CN110564710B - 一种高催化效率木聚糖酶突变体及其构建方法与应用 - Google Patents

一种高催化效率木聚糖酶突变体及其构建方法与应用 Download PDF

Info

Publication number
CN110564710B
CN110564710B CN201910659589.9A CN201910659589A CN110564710B CN 110564710 B CN110564710 B CN 110564710B CN 201910659589 A CN201910659589 A CN 201910659589A CN 110564710 B CN110564710 B CN 110564710B
Authority
CN
China
Prior art keywords
xylanase
seq
mutant
ala
xyle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910659589.9A
Other languages
English (en)
Other versions
CN110564710A (zh
Inventor
游帅
王俊
谢晨
朱林琳
盛晟
吴福安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU BAOYUAN NEW ENERGY TECHNOLOGY CO.,LTD.
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201910659589.9A priority Critical patent/CN110564710B/zh
Publication of CN110564710A publication Critical patent/CN110564710A/zh
Application granted granted Critical
Publication of CN110564710B publication Critical patent/CN110564710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)

Abstract

本发明公开了一种高催化效率木聚糖酶突变体及其构建方法与应用,涉及基因工程和遗传工程领域。本发明以来源于Bispora sp.MEY‑1的GH10家族高温木聚糖酶为父本,以来源于Penicillium canescens的GH10家族木聚糖酶XylE为母本,采用分子生物学技术将父本中的区段替换掉母本对应的区段后进行区段组合后表达。在此改造条件下,木聚糖酶变体比活力较野生型(突变前)的比活性及热稳定性有显著提高。本发明方法大大提高木聚糖酶的催化效率及温度耐受力,为其在工业生产领域创造了条件。

Description

一种高催化效率木聚糖酶突变体及其构建方法与应用
技术领域
本发明属于基因工程和遗传工程领域,具体涉及一种高催化效率木聚糖酶突变体及其构建方法与应用。
背景技术
纤维素、半纤维素和木质素是构成植物细胞壁的主要成分,约占了世界上50%生物量(Wong et al.,1988)。半纤维素主要存在于细胞壁的表面,纤维素包裹在半纤维素中,而半纤维素又与木质素共价连接形成网状结构。木聚糖是半纤维素的主要成分,是自然界中含量仅次于纤维素的可再生资源,几乎占地球可更新有机碳含量的三分之一。木聚糖的结构复杂,其主链是由吡喃木糖以β-D-1,4-木糖苷键连接起来,并带有多种取代基(Collins et al.,2005)。
木聚糖酶能够降解木聚糖主链的β-1,4-糖苷键,是木聚糖降解过程中最关键的酶类,其应用也非常广泛,主要涉及饲料工业(张红莲等,2002)、食品工业(江正强,2005)、造纸工业以及能源、纺织、医药等行业等。目前研究最多的两个家族是第10家族和第11家族的木聚糖酶,GH10家族木聚糖酶较GH11家族木聚糖酶普遍具有更好的抗逆性,但较低的催化效率限制了其在工业生产中的应用,在这两个家族中,已经有多个木聚糖酶做过晶体结构解析(http://www.rcsb.org/pdb/),为木聚糖酶结构和功能的研究奠定了基础。
目前,人们结合蛋白序列信息、蛋白质晶体结构或同源模建、酶蛋白特定的功能信息等来指导实验设计,对已有的酶进行理性、半理性或随机定向进化,通过突变、区域重组、杂合酶构建、活性位点迭代饱组合突变技术(CASTing技术)等方法构建突变体库。结合超高通量的酶筛选技术,酶的分子改造技术已经进入到了基因片段到蛋白肽段自由设计的新阶段(Bornscheuer et al.,2012)。木聚糖酶的分子改良方面主要集中在热稳定性机理研究及改良。但在第10家族木聚糖酶其它性质的机制及改良方面的研究还很少,尤其在第10家族木聚糖酶高效催化机制及改良方面的研究罕见报道。高比活、高催化效率的木聚糖酶工程菌株的获得主要通过诱变、筛选和酶分子改良获得。诱变分为自然突变和人工诱变,自然突变成功的几率非常小,人工诱变的工作量较大且有益突变频率仍然较低,变异的方向和性质难以控制。筛选的盲目性较大,不容易获得目的菌株。酶分子改良目的性强,针对酶分子具体结构分析进行改造,从而达到提高比活力和催化效率的目的。
发明内容
针对上述技术问题,本发明提供三种高催化效率木聚糖酶突变体及其构建方法与应用,该突变体是对木聚糖酶野生型的活性loop区域替换后得到的突变体。
