中。將細胞以85 μL (190,000個細胞)/孔接種於經組織培養物處理之96孔平底微量盤中。使細胞在37℃與5% CO2 下靜置1小時。
在DMSO中以10 mM儲備溶液形式接收化合物。執行3.7倍連續稀釋,以在DMSO中產生9種濃度之300×最終分析測試濃度的測試化合物。在完整培養基中執行150倍中間物稀釋以產生具有0.2% DMSO之2×最終分析測試濃度的化合物。在1小時靜置時段之後,針對33.33 μM至0.95 μM之最終分析濃度範圍,將95 μL之2×化合物添加至PBMC之各孔。將95 μL含0.2% DMSO之完整培養基添加至未經處理的對照孔。將細胞在刺激之前在37℃與5% CO2 下用化合物預處理1小時。
將重組人類TSLP蛋白質以10 μg/mL在具有0.1% BSA之無菌DPBS中復原,且在-20℃下以等分試樣形式儲存。緊接在使用之前,將等分試樣解凍,且在完整培養基中以20×最終分析濃度製備。將10 μL之20× TSLP添加至PBMC之各孔,最終分析濃度為對於10 ng/mL。將10 μL之完整培養基添加至未經刺激之對照孔。將細胞在37℃與5% CO2 下在化合物之存在下刺激48小時。
在刺激之後,採集細胞培養物上清液,且根據製造商的說明書使用人類CCL17/TARC Quantikine ELISA套組(R&D Systems #DDN00)藉由酶聯免疫吸附分析(ELISA)來偵測TARC含量。
對於劑量反應分析,相對於各供體之反應百分比值繪製對數[測試化合物(M)],且利用GraphPad Prism軟體,使用具有可變斜率之4參數S形劑量-反應演算法,使用非線性回歸分析來測定IC50 值。資料表述為由個別供體之pIC50 值計算且四捨五入至一個小數位的平均pIC50 (負十進制對數IC50 )值。原始化合物及其消氟改質類似物的抑制效能值概述於表7中。 7 用於抑制人類周邊血液單核細胞中 TSLP 誘發之 TARC 釋放的測試化合物之 效能 (pIC50 )
化合物 pIC50± 標準差
1 7.2 ± 0.1
C-1 7.0 ± 0.1
分析 5 :肺 S9 代謝 在人類肺S9片段(1 μM化合物;1 mg/mL S9蛋白質)中評估化合物1C-1 之活體外代謝穩定性。對於母化合物,藉由高解析度LC-MS/MS分析時間0、15、30及60分鐘之樣品。來自人類之肺S9片段(批次1410245)係購自XenoTech LLC (Lenexa,KS)。NADPH (Sigma Aldrich,N1630)及3-磷酸腺苷5-磷醯硫酸(PAPS) (Sigma Aldrich,A1651)係購自Sigma Aldrich (St. Louis,MO)。乙腈及水係獲自VWR (Radnor,PA)且為HPLC等級或更佳的等級。雷諾昔酚(Raloxifene)及甲酸係購自Sigma Aldrich (St. Louis,MO)。在96孔聚丙烯盤中,在37℃之水浴中執行肺S9培育。肺S9溶液由緩衝至pH 7.4之100mM磷酸鉀(BD Biosciences,Woburn,MA)組成,其補充有1 mM NADPH (Sigma-Aldrich,St. Louis,MO)、3 mM氯化鎂(Sigma Aldrich,M1028)及100 µM PAPS (Sigma-Aldrich,St. Louis,MO)輔因子,最終培育蛋白質濃度為1mg/mL。將雷諾昔酚(n=1)及化合物(n=1)之10 mM DMSO儲備液稀釋於緩衝液中且外加至培育物中以得到1µM受質濃度(0.001% DMSO v/v)。培育體積由400µL組成,且時間點在0、15、30及60分鐘時藉由移除70 µL等分試樣取得,且稀釋至140µL乙腈(0%甲酸)中。將所有樣品在5℃下以2250 g離心10分鐘。自離心樣品獲取上清液(50µL)且將其稀釋至含有內部標準物之100µL HPLC水中。將樣品在Dionex Ultimate 3000自動取樣器上運行且結合Atlantis T3管柱3µM-2.1×50 mm (Waters Inc., 186003717)在全掃描模式中使用Thermo Q-Exactive High Resolution質譜儀(Thermo, Waltham, MA)進行分析。行動相A由水+0.2%甲酸組成,且行動相B由乙腈+0.2%甲酸組成。使用Gubbs GMSU軟體(Gubbs Inc., Alpharetta,GA)實現峰積分。對於各樣品,藉由將分析物峰面積除以內部標準物峰面積來計算峰面積比。對於各培育物,將各t0中之分析物之峰面積比設定為100%,且將來自60分鐘樣品之峰面積比轉換為相對於對應的t0之剩餘百分比。藉由觀測母離子通道中基於歷史內部資料、對應於各母化合物之O-硫酸鹽代謝物的早期溶離峰來定性地進行硫酸鹽代謝物形成之測定。分析之結果概述於表8中(n=2次重複)。 8 人類肺 S9 片段中之 代謝穩定性
化合物 清除率(µL/min/mg) 在60 min 剩餘 化合物(%) 硫酸鹽出現
1 3.5 81
C-1 49.0 6
當與其對應氟類似物(化合物C-1 )相比時,化合物1 產生顯著更少的硫酸化代謝。