一种高催化效率木聚糖酶突变体,以木聚糖酶野生型XylE的序列SEQ ID NO.7为基础,进行突变得木聚糖酶突变体XylE-M3、XylE-M6或XylE-M9;
当木聚糖酶突变体为XylE-M3时,其核苷酸序列如SEQ ID NO.1所示;
当木聚糖酶突变体为XylE-M6时,其核苷酸序列如SEQ ID NO.2所示;
当木聚糖酶突变体为XylE-M9时,其核苷酸序列如SEQ ID NO.3所示。
SEQ ID NO.1的核苷酸序列:
GCACCTCACTTGCCCGGCAACAAGGACATTGATCTCAATAAGCTTGCTCAGCGCCGGGGCAAGCACTGGTTTGGCACTGCAGCCGATATCCCTGGAACTGCTGAGACCACCGATGCTGCGTATCTCAAAGTACTGAAGCAGAACTTTGGCGAGATCACACCTGCTAACGCAATGAAGTTCATGTACACCGAGACTGAGCAAAACGTGTTCAACTTCACCGAGGGCGAGCAGTTCCTGGAGGTGGCCGAGCGCTTCGGTAGCAAGGTCCGCTGCCACAACCTTGTCTGGGCCAGCGAGCTTCCCACATGGGTTACTAACTGGACAGCCAAGGAGCTCACTGCTGTCATGAAGAACCACATCTTCAAGACCGTTCAGCACTTCGGACGTCGCTGTTACTCTTGGGATGTGGTCAACGAGGCTCTCAACGGTGATGGCACATTCTCCTCAAGTGTCTGGTATGACACCATCGGCGAGGAATACTTCTACCTTGCATTCAAGTATGCCCAGGAGGCATTGGCACAGATCGGTGCCAATGATGTGAAGCTGTACTACAACGACTATGGTATCGAGAACCCCGGTACCAAGTCGACCGCCGTTCTTCAGCTCGTCAGCAACCTGCGTAAGCGCGGTATTCGCATTGACGGTGTTGGTTTGGAATCACACTTTATCGTGGGCGAAACTCCTTCTCTTGCCGATCAACTTGCCACGAAGCAGGCCTACATCAAGGCCAACCTGGATGTTGCTGTCACGGAGCTTGACGTTCGCTTCTCGACTGTGCCATATTACACCGCTGCCGCTCAGAAGCAGCAGGCTGAGGACTACTATGTGAGCGTCGCCAGTTGCATGAATGCTGGTCCTCGTTGCATTGGTGTGGTTGTTTGGGACTTTGATGATGCTTACTCCTGGGTCCCGAGTGCTTTTGCTGGTCAGGGTGGTGCCTGTCTCTTCAACAATACACTTGAGGCGAAGCCGGCGTACTACGCCGTCGCCGATGCTCTCGAGGGAAAGCCTTGCAGTGTGTGCTAG
SEQ ID NO.2的核苷酸序列:
GCACCTCACTTGCCCGGCAACAAGGACATTGATCTCAATAAGCTTGCTCAGCGCCGGGGCAAGCACTGGTTTGGCACTGCAGCCGATATCCCTGGAACTGCTGAGACCACCGATGCTGCGTATCTCAAAGTACTGAAGCAGAACTTTGGCGAGATCACACCTGCTAACGCAATGAAGTTCATGTACACCGAGACTGAGCAAAACGTGTTCAACTTCACCGAGGGCGAGCAGTTCCTGGAGGTGGCCGAGCGCTTCGGTAGCAAGGTCCGCTGCCACAACCTTGTCTGGGCCAGCCAGGTGTCCGATTTCGTCACATCCAAGACCTGGACAGCCAAGGAGCTCACTGCTGTCATGAAGAACCACATCTTCAAGACCGTTCAGCACTTCGGACGTCGCTGTTACTCTTGGGATGTGGTCAACGAGGCTCTCAACGGTGATGGCACATTCTCCTCAAGTGTCTGGTATGACACCATCGGCGAGGAATACTTCTACCTTGCATTCAAGTATGCCCAGGAGGCATTGGCACAGATCGGTGCCAATGATGTGAAGCTGTACTACAACGACTATGGTATCGAGAACCCCGGTACCAAGTCGACCGCCGTTCTTCAGCTCGTCAGCAACCTGAAAGCAAGGAACATTCGCATTGACGGTGTTGGTTTGGAATCACACTTTATCGTGGGCGAAACTCCTTCTCTTGCCGATCAACTTGCCACGAAGCAGGCCTACATCAAGGCCAACCTGGATGTTGCTGTCACGGAGCTTGACGTTCGCTTCTCGACTGTGCCATATTACACCGCTGCCGCTCAGAAGCAGCAGGCTGAGGACTACTATGTGAGCGTCGCCAGTTGCATGAATGCTGGTCCTCGTTGCATTGGTGTGGTTGTTTGGGACTTTGATGATGCTTACTCCTGGGTCCCGAGTGCTTTTGCTGGTCAGGGTGGTGCCTGTCTCTTCAACAATACACTTGAGGCGAAGCCGGCGTACTACGCCGTCGCCGATGCTCTCGAGGGAAAGCCTTGCAGTGTGTGCTAG
SEQ ID NO.3的核苷酸序列:
GCACCTCACTTGCCCGGCAACAAGGACATTGATCTCAATAAGCTTGCTCAGCGCCGGGGCAAGCACTGGTTTGGCACTGCAGCCGATATCCCTGGAACTGCTGAGACCACCGATGCTGCGTATCTCAAAGTACTGAAGCAGAACTTTGGCGAGATCACACCTGCTAACGCAATGAAGTTCATGTACACCGAGACTGAGCAAAACGTGTTCAACTTCACCGAGGGCGAGCAGTTCCTGGAGGTGGCCGAGCGCTTCGGTAGCAAGGTCCGCTGCCACAACCTTGTCTGGGCCAGCCAGGTGTCCGATTTCGTCACATCCAAGACCTGGACAGCCAAGGAGCTCACTGCTGTCATGAAGAACCACATCTTCAAGACCGTTCAGCACTTCGGACGTCGCTGTTACTCTTGGGATGTGGTCAACGAGGCTCTCAACGGTGATGGCACATTCTCCTCAAGTGTCTGGTATGACACCATCGGCGAGGAATACTTCTACCTTGCATTCAAGTATGCCCAGGAGGCATTGGCACAGATCGGTGCCAATGATGTGAAGCTGTACTACAACGACTATGGTATCGAGAACCCCGGTACCAAGTCGACCGCCGTTCTTCAGCTCGTCAGCAACCTGCGTAAGCGCGGTATTCGCATTGACGGTGTTGGTTTGGAATCACACTTTATCGTGGGCGAAACTCCTTCTCTTGCCGATCAACTTGCCACGAAGCAGGCCTACATCAAGGCCAACCTGGATGTTGCTGTCACGGAGCTTGACGTTCGCTTCTCGACTGTGCCATATTACACCGCTGCCGCTCAGAAGCAGCAGGCTGAGGACTACTATGTGAGCGTCGCCAGTTGCATGAATGCTGGTCCTCGTTGCATTGGTGTGGTTGTTTGGGACTTTGATGATGCTTACTCCTGGGTCCCGAGTGCTTTTGCTGGTCAGGGTGGTGCCTGTCTCTTCTTCCAGCCAGACGGCCCCAACACTCCCCTTGAGGCGAAGCCGGCGTACTACGCCGTCGCCGATGCTCTCGAGGGAAAGCCTTGCAGTGTGTGCTAG
SEQ ID NO.7的核苷酸序列:
GCACCTCACTTGCCCGGCAACAAGGACATTGATCTCAATAAGCTTGCTCAGCGCCGGGGCAAGCACTGGTTTGGCACTGCAGCCGATATCCCTGGAACTGCTGAGACCACCGATGCTGCGTATCTCAAAGTACTGAAGCAGAACTTTGGCGAGATCACACCTGCTAACGCAATGAAGTTCATGTACACCGAGACTGAGCAAAACGTGTTCAACTTCACCGAGGGCGAGCAGTTCCTGGAGGTGGCCGAGCGCTTCGGTAGCAAGGTCCGCTGCCACAACCTTGTCTGGGCCAGCCAGGTGTCCGATTTCGTCACATCCAAGACCTGGACAGCCAAGGAGCTCACTGCTGTCATGAAGAACCACATCTTCAAGACCGTTCAGCACTTCGGACGTCGCTGTTACTCTTGGGATGTGGTCAACGAGGCTCTCAACGGTGATGGCACATTCTCCTCAAGTGTCTGGTATGACACCATCGGCGAGGAATACTTCTACCTTGCATTCAAGTATGCCCAGGAGGCATTGGCACAGATCGGTGCCAATGATGTGAAGCTGTACTACAACGACTATGGTATCGAGAACCCCGGTACCAAGTCGACCGCCGTTCTTCAGCTCGTCAGCAACCTGCGTAAGCGCGGTATTCGCATTGACGGTGTTGGTTTGGAATCACACTTTATCGTGGGCGAAACTCCTTCTCTTGCCGATCAACTTGCCACGAAGCAGGCCTACATCAAGGCCAACCTGGATGTTGCTGTCACGGAGCTTGACGTTCGCTTCTCGACTGTGCCATATTACACCGCTGCCGCTCAGAAGCAGCAGGCTGAGGACTACTATGTGAGCGTCGCCAGTTGCATGAATGCTGGTCCTCGTTGCATTGGTGTGGTTGTTTGGGACTTTGATGATGCTTACTCCTGGGTCCCGAGTGCTTTTGCTGGTCAGGGTGGTGCCTGTCTCTTCAACAATACACTTGAGGCGAAGCCGGCGTACTACGCCGTCGCCGATGCTCTCGAGGGAAAGCCTTGCAGTGTGTGCTAG
上述高催化效率木聚糖酶突变体,编码木聚糖酶突变体XylE-M3的氨基酸序列如SEQ ID NO.4;编码木聚糖酶突变体XylE-M6的氨基酸序列如SEQ ID NO.5;编码木聚糖酶突变体XylE-M9的氨基酸序列如SEQ ID NO.6所示。
SEQ ID NO.4的氨基酸序列:
APHLPGNKDIDLNKLAQRRGKHWFGTAADIPGTAETTDAAYLKVLKQNFGEITPANAMKFMYTETEQNVFNFTEGEQFLEVAERFGSKVRCHNLVWASELPTWVTNWTAKELTAVMKNHIFKTVQHFGRRCYSWDVVNEALNGDGTFSSSVWYDTIGEEYFYLAFKYAQEALAQIGANDVKLYYNDYGIENPGTKSTAVLQLVSNLRKRGIRIDGVGLESHFIVGETPSLADQLATKQAYIKANLDVAVTELDVRFSTVPYYTAAAQKQQAEDYYVSVASCMNAGPRCIGVVVWDFDDAYSWVPSAFAGQGGACLFNNTLEAKPAYYAVADALEGKPCSVC