分析 6 小鼠中之血漿及肺的藥物動力學 按以下方式來測定測試化合物之血漿及肺濃度及其比率。在分析中使用來自Charles River Laboratories之BALB/c小鼠。以0.2 mg/mL之濃度在含20%丙二醇之pH 4檸檬酸鹽緩衝液中單獨地調配化合物1 ,且藉由經口抽吸將50 µL之給藥溶液引入小鼠氣管中。在給藥後之不同時間點(通常0.167、2、6、24小時),經由心臟穿刺移出血液樣品,且自小鼠切除完整肺。將血液樣品在4℃下以大約12,000 rpm離心(Eppendorf離心機,5804R)持續4分鐘以收集血漿。將肺填塞乾燥,稱取,且在無菌水中以1:3之稀釋度均質化。藉由LC-MS分析,針對在測試基質中建構為標準曲線之分析型標準物來測定測試化合物之血漿及肺濃度。肺與血漿比率經測定為以µg hr/g為單位之肺AUC與以µg hr/mL為單位之血漿AUC的比率,其中將AUC習知地定義為在測試化合物濃度相對於時間之曲線下面積。 9 在單次經口抽吸投與化合物 1 之後的血漿及肺組織暴露
化合物 血漿AUC(0-24) (µg hr/mL) 肺組織 AUC(0-24) (µg hr/g) 肺組織:血漿AUC比率
1 0.943 54.5 57.8
分析 7 :在 人類 3D 氣道培養物中對 IFNγ IL-27 誘導之趨化介素 CXCL9 CXCL10 抑制 自Mattek (AIR-100)獲得EpiAirway組織培養物。培養物係來源於哮喘供體。在細胞培養插入物中,使人類衍生之氣管/支氣管上皮細胞在多孔膜載體上生長及分化,從而使得氣液界面具有細胞下方之溫熱培養基及上述氣態測試氛圍。在維持培養基(Mattek,AIR-100-MM)時,在37℃,5% CO2 含濕氣培育箱中培養組織。測試四種供體。在第0天,在液體界面中以10µM、1µM及/或0.1µM用測試化合物處理組織培養物。將化合物1 稀釋於二甲亞碸(DMSO,Sigma)中,達0.1%之最終濃度。0.1% DMSO用作媒劑對照。將化合物1 與培養物一起在37℃,5% CO2 下培育1小時,隨後以100 ng/ml之最終濃度添加含有IFNγ (R&D Systems)或IL-27 (R&D Systems)之預溫熱培養基。將組織培養物維持8天。將培養基每2天用含有化合物1 及IFNγ或IL-27之新鮮培養基置換。在第8天,收集組織培養物及上清液以進行分析。使用流式螢光偵測術(luminex)分析(EMD Millipore)來分析CXCL10 (IP-10)及CXCL9 (MIG)之上清液樣品。資料表述為抑制%+/-標準差(±STDV)。與經媒劑處理之細胞相比,藉由針對IFNγ或IL-27誘導之CXCL10或CXCL9分泌的化合物抑制效能來測定抑制百分比。資料為來自4種供體之平均值。當與媒劑對照相比時,化合物1 能夠將IFNγ誘導之CXCL10分泌抑制100%±1.0 (在10 µM下)、76%±13 (在1 µM下)及18%±22 (在0.1 µM下)。當與媒劑相比時,化合物1 能夠將IFNγ誘導之CXCL9分泌抑制100%±0.1 (在10 µM下)、93%±6.9 (在1 µM下)及16%±41 (在0.1 µM下)。當與媒劑對照相比時,化合物1 能夠將IL-27誘導之CXCL10分泌抑制100%±0.0 (在10 µM下)、98%±1.0 (在1 µM下)及25%±26 (在0.1 µM下)。當與媒劑對照相比時,化合物1 能夠將IL-27誘導之CXCL9分泌抑制100%±0.0 (在10 µM下)、97%±2.0 (在1 µM下)及52%±18 (在0.1 µM下)。
分析 8 細胞 JAK 效能分析 抑制 IFNγ 誘導之 pSTAT1 使用流式細胞測量術在來源於人類全血(斯坦福血液中心(Stanford Blood Center))之CD14陽性(CD14+)單核球中量測化合物1 抑制經干擾素γ (IFNγ)刺激之STAT1磷酸化的效能。因為IFNγ經由JAK傳訊,故此分析提供JAK細胞效能之量測。
使用異硫氰酸螢光素(FITC)結合之抗CD14抗體(純系RM052,Beckman Coulter)來鑑別單核球,且使用Alexa Fluor 647結合之抗pSTAT1抗體(pY701,純系4a,BD Biosciences)來偵測STAT1磷酸化。
使用菲科爾(Ficoll)梯度自健康供體之人類全血分離人類周邊血液單核細胞(PBMC)。在37℃,5% CO2 含濕氣培育箱中,在補充有10%胎牛血清(FBS,Life Technologies)、2 mM Glutamax (Life Technologies)、25 mM HEPES (Life Technologies)及1× Pen/Strep (Life Technologies)之RPMI (Life Technologies)中培養細胞。將細胞以250,000個細胞/孔接種於培養基(200 µL)中,培養2 h,且再懸浮於含有各種濃度之測試化合物的分析培養基(50 μL) (補充有0.1%牛血清白蛋白(Sigma)、2 mM Glutamax、25 mM HEPES及1× Penstrep之RPMI)中。將化合物連續稀釋於DMSO中,且接著在培養基中再稀釋1000倍,以使最終DMSO濃度達0.1%。將測試化合物稀釋液與細胞一起在37℃,5% CO2 下培育1 h,隨後在培養基(50 µL)中以0.6 ng/mL之最終濃度添加預溫熱的IFNγ (R&D Systems)持續30 min。在細胞介素刺激之後,將細胞在37℃,5% CO2 下用預溫熱的固定溶液(100 µL) (BD Biosciences)固定10 min,用FACS緩衝液(1 mL) (1% BSA於PBS中)洗滌兩次,再懸浮於1:10抗CD14 FITC:FACS緩衝液(100 µL)中,且在4℃下培育15 min。將細胞洗滌一次,且接著在4℃下再懸浮於冰冷Perm緩衝液III (BD Biosciences) (100 µL)中持續30 min。將細胞用FACS緩衝液洗滌兩次,且接著在RT下在暗處再懸浮於1:10抗pSTAT1 Alexa Fluor 647:FACS緩衝液(100 µL)中持續30 min,在FACS緩衝液中洗滌兩次,且使用MACSQuant流式細胞儀(BD Biosciences)分析。