SEQ ID NO.5的氨基酸序列:
APHLPGNKDIDLNKLAQRRGKHWFGTAADIPGTAETTDAAYLKVLKQNFGEITPANAMKFMYTETEQNVFNFTEGEQFLEVAERFGSKVRCHNLVWASQVSDFVTSKTWTAKELTAVMKNHIFKTVQHFGRRCYSWDVVNEALNGDGTFSSSVWYDTIGEEYFYLAFKYAQEALAQIGANDVKLYYNDYGIENPGTKSTAVLQLVSNLKARNIRIDGVGLESHFIVGETPSLADQLATKQAYIKANLDVAVTELDVRFSTVPYYTAAAQKQQAEDYYVSVASCMNAGPRCIGVVVWDFDDAYSWVPSAFAGQGGACLFNNTLEAKPAYYAVADALEGKPCSVC
SEQ ID NO.6的氨基酸序列:
APHLPGNKDIDLNKLAQRRGKHWFGTAADIPGTAETTDAAYLKVLKQNFGEITPANAMKFMYTETEQNVFNFTEGEQFLEVAERFGSKVRCHNLVWASQVSDFVTSKTWTAKELTAVMKNHIFKTVQHFGRRCYSWDVVNEALNGDGTFSSSVWYDTIGEEYFYLAFKYAQEALAQIGANDVKLYYNDYGIENPGTKSTAVLQLVSNLRKRGIRIDGVGLESHFIVGETPSLADQLATKQAYIKANLDVAVTELDVRFSTVPYYTAAAQKQQAEDYYVSVASCMNAGPRCIGVVVWDFDDAYSWVPSAFAGQGGACLFFQPDGPNTPLEAKPAYYAVADALEGKPCSVC
一种重组载体,含有核苷酸序列如SEQ ID NO.1、SEQ ID NO.2或SEQ ID NO.3所示的载体。
一种重组菌株,含有表核苷酸序列如SEQ ID NO.1、SEQ ID NO.2或SEQ ID NO.3所示的表达载体的菌株。
上述高催化效率木聚糖酶突变体的构建方法,包括以下步骤:
1)采用over-lap PCR的方法扩增高催化效率木聚糖酶突变体序列片段;
2)将木聚糖酶突变体序列片段克隆到表达载体pPIC9r的EcoR I和Not I限制性酶切位点之间,得重组载体;
3)将突变体重组载体转化毕赤酵母GS115,诱导表达,获得突变株;
4)培养重组菌株,诱导重组木聚糖酶表达;
5)回收并纯化所表达的高催化效率木聚糖酶突变体。
本发明提供的木聚糖酶突变体催化效率高,突变体XylE-M3,XylE-M6和XylE-M9的比活力比野生型的比活力分别提高2.1倍、1.9倍和1.9倍;催化效率比野生型的催化效率分别提高2.4倍、3.1倍和3.4倍;酶促反应最适温度均在70-75℃;最适pH值不变,均为4.5。
上述高催化效率木聚糖突变体在降解木质纤维素上的应用。
有益效果:
本发明提供一种性质优良的、适合于在木质纤维素降解中应用的木聚糖酶突变体。该木聚糖酶突变体的最适pH为4.5,与野生型相同,但是比活力比野生型分别提高2.1倍、1.9倍和1.9倍;催化效率比野生型分别提高2.4倍、3.1倍和3.4倍。最适pH值与秸秆降解的条件基本一致,且在低温范围内(50℃)都能保持稳定的活性,与纤维素酶的协同降解秸秆试验结果表明突变体性质优良。
相对于盲目筛菌或人工(自然)诱变等手段,酶分子改良缩短了酶学性质改造时间。这样一种在酸性pH环境和中低温范围内保持稳定并具有高酶活的木聚糖酶突变体应用于木质纤维素降解产还原糖具有广阔的应用前景。
附图说明
图1在毕赤酵母中表达的重组高催化效率木聚糖酶野生型和突变体的SDS-PAGE分析,其中,M:低分子量蛋白质Marker;A、C、E、G分别代表野生酶XylE以及突变体XylE-M3,XylE-M6,和XylE-M9纯化的酶液;B、D、F、H分别代表以上酶经过Endo H处理脱糖基后的蛋白;
图2为高催化效率木聚糖酶突变体与野生型的pH环境要求情况;
图3为高催化效率木聚糖酶突变体与野生型的温度环境要求情况;
图4为高催化效率木聚糖酶突变体与野生型在70℃下的热稳定性情况;
图5为高催化效率木聚糖酶突变体与野生型降解木聚糖的终产物分析。
具体实施方式
下面结合附图和具体实施例对本发明作进一步描述。
1、菌株及载体:表达宿主PichiapastorisGS115,表达质粒载体pPIC9r从Invitrogen公司购买;
2、酶类及其它生化试剂:内切酶购自Fermentas公司,连接酶购自Promaga公司,多聚半乳糖醛酸购自Sigma公司。其它都为国产分析纯试剂(均从国药集团购买);
3、培养基:
(1)LB培养基:0.5%酵母提取物,1%蛋白胨,1%NaCl,pH 7.0;
(2)YPD培养基:1%酵母提取物,2%蛋白胨,2%葡萄糖;
(3)MD固体培养基:2%葡萄糖,1.5%琼脂糖,1.34%YNB,0.00004%Biotin;
(4)MM固体培养基:1.5%琼脂糖,1.34%YNB,0.00004%Biotin,0.5%甲醇;
(5)BMGY培养基:1%酵母提取物,2%蛋白胨,1%甘油(V/V),1.34%YNB,0.00004%Biotin;