為測定測試化合物之抑制效能,在CD14+單核球中量測pSTAT1之中位螢光強度(MFI)。根據MFI相對於化合物濃度之抑制曲線的分析來測定IC50 值。資料表述為pIC50 (負十進位對數IC50 )值。化合物1 在此分析中展現7.5之pIC50 值。
分析 9 細胞 JAK 效能分析 抑制 GM-CSF 誘導之 pSTAT5 使用流式細胞量測術在來源於人類全血(斯坦福血液中心)之CD14陽性(CD14+)單核球中量測化合物1 抑制經粒細胞-巨噬細胞群落刺激因子(GM-CSF)刺激之STAT5磷酸化的效能。因為GM-CSF經由JAK傳訊,故此分析提供JAK細胞效能之量測。
使用異硫氰酸螢光素(FITC)結合之抗CD14抗體(純系RM052,Beckman Coulter)來鑑別單核球,且使用Alexa Fluor 647結合之抗pSTAT5抗體(pY694,BD Biosciences)來偵測STAT5磷酸化。
使用菲科爾梯度自健康供體之人類全血分離人類周邊血液單核細胞(PBMC)。在37℃,5% CO2 含濕氣培育箱中,在補充有10%胎牛血清(FBS,Life Technologies)、2 mM Glutamax (Life Technologies)、25 mM HEPES (Life Technologies)及1× Pen/Strep (Life Technologies)之RPMI (Life Technologies)中培養細胞。將細胞以250,000個細胞/孔接種於培養基(200 µL)中,培養2 h,且再懸浮於含有各種濃度之測試化合物的分析培養基(50 μL) (補充有0.1%牛血清白蛋白(Sigma)、2 mM Glutamax、25 mM HEPES及1× Penstrep之RPMI)中。將化合物連續稀釋於DMSO中,且接著在培養基中再稀釋1000倍,以使最終DMSO濃度達0.1%。將測試化合物稀釋液與細胞一起在37℃,5% CO2 下培育1 h,隨後以0.3 ng/mL之最終濃度添加含預溫熱的GM-CSF (R&D Systems)的培養基(50 µL)持續15 min。在細胞介素刺激之後,將細胞在37℃,5% CO2 下用預溫熱的固定溶液(100 µL) (BD Biosciences)固定10 min,用FACS緩衝液(1 mL) (1% BSA於PBS中)洗滌兩次,再懸浮於1:10抗CD14 FITC:FACS緩衝液(100 µL)中,且在4℃下培育15 min。將細胞洗滌一次,且接著在4℃下再懸浮於冰冷Perm緩衝液III (BD Biosciences) (100 µL)中持續30 min。將細胞用FACS緩衝液洗滌兩次,且接著在RT下在暗處再懸浮於1:10抗pSTAT1 Alexa Fluor 647:FACS緩衝液(100 µL)中持續30 min,在FACS緩衝液中洗滌兩次,且使用MACSQuant流式細胞儀(BD Biosciences)分析。
為測定測試化合物之抑制效能,在CD14+單核球中量測pSTAT5之中位螢光強度(MFI)。根據MFI相對於化合物濃度之抑制曲線的分析來測定IC50 值。資料表述為pIC50 (負十進位對數IC50 )值。化合物1 在此分析中展現6.9之pIC50 值。
分析 10 細胞 JAK 效能分析 抑制 IL-12 誘導之 pSTAT4 使用流式細胞量測術在來源於人類全血(斯坦福血液中心)之CD3陽性(CD3+) T細胞中量測化合物1 抑制經介白素-12 (IL-12)刺激之STAT4磷酸化的效能。因為IL-12經由JAK傳訊,故此分析提供JAK細胞效能之量測。
使用藻紅素(PE)結合之抗CD3抗體(純系UCHT1,BD Biosciences)來鑑別CD3+ T細胞,且使用Alexa Fluor 647結合之抗pSTAT4抗體(純系38/p-Stat4,BD Biosciences)來偵測STAT4磷酸化。
使用菲科爾梯度自健康供體之人類全血分離人類周邊血液單核細胞(PBMC)。在37℃,5% CO2 含濕氣培育箱中,在補充有10%胎牛血清(FBS,Life Technologies)、2 mM Glutamax (Life Technologies)、25 mM HEPES (Life Technologies)、1× Pen/Strep (Life Technologies)、盤結合純化之抗CD3抗體(5µg/ml,純系UCHT1,BD Biosciences)及可溶的抗CD28抗體(1µg/ml,純系CD28.2,BD Biosciences)的RPMI (Life Technologies)中將細胞培養3天。將細胞採集,用培養基洗滌,且接著再懸浮於含有介白素-2 (IL-2,10 ng/ml,R&D Systems)之培養基中。將細胞在37℃,5% CO2 含濕氣培育箱中培養3天。將細胞採集,用RPMI洗滌,且以250,000個細胞/孔接種於培養基(200 μL)中,培養2 h,且再懸浮於含有各種濃度之測試化合物的分析培養基(50 µL) (補充有0.1%牛血清白蛋白(Sigma)、2 mM Glutamax、25 mM HEPES及1× Penstrep之RPMI)中。將化合物連續稀釋於DMSO中,且接著在培養基中再稀釋1000倍,以使最終DMSO濃度達0.1%。將測試化合物稀釋液與細胞一起在37℃,5% CO2 下培育1 h,隨後在培養基(50 µL)中以10 ng/mL之最終濃度添加預溫熱的IL-12 (R&D Systems)持續30 min。在細胞介素刺激之後,將細胞在37℃,5% CO2 下用預溫熱的固定溶液(100 µL) (BD Biosciences)固定10 min,用FACS緩衝液(1 mL) (1% BSA於PBS中)洗滌兩次,且在4℃下再懸浮於冰冷Perm緩衝液III (1000 μL) (BD Biosciences)中持續30 min。將細胞用FACS緩衝液洗滌兩次,且接著在室溫下在暗處再懸浮於含有抗CD3 PE (1:50倍稀釋)及抗pSTAT4 Alexa Fluor 647 (1:10倍稀釋)之FACS緩衝液(100 μL)中持續45 min。在培育之後,在使用MACSQuant流式細胞儀(Miltenyi)分析之前將細胞在FACS緩衝液中洗滌兩次。為測定測試化合物之抑制效能,在CD3+ T細胞中量測pSTAT4之中位螢光強度(MFI)。根據MFI相對於化合物濃度之抑制曲線的分析來測定IC50 值。資料表述為pIC50 (負十進位對數IC50 )值。化合物1 在此分析中展現6.0之pIC50 值。
分析 11 在混合淋巴球反應分析中對 IFNγ 分泌之抑制 經混合淋巴球反應分析為模擬移植排斥反應之活體外分析。將來自一種供體之T細胞與來自另一供體之同種異體樹突狀細胞一起培養。此反應誘導細胞免疫反應,諸如IFNγ分泌。
使用菲科爾梯度及磁性分離(CD14微珠,Miltenyi)自供體A之人類全血(斯坦福血液中心)分離CD14+單核球。藉由在37℃,5% CO2 含濕氣培育箱中,在補充有10%胎牛血清(FBS,Life Technologies)、2 mM Glutamax (Life Technologies)、1× Pen/Strep (Life Technologies)、介白素-4 (IL-4,50ng/ml,R&D Systems)及粒細胞-巨噬細胞群落刺激因子(GM-CSF,50ng/ml,R&D Systems)之RPMI (Life Technologies)中將細胞培養6天而使單核球分化為樹突狀細胞。將樹突狀細胞採集,用培養基洗滌,且接著藉由在37℃,5% CO2 含濕氣培育箱中,在含有來自大腸桿菌(Escherichia coli ) (LPS,100 ng/ml,Sigma)之脂多糖的培養基中將細胞培養24小時進行活化。將細胞採集,用培養基洗滌,以400,000個細胞/毫升再懸浮於培養基中,且以10,000個細胞/孔/25微升塗覆。使用菲科爾梯度及磁力分離(CD4+ T細胞分離套組,Miltenyi)自供體B之人類全血(斯坦福血液中心)新分離CD4+ T細胞。將T細胞以4,000,000個細胞/毫升再懸浮於補充有10%胎牛血清(FBS,Life Technologies)、2 mM Glutamax (Life Technologies)、25 mM HEPES (Life Technologies)及1× Pen/Strep (Life Technologies)之RPMI (Life Technologies)中。將CD4+ T細胞與樹突狀細胞以100,000細胞/孔/25微升混合。將細胞用測試化合物(50µl,在20 µM、2 µM及/或0.2 µM下)處理至10 µM、1 µM及/或0.1 µM之最終濃度。將化合物1稀釋於二甲亞碸(DMSO,Sigma)中,達0.1%之最終濃度。0.1% DMSO用作媒劑對照。將細胞在37℃,5% CO2 含濕氣培育箱中維持5天。在第5天,收集上清液,且針對干擾素γ (INFγ)使用酶聯免疫吸附分析(ELISA)進行量測。與經媒劑處理之細胞相比,藉由針對IFNγ分泌之化合物抑制效能來測定抑制百分比。資料為來自4種供體之平均值。與媒劑對照相比,化合物1 能夠將IFNγ分泌抑制99%±0.4 (在10µM下)、76%±10 (在1µM下)及43%±12(在0.1µM下)。
分析 12 在來源於哮喘供體之人類 3D 氣道培養物中對自發性骨膜蛋白及 IL-6 分泌之抑制 自Mattek (AIR-100)獲得EpiAirway組織培養物。細胞係來源於自發地分泌骨膜蛋白及介白素-6 (IL-6)之哮喘供體,該骨膜蛋白為與Th2介導之哮喘相關的基質細胞蛋白(嗜酸性),該介白素-6為在Th2及非Th2相關之哮喘兩者中起作用之發炎性細胞介素。在細胞培養插入物中,使人類衍生之氣管/支氣管上皮細胞在多孔膜載體上生長及分化,從而使得氣液界面具有細胞下方之溫熱培養基及上述氣態測試氛圍。在維持培養基(Mattek,AIR-100-MM)時,在37℃,5% CO2 含濕氣培育箱中培養組織。測試四種供體。在第0天,在液體界面中以10 µM、1 µM及/或0.1 µM用測試化合物處理組織培養物。將化合物1稀釋於二甲亞碸(DMSO,Sigma)中,達0.1%之最終濃度。0.1% DMSO用作媒劑對照。將組織培養物維持8天。將培養基每2天用含有化合物1之新鮮培養基置換。在第8天,收集上清液以進行分析。針對骨膜蛋白及介白素-6 (IL-6),使用流式螢光偵測術分析(EMD Millipore)分析上清液樣品。資料表述為抑制%+/-標準差(±STDV)。與經媒劑處理之細胞相比,藉由針對骨膜蛋白及IL-6之自發性分泌的化合物抑制效能來測定抑制百分比。資料為來自3種或4種供體之平均值。當與媒劑對照相比時,化合物1 能夠將自發性骨膜蛋白分泌抑制62%±25 (在10 µM下)及40%±28 (在1 µM下)。當與媒劑相比時,化合物1 能夠將自發性IL-6分泌抑制91%±9.0 (在10 µM下)、70%±33 (在1 µM下)及10%±40 (在0.1µM下)。