(6)BMMY培养基:1%酵母提取物,2%蛋白胨,1.34%YNB,0.00004%Biotin,0.5%甲醇(V/V)
实施例1高催化效率木聚糖酶突变体编码基因的克隆
以来源于Bispora sp.MEY-1的GH10家族高温木聚糖酶基因Xyl10C为父本,以来源于Penicillium canescens的GH10家族木聚糖酶基因XylE为母本,在木聚糖酶的活性loop区域处设计区域替换引物,采用over-lap PCR的方法扩增高催化效率木聚糖酶突变体编码基因SEQ ID NO.1(XylE-M3,1023bp),SEQ ID NO.2(XylE-M6,1029bp)和SEQ ID NO.3(XylE-M9,1047bp),突变方法以及克隆方法参考文献(You,et al,2016)。
所用引物序列如表1所示:
Figure GDA0003417072000000061
实施例2高催化效率木聚糖酶突变体的制备
将表达载体pPIC9r进行双酶切(EcoR I+Not I),同时将编码高催化效率木聚糖酶突变体的基因双酶切(EcoR I+Not I),切好的编码成熟高催化效率木聚糖酶突变体的基因片段(去除信号肽片段)与表达载体pPIC9r连接,获得含有高催化效率木聚糖酶突变体基因的重组质粒并转化毕赤酵母GS115,获得重组酵母菌株GS115/XylE-M3,GS115/XylE-M6和GS115/XylE-M9。
取含有重组质粒的GS115菌株,接种于300mL BMGY培养基的1L三角瓶中,置于30℃,220rpm摇床培养48h;后将培养液3000g离心5min,弃上清,沉淀用100mL含有0.5%甲醇的BMMY培养基重悬,并再次置于30℃,220rpm条件下诱导培养。每隔12h补加0.5mL甲醇,使菌液中的甲醇浓度保持在0.5%,同时取上清用于酶活性检测。
重组高催化效率木聚糖酶突变体最适pH均为4.5,与野生型的一致,但是比活力比野生型分别提高2.1倍、1.9倍和1.9倍;催化效率比野生型分别提高2.4倍、3.1倍和3.4倍。SDS-PAGE结果(图1)表明,重组木聚糖酶在毕赤酵母中得到了表达。所表达的木聚糖酶经过纯化之后,其蛋白质的含量达到总蛋白的98%以上。
实施例3重组高催化效率木聚糖酶突变体和野生型的活性分析
一、DNS法:具体方法如下:在给定的pH、温度条件下,1mL的反应体系包括100μL适当的稀释酶液,900μL底物,反应10min,加入1.5mL DNS终止反应,沸水煮5min。冷却后540nm测定OD值。1个酶活单位(U)定义为在给定的条件下,每分钟分解木聚糖生成1μmol还原糖所需的酶量。
二、重组高催化效率木聚糖酶突变体和野生型的性质测定
1、重组高催化效率木聚糖酶突变体和野生型的最适pH测定方法如下:
将实施例2纯化的重组高催化效率木聚糖酶突变体和野生型在不同的pH下进行酶促反应以测定其最适pH。底物木聚糖用不同pH的0.1mol/L柠檬酸-磷酸氢二钠缓冲液中40℃下进行木聚糖酶活力测定。结果如图2(A)表明,重组高催化效率木聚糖酶突变体和野生型的最适反应pH一致,其中突变体XylE-M3在酸性环境(pH 3.0-4.0)的相对酶活较野生酶明显提高,最终不仅提高了酶的催化活力,而且提高了酶在酸性环境中的活力;
2、重组高催化效率木聚糖酶突变体和野生型的最适温度测定方法如下:
重组高催化效率木聚糖酶突变体和野生型的最适温度的测定为在0.1mol/L柠檬酸-磷酸氢二钠缓冲液(pH 4.5)缓冲液体系及不同温度下进行酶促反应。酶反应最适温度测定结果如2(B)表明,重组高催化效率木聚糖酶突变体与野生型(75℃)的最适温度在70-75℃之间,其中XylE-M6和XylE-M9在较低温度下的相对酶活较野生酶明显提高。
3、重组高催化效率木聚糖酶突变体和野生型在70℃的热稳定性测定如下:
检测方法参考文献(Luo,et al.,2009),突变型XylE-M3、XylE-M6的热稳定性均优于野生型,70℃下处理30min后,突变体XylE-M3(77%)和XylE-M6(60%)的剩余酶活分别是野生型(21%)的3.7倍和2.9倍(如图3)。
4、重组高催化效率木聚糖酶突变体和野生型的动力学参数测定方法如下:
检测方法参照文献(Luo,et al.,2009),测定反应的一级反应时间。确定测定Km及Vmax的反应时间为5min。用不同浓度的木聚糖(1.25,1.0,0.8,0.4,0.2,0.15和0.1%)为底物,在最适条件(温度、pH)下测定酶活性,计算出相应的反应速度,利用GraFit7软件计算Km值及Vmax。
以木聚糖为底物时,重组高催化效率木聚糖酶野生型和突变体XylE-M3、XylE-M6、XylE-M9在最适条件下的Km值、Vmax值分别是0.75mg/mL、0.61mg/mL、0.42mg/mL、0.46mg/mL、4.61mg/mL和680U/min/mg、1390U/min/mg、1160U/min/mg、1390U/min/mg(表2)。
表2高催化效率木聚糖酶突变体与野生型的比活及动力学参数比较表
Figure GDA0003417072000000081
5、重组高催化效率木聚糖酶突变体和野生型的终产物分析方法如下:
各取重组高催化效率木聚糖酶突变体和野生型(1,000U,过量)于一定量的底物(木聚糖,pH 4.5的缓冲液)中,在各自的最适反应温度下反应24h时取样进行高效阴离子交换色谱(HPAEC)分析。结果表明高催化效率木聚糖酶突变体和野生型对木聚糖的最终降解产物为木单糖到木六糖之间,其中产量最多的为木二糖,其次为木单糖(图4)。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 江苏科技大学