晶體結構 以2.28 Å之解析度使化合物C-1 結合於人類JAK1來獲得共晶體結構。觀測到配位體在ATP結合位點中結合。基於供體與受體原子之間的3.5Å或更小的距離來鑑別七種特異性氫鍵相互作用。尤其應注意,在化合物C-1 之環外醯胺之羰基與JAK1之Arg879之側鏈之間鑑別出氫鍵相互作用。在早期模型化研究中,由於其他緊密相關的激酶(例如,TRKA、VEGFR、ABL1)在等效位置處並不擁有精胺酸殘基,因此已提出此相互作用作為提供對JAK1優於其他酪胺酸激酶的選擇性的方法。與不擁有環外醯胺之系列相比,晶體結構中氫鍵相互作用之觀測結果及經改良之激酶組選擇性驗證了此設計假設。
雖然本發明已參考其特定態樣或實施例進行描述,但一般熟習此項技術者將理解,在不脫離本發明之真實精神及範疇的情況下,可作出各種變化或可取代等效物。另外,在由適用專利法及規章准許之程度上,本文中所引用之所有公開案、專利及專利申請案以全文引用之方式併入本文中,其引用程度如同將各文獻單獨地以引用之方式併入本文中一般。
藉由參考隨附圖式來說明本發明之各種態樣。 圖1展示化合物1 之結晶水合物之粉末x射線繞射(PXRD)圖案。 圖2展示化合物1 之結晶水合物之差示掃描熱量測定(DSC)熱分析圖。 圖3展示化合物1 之結晶水合物之熱重分析(TGA)曲線圖。 圖4展示在約25℃之溫度下觀測到的化合物1 之結晶水合物之動態濕氣吸附(DMS)等溫線。
Figure 110106884-A0101-11-0002-3

Claims (44)

  1. 一種式1 化合物之結晶水合物:
    Figure 03_image004
    其中該結晶水合物之特徵在於包含2θ值為5.68±0.20、10.43±0.20、10.94±0.20及13.08±0.20之繞射峰的粉末X射線繞射圖案。
  2. 如請求項1之結晶水合物,其中該粉末X射線繞射圖案之特徵進一步在於具有2θ值為8.49±0.20之一個另外的繞射峰。
  3. 如請求項2之結晶水合物,其中該粉末X射線繞射圖案進一步特徵在於具有2θ值係選自11.55±0.20、12.20±0.20、17.06±0.20及26.29±0.20之兩個或更多個另外的繞射峰。
  4. 如請求項2之結晶水合物,其中該粉末X射線繞射圖案之特徵進一步在於具有2θ值為11.55±0.20、12.20±0.20、17.06±0.20及26.29±0.20之另外的繞射峰。
  5. 如請求項1至4中任一項之結晶水合物,其中該結晶水合物之特徵在於其中峰位置實質上與圖1中所展示之圖案之峰位置一致的粉末X射線繞射圖案。
  6. 如請求項1至5中任一項之結晶水合物,其中該結晶水合物之特徵在於在10℃/分鐘之加熱速率下記錄的差示掃描熱量測定跡線在212.4±3℃之溫度下展示吸熱流最大值。
  7. 如請求項1至6中任一項之結晶水合物,其中該結晶水合物之特徵在於差示掃描熱量測定跡線實質上與圖2中所展示之差示掃描熱量測定跡線一致。
  8. 如請求項1至7中任一項之結晶水合物,其中該結晶水合物為單水合物。
  9. 一種醫藥組合物,其包含如請求項1至8中任一項之結晶水合物及醫藥學上可接受之載劑。
  10. 一種製備如請求項1至8中任一項之結晶水合物的方法,該方法包含: (a)在55℃±10℃之溫度下將(S )-(3-(二甲胺基)吖呾-1-基)(2-(6-(2-乙基-4-羥苯基)-1H -吲唑-3-基)-5-異丙基-4,5,6,7-四氫-3H -咪唑并[4,5-c]吡啶-6-基)甲酮溶解於醇溶劑中以得到溶液; (b)使步驟(a)中獲得之該溶液冷卻至10℃±10℃以產生懸浮液; (c)在惰性氣體條件下自步驟(b)之該懸浮液分離固體; (d)在60℃±15℃下乾燥步驟(c)中獲得之該固體; (e)使步驟(d)中獲得之該固體經受環境濕度及溫度條件以得到該結晶水合物。
  11. 如請求項10之方法,其中該醇溶劑為甲醇或乙醇。
  12. 如請求項1至8中任一項之結晶水合物,其用於治療哺乳動物之呼吸道疾病。
  13. 如請求項12之結晶水合物,其中該呼吸道疾病係選自由以下組成之群:哮喘、慢性阻塞性肺病、囊腫性纖維化、肺炎、自發性肺纖維化、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫、類肉瘤病、嗜酸性球性疾病、蠕蟲感染、肺動脈高血壓、淋巴管平滑肌瘤、支氣管擴張症、浸潤性肺病、藥物誘導之肺炎、真菌誘導之肺炎、過敏性支氣管與肺的麴菌病、過敏性肺炎、嗜酸性球性肉芽腫伴多血管炎、自發性急性嗜酸性球性肺炎、自發性慢性嗜酸性球性肺炎、嗜酸性白血球增多症候群、呂弗勒症候群(Löffler syndrome)、阻塞性細支氣管炎伴機化性肺炎、肺移植物抗宿主病及免疫檢查點抑制劑誘導之肺炎。
  14. 如請求項12之結晶水合物,其中該呼吸道疾病為哮喘。
  15. 如請求項14之結晶水合物,其中該哮喘為中度至重度哮喘。
  16. 如請求項12之結晶水合物,其中該醫藥組合物係藉由吸入投與。
  17. 如請求項1至8中任一項之結晶水合物,其用於預防或延遲哺乳動物之肺移植排斥反應。
  18. 如請求項17之結晶水合物,其中該肺移植排斥反應係選自由以下組成之群:原發性移植物功能障礙、機化性肺炎、急性排斥反應、淋巴球性細支氣管炎及慢性肺同種異體移植物功能障礙。
  19. 如請求項17之結晶水合物,其中該肺移植排斥反應為急性肺移植排斥反應。
  20. 如請求項17之結晶水合物,其中該肺移植排斥反應為慢性肺同種異體移植物功能障礙。
  21. 如請求項17之結晶水合物,其中該肺移植排斥反應係選自由以下組成之群:阻塞性細支氣管炎、侷限性慢性肺同種異體移植物功能障礙及嗜中性同種異體移植物功能障礙。
  22. 如請求項17之結晶水合物,其中該醫藥組合物係藉由吸入投與。
  23. 一種如請求項1至8中任一項之結晶水合物的用途,其用於製造用於治療哺乳動物之呼吸道疾病的藥劑。
  24. 如請求項23之用途,其中該呼吸道疾病係選自由以下組成之群:哮喘、慢性阻塞性肺病、囊腫性纖維化、肺炎、自發性肺纖維化、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫、類肉瘤病、嗜酸性球性疾病、蠕蟲感染、肺動脈高血壓、淋巴管平滑肌瘤、支氣管擴張症、浸潤性肺病、藥物誘導之肺炎、真菌誘導之肺炎、過敏性支氣管與肺的麴菌病、過敏性肺炎、嗜酸性球性肉芽腫伴多血管炎、自發性急性嗜酸性球性肺炎、自發性慢性嗜酸性球性肺炎、嗜酸性白血球增多症候群、呂弗勒症候群、阻塞性細支氣管炎伴機化性肺炎、肺移植物抗宿主病及免疫檢查點抑制劑誘導之肺炎。
  25. 如請求項23之用途,其中該呼吸道疾病為哮喘。
  26. 如請求項25之用途,其中該哮喘為中度至重度哮喘。
  27. 如請求項23之用途,其中該醫藥組合物係藉由吸入投與。
  28. 如請求項1至8中任一項之結晶水合物的用途,其用於製造用於預防或延遲哺乳動物之肺移植排斥反應的藥劑。
  29. 如請求項28之用途,其中該肺移植排斥反應係選自由以下組成之群:原發性移植物功能障礙、機化性肺炎、急性排斥反應、淋巴球性細支氣管炎及慢性肺同種異體移植物功能障礙。
  30. 如請求項28之用途,其中該肺移植排斥反應為急性肺移植排斥反應。
  31. 如請求項28之用途,其中該肺移植排斥反應為慢性肺同種異體移植物功能障礙。
  32. 如請求項28之用途,其中該肺移植排斥反應係選自由以下組成之群:阻塞性細支氣管炎、侷限性慢性肺同種異體移植物功能障礙及嗜中性同種異體移植物功能障礙。
  33. 如請求項28之用途,其中該醫藥組合物係藉由吸入投與。
  34. 一種治療哺乳動物之呼吸道疾病的方法,該方法包含向該哺乳動物投與醫藥組合物,該醫藥組合物包含如請求項1至8中任一項之結晶水合物及醫藥學上可接受之載劑。
  35. 如請求項34之方法,其中該呼吸道疾病係選自由以下組成之群:哮喘、慢性阻塞性肺病、囊腫性纖維化、肺炎、自發性肺纖維化、急性肺損傷、急性呼吸窘迫症候群、支氣管炎、氣腫、類肉瘤病、嗜酸性球性疾病、蠕蟲感染、肺動脈高血壓、淋巴管平滑肌瘤、支氣管擴張症、浸潤性肺病、藥物誘導之肺炎、真菌誘導之肺炎、過敏性支氣管與肺的麴菌病、過敏性肺炎、嗜酸性球性肉芽腫伴多血管炎、自發性急性嗜酸性球性肺炎、自發性慢性嗜酸性球性肺炎、嗜酸性白血球增多症候群、呂弗勒症候群、阻塞性細支氣管炎伴機化性肺炎、肺移植物抗宿主病及免疫檢查點抑制劑誘導之肺炎。
  36. 如請求項34之方法,其中該呼吸道疾病為哮喘。
  37. 如請求項36之方法,其中該哮喘為中度至重度哮喘。
  38. 如請求項34之方法,其中該醫藥組合物係藉由吸入投與。
  39. 一種預防或延遲哺乳動物之肺移植排斥反應的方法,該方法包含向該哺乳動物投與醫藥組合物,該醫藥組合物包含如請求項1至8中任一項之結晶水合物及醫藥學上可接受之載劑。
  40. 如請求項39之方法,其中該肺移植排斥反應係選自由以下組成之群:原發性移植物功能障礙、機化性肺炎、急性排斥反應、淋巴球性細支氣管炎及慢性肺同種異體移植物功能障礙。
  41. 如請求項39之方法,其中該肺移植排斥反應為急性肺移植排斥反應。
  42. 如請求項39之方法,其中該肺移植排斥反應為慢性肺同種異體移植物功能障礙。
  43. 如請求項39之方法,其中該肺移植排斥反應係選自由以下組成之群:阻塞性細支氣管炎、侷限性慢性肺同種異體移植物功能障礙及嗜中性同種異體移植物功能障礙。
  44. 如請求項39之方法,其中該醫藥組合物係藉由吸入投與。
TW110106884A 2020-03-02 2021-02-26 Jak抑制劑化合物之結晶水合物 TW202144343A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062983931P 2020-03-02 2020-03-02
US62/983,931 2020-03-02

Publications (1)

Publication Number Publication Date
TW202144343A true TW202144343A (zh) 2021-12-01

Family

ID=75143791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106884A TW202144343A (zh) 2020-03-02 2021-02-26 Jak抑制劑化合物之結晶水合物

Country Status (16)

Country Link
US (2) US11702415B2 (zh)
EP (1) EP4114836A1 (zh)
JP (1) JP2023516640A (zh)
KR (1) KR20220149585A (zh)
CN (1) CN115190878A (zh)
AR (1) AR121483A1 (zh)
AU (1) AU2021232100A1 (zh)
BR (1) BR112022017398A2 (zh)
CA (1) CA3172338A1 (zh)
CL (1) CL2022002368A1 (zh)
CO (1) CO2022012476A2 (zh)
IL (1) IL295613A (zh)
MX (1) MX2022010795A (zh)
TW (1) TW202144343A (zh)