<120> 一种高催化效率木聚糖酶突变体及其构建方法与应用
<140> 201910659589 .9
<141> 2019-07-22
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1026
<212> DNA
<213> Artificial Sequence
<400> 1
gcacctcact tgcccggcaa caaggacatt gatctcaata agcttgctca gcgccggggc 60
aagcactggt ttggcactgc agccgatatc cctggaactg ctgagaccac cgatgctgcg 120
tatctcaaag tactgaagca gaactttggc gagatcacac ctgctaacgc aatgaagttc 180
atgtacaccg agactgagca aaacgtgttc aacttcaccg agggcgagca gttcctggag 240
gtggccgagc gcttcggtag caaggtccgc tgccacaacc ttgtctgggc cagcgagctt 300
cccacatggg ttactaactg gacagccaag gagctcactg ctgtcatgaa gaaccacatc 360
ttcaagaccg ttcagcactt cggacgtcgc tgttactctt gggatgtggt caacgaggct 420
ctcaacggtg atggcacatt ctcctcaagt gtctggtatg acaccatcgg cgaggaatac 480
ttctaccttg cattcaagta tgcccaggag gcattggcac agatcggtgc caatgatgtg 540
aagctgtact acaacgacta tggtatcgag aaccccggta ccaagtcgac cgccgttctt 600
cagctcgtca gcaacctgcg taagcgcggt attcgcattg acggtgttgg tttggaatca 660
cactttatcg tgggcgaaac tccttctctt gccgatcaac ttgccacgaa gcaggcctac 720
atcaaggcca acctggatgt tgctgtcacg gagcttgacg ttcgcttctc gactgtgcca 780
tattacaccg ctgccgctca gaagcagcag gctgaggact actatgtgag cgtcgccagt 840
tgcatgaatg ctggtcctcg ttgcattggt gtggttgttt gggactttga tgatgcttac 900
tcctgggtcc cgagtgcttt tgctggtcag ggtggtgcct gtctcttcaa caatacactt 960
gaggcgaagc cggcgtacta cgccgtcgcc gatgctctcg agggaaagcc ttgcagtgtg 1020
tgctag 1026
<210> 2
<211> 1032
<212> DNA
<213> Artificial Sequence
<400> 2
gcacctcact tgcccggcaa caaggacatt gatctcaata agcttgctca gcgccggggc 60
aagcactggt ttggcactgc agccgatatc cctggaactg ctgagaccac cgatgctgcg 120
tatctcaaag tactgaagca gaactttggc gagatcacac ctgctaacgc aatgaagttc 180
atgtacaccg agactgagca aaacgtgttc aacttcaccg agggcgagca gttcctggag 240
gtggccgagc gcttcggtag caaggtccgc tgccacaacc ttgtctgggc cagccaggtg 300
tccgatttcg tcacatccaa gacctggaca gccaaggagc tcactgctgt catgaagaac 360
cacatcttca agaccgttca gcacttcgga cgtcgctgtt actcttggga tgtggtcaac 420
gaggctctca acggtgatgg cacattctcc tcaagtgtct ggtatgacac catcggcgag 480
gaatacttct accttgcatt caagtatgcc caggaggcat tggcacagat cggtgccaat 540
gatgtgaagc tgtactacaa cgactatggt atcgagaacc ccggtaccaa gtcgaccgcc 600
gttcttcagc tcgtcagcaa cctgaaagca aggaacattc gcattgacgg tgttggtttg 660
gaatcacact ttatcgtggg cgaaactcct tctcttgccg atcaacttgc cacgaagcag 720
gcctacatca aggccaacct ggatgttgct gtcacggagc ttgacgttcg cttctcgact 780
gtgccatatt acaccgctgc cgctcagaag cagcaggctg aggactacta tgtgagcgtc 840
gccagttgca tgaatgctgg tcctcgttgc attggtgtgg ttgtttggga ctttgatgat 900
gcttactcct gggtcccgag tgcttttgct ggtcagggtg gtgcctgtct cttcaacaat 960
acacttgagg cgaagccggc gtactacgcc gtcgccgatg ctctcgaggg aaagccttgc 1020
agtgtgtgct ag 1032
<210> 3
<211> 1050
<212> DNA
<213> Artificial Sequence
<400> 3
gcacctcact tgcccggcaa caaggacatt gatctcaata agcttgctca gcgccggggc 60
aagcactggt ttggcactgc agccgatatc cctggaactg ctgagaccac cgatgctgcg 120
tatctcaaag tactgaagca gaactttggc gagatcacac ctgctaacgc aatgaagttc 180
atgtacaccg agactgagca aaacgtgttc aacttcaccg agggcgagca gttcctggag 240
gtggccgagc gcttcggtag caaggtccgc tgccacaacc ttgtctgggc cagccaggtg 300
tccgatttcg tcacatccaa gacctggaca gccaaggagc tcactgctgt catgaagaac 360
cacatcttca agaccgttca gcacttcgga cgtcgctgtt actcttggga tgtggtcaac 420
gaggctctca acggtgatgg cacattctcc tcaagtgtct ggtatgacac catcggcgag 480
gaatacttct accttgcatt caagtatgcc caggaggcat tggcacagat cggtgccaat 540
gatgtgaagc tgtactacaa cgactatggt atcgagaacc ccggtaccaa gtcgaccgcc 600
gttcttcagc tcgtcagcaa cctgcgtaag cgcggtattc gcattgacgg tgttggtttg 660
gaatcacact ttatcgtggg cgaaactcct tctcttgccg atcaacttgc cacgaagcag 720
gcctacatca aggccaacct ggatgttgct gtcacggagc ttgacgttcg cttctcgact 780
gtgccatatt acaccgctgc cgctcagaag cagcaggctg aggactacta tgtgagcgtc 840
gccagttgca tgaatgctgg tcctcgttgc attggtgtgg ttgtttggga ctttgatgat 900
gcttactcct gggtcccgag tgcttttgct ggtcagggtg gtgcctgtct cttcttccag 960
ccagacggcc ccaacactcc ccttgaggcg aagccggcgt actacgccgt cgccgatgct 1020
ctcgagggaa agccttgcag tgtgtgctag 1050
<210> 4
<211> 341
<212> PRT
<213> Artificial Sequence
<400> 4
Ala Pro His Leu Pro Gly Asn Lys Asp Ile Asp Leu Asn Lys Leu Ala
1 5 10 15
Gln Arg Arg Gly Lys His Trp Phe Gly Thr Ala Ala Asp Ile Pro Gly
20 25 30
Thr Ala Glu Thr Thr Asp Ala Ala Tyr Leu Lys Val Leu Lys Gln Asn
35 40 45
Phe Gly Glu Ile Thr Pro Ala Asn Ala Met Lys Phe Met Tyr Thr Glu
50 55 60
Thr Glu Gln Asn Val Phe Asn Phe Thr Glu Gly Glu Gln Phe Leu Glu
65 70 75 80
Val Ala Glu Arg Phe Gly Ser Lys Val Arg Cys His Asn Leu Val Trp
85 90 95
Ala Ser Glu Leu Pro Thr Trp Val Thr Asn Trp Thr Ala Lys Glu Leu
100 105 110
Thr Ala Val Met Lys Asn His Ile Phe Lys Thr Val Gln His Phe Gly
115 120 125
Arg Arg Cys Tyr Ser Trp Asp Val Val Asn Glu Ala Leu Asn Gly Asp
130 135 140