WO (1) WO2021178991A1 (zh)
ZA (1) ZA202209617B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL281146B2 (en) * 2018-09-04 2023-12-01 Theravance Biopharma R& D Ip Llc Dimethyl amino aztidine amides as JAK inhibitors
TW202144343A (zh) * 2020-03-02 2021-12-01 美商施萬生物製藥研發 Ip有限責任公司 Jak抑制劑化合物之結晶水合物
WO2023230236A1 (en) * 2022-05-26 2023-11-30 Theravance Biopharma R&D Ip, Llc Process for preparing jak inhibitors and intermediates thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI262914B (en) 1999-07-02 2006-10-01 Agouron Pharma Compounds and pharmaceutical compositions for inhibiting protein kinases
CA2532800C (en) 2003-07-23 2013-06-18 Exelixis, Inc. Anaplastic lymphoma kinase modulators and methods of use
US20050090529A1 (en) 2003-07-31 2005-04-28 Pfizer Inc 3,5 Disubstituted indazole compounds with nitrogen-bearing 5-membered heterocycles, pharmaceutical compositions, and methods for mediating or inhibiting cell proliferation
US7884109B2 (en) 2005-04-05 2011-02-08 Wyeth Llc Purine and imidazopyridine derivatives for immunosuppression
US8648069B2 (en) 2007-06-08 2014-02-11 Abbvie Inc. 5-substituted indazoles as kinase inhibitors
JP2010111624A (ja) 2008-11-06 2010-05-20 Shionogi & Co Ltd Ttk阻害作用を有するインダゾール誘導体
JP5651681B2 (ja) 2009-04-03 2015-01-14 大日本住友製薬株式会社 代謝型グルタミン酸受容体5介在障害の治療のための化合物、およびその使用方法
DK3001903T3 (en) 2009-12-21 2017-12-18 Samumed Llc 1H-PYRAZOLO [3,4 -?] PYRIDINES AND THERAPEUTIC APPLICATIONS THEREOF
US8575336B2 (en) 2011-07-27 2013-11-05 Pfizer Limited Indazoles
SI3318565T1 (sl) 2013-12-05 2021-07-30 Pfizer Inc. Pirolo(2,3-D)pirimidinil, pirolo(2,3-B)pirazinil in pirolo(2,3-D)piridinil akrilamidi
CN106459048A (zh) 2014-05-14 2017-02-22 辉瑞公司 吡唑并吡啶类和吡唑并嘧啶类
WO2016026078A1 (en) 2014-08-19 2016-02-25 Changzhou Jiekai Pharmatech Co., Ltd. Heterocyclic compounds as erk inhibitors
KR101663277B1 (ko) 2015-03-30 2016-10-06 주식회사 녹십자 TNIK, IKKε 및 TBK1 억제제로서의 피라졸계 유도체 및 이를 포함하는 약학적 조성물
EP3712152B1 (en) 2015-11-03 2021-01-13 Topivert Pharma Limited 4,5,6,7-tetrahydro-1h-imidazo[4,5-c]pyridine and 1,4,5,6,7,8-hexahydroimidazo[4,5-d]azepine derivatives as janus kinase inhibitors
CN108349972B (zh) 2015-11-03 2021-06-08 施万生物制药研发Ip有限责任公司 用于治疗呼吸疾病的jak激酶抑制剂化合物
DK3371185T3 (da) * 2015-11-03 2020-11-30 Topivert Pharma Ltd 4,5,6,7-tetrahydro-1h-imidazo[4,5-c]pyridin og 1,4,5,6,7,8-hexahydroimidazo[4,5-d]azepinderivater som janus-kinase-inhibitorer
CA2997772A1 (en) * 2017-03-09 2018-09-09 Theravance Biopharma R&D Ip, Llc Fused imidazo-piperidine jak inhibitors
US20180258546A1 (en) 2017-03-09 2018-09-13 Lam Research Corporation Electroplating apparatus and methods utilizing independent control of impinging electrolyte
EP3609498A1 (en) 2017-05-01 2020-02-19 Theravance Biopharma R&D IP, LLC Methods of treatment using a jak inhibitor compound
AR111495A1 (es) 2017-05-01 2019-07-17 Theravance Biopharma R&D Ip Llc Compuestos de imidazo-piperidina fusionada como inhibidores de jak
TWI808083B (zh) * 2017-05-01 2023-07-11 美商施萬生物製藥研發 Ip有限責任公司 Jak抑制劑化合物之結晶型式
AU2019335200A1 (en) * 2018-09-04 2021-03-11 Theravance Biopharma R&D Ip, Llc 5 to 7 membered heterocyclic amides as JAK inhibitors
IL281146B2 (en) * 2018-09-04 2023-12-01 Theravance Biopharma R& D Ip Llc Dimethyl amino aztidine amides as JAK inhibitors
JP2021535176A (ja) 2018-09-04 2021-12-16 セラヴァンス バイオファーマ アール&ディー アイピー, エルエルシー Jak阻害剤およびその中間体を調製するためのプロセス
JP2022506111A (ja) 2018-10-29 2022-01-17 セラヴァンス バイオファーマ アール&ディー アイピー, エルエルシー Jak阻害剤としての2-アザビシクロヘキサン化合物
KR20210132666A (ko) 2019-02-25 2021-11-04 허난 메디노 파마슈티컬 테크놀로지 컴퍼니 리미티드 Jak 억제제 화합물 및 그 사용
KR20210137087A (ko) 2019-03-05 2021-11-17 인사이트 코포레이션 만성 폐 동종이식 기능장애의 치료를 위한 jak1 경로 억제제
CN112279848A (zh) 2019-07-25 2021-01-29 四川海思科制药有限公司 一种泛JAKs抑制剂及其用途
TW202144343A (zh) * 2020-03-02 2021-12-01 美商施萬生物製藥研發 Ip有限責任公司 Jak抑制劑化合物之結晶水合物

Also Published As

Publication number Publication date
CL2022002368A1 (es) 2023-04-21
KR20220149585A (ko) 2022-11-08
US20210269437A1 (en) 2021-09-02
BR112022017398A2 (pt) 2022-10-18
AR121483A1 (es) 2022-06-08
CN115190878A (zh) 2022-10-14
IL295613A (en) 2022-10-01
CO2022012476A2 (es) 2022-09-20
WO2021178991A1 (en) 2021-09-10
ZA202209617B (en) 2023-04-26
US20240025897A1 (en) 2024-01-25
AU2021232100A1 (en) 2022-10-20
US11702415B2 (en) 2023-07-18
MX2022010795A (es) 2022-11-30
EP4114836A1 (en) 2023-01-11
CA3172338A1 (en) 2021-09-10
JP2023516640A (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
EP3837258B1 (en) Dimethyl amino azetidine amides as jak inhibitors
EP3837010B1 (en) 5 to 7 membered heterocyclic amides as jak inhibitors
US11702415B2 (en) Crystalline hydrate of a JAK inhibitor compound
CA3053853C (en) Dimethyl amino azetidine amides and 5 to 7 membered heterocyclic amides as jak inhibitors
EA040464B1 (ru) Амиды диметиламиноазетидина в качестве jak ингибиторов
EA040902B1 (ru) 5-7-членные гетероциклические амиды в качестве ингибиторов jak