Gly Thr Phe Ser Ser Ser Val Trp Tyr Asp Thr Ile Gly Glu Glu Tyr
145 150 155 160
Phe Tyr Leu Ala Phe Lys Tyr Ala Gln Glu Ala Leu Ala Gln Ile Gly
165 170 175
Ala Asn Asp Val Lys Leu Tyr Tyr Asn Asp Tyr Gly Ile Glu Asn Pro
180 185 190
Gly Thr Lys Ser Thr Ala Val Leu Gln Leu Val Ser Asn Leu Arg Lys
195 200 205
Arg Gly Ile Arg Ile Asp Gly Val Gly Leu Glu Ser His Phe Ile Val
210 215 220
Gly Glu Thr Pro Ser Leu Ala Asp Gln Leu Ala Thr Lys Gln Ala Tyr
225 230 235 240
Ile Lys Ala Asn Leu Asp Val Ala Val Thr Glu Leu Asp Val Arg Phe
245 250 255
Ser Thr Val Pro Tyr Tyr Thr Ala Ala Ala Gln Lys Gln Gln Ala Glu
260 265 270
Asp Tyr Tyr Val Ser Val Ala Ser Cys Met Asn Ala Gly Pro Arg Cys
275 280 285
Ile Gly Val Val Val Trp Asp Phe Asp Asp Ala Tyr Ser Trp Val Pro
290 295 300
Ser Ala Phe Ala Gly Gln Gly Gly Ala Cys Leu Phe Asn Asn Thr Leu
305 310 315 320
Glu Ala Lys Pro Ala Tyr Tyr Ala Val Ala Asp Ala Leu Glu Gly Lys
325 330 335
Pro Cys Ser Val Cys
340
<210> 5
<211> 343
<212> PRT
<213> Artificial Sequence
<400> 5
Ala Pro His Leu Pro Gly Asn Lys Asp Ile Asp Leu Asn Lys Leu Ala
1 5 10 15
Gln Arg Arg Gly Lys His Trp Phe Gly Thr Ala Ala Asp Ile Pro Gly
20 25 30
Thr Ala Glu Thr Thr Asp Ala Ala Tyr Leu Lys Val Leu Lys Gln Asn
35 40 45
Phe Gly Glu Ile Thr Pro Ala Asn Ala Met Lys Phe Met Tyr Thr Glu
50 55 60
Thr Glu Gln Asn Val Phe Asn Phe Thr Glu Gly Glu Gln Phe Leu Glu
65 70 75 80
Val Ala Glu Arg Phe Gly Ser Lys Val Arg Cys His Asn Leu Val Trp
85 90 95
Ala Ser Gln Val Ser Asp Phe Val Thr Ser Lys Thr Trp Thr Ala Lys
100 105 110
Glu Leu Thr Ala Val Met Lys Asn His Ile Phe Lys Thr Val Gln His
115 120 125
Phe Gly Arg Arg Cys Tyr Ser Trp Asp Val Val Asn Glu Ala Leu Asn
130 135 140
Gly Asp Gly Thr Phe Ser Ser Ser Val Trp Tyr Asp Thr Ile Gly Glu
145 150 155 160
Glu Tyr Phe Tyr Leu Ala Phe Lys Tyr Ala Gln Glu Ala Leu Ala Gln
165 170 175
Ile Gly Ala Asn Asp Val Lys Leu Tyr Tyr Asn Asp Tyr Gly Ile Glu
180 185 190
Asn Pro Gly Thr Lys Ser Thr Ala Val Leu Gln Leu Val Ser Asn Leu
195 200 205
Lys Ala Arg Asn Ile Arg Ile Asp Gly Val Gly Leu Glu Ser His Phe
210 215 220
Ile Val Gly Glu Thr Pro Ser Leu Ala Asp Gln Leu Ala Thr Lys Gln
225 230 235 240
Ala Tyr Ile Lys Ala Asn Leu Asp Val Ala Val Thr Glu Leu Asp Val
245 250 255
Arg Phe Ser Thr Val Pro Tyr Tyr Thr Ala Ala Ala Gln Lys Gln Gln
260 265 270
Ala Glu Asp Tyr Tyr Val Ser Val Ala Ser Cys Met Asn Ala Gly Pro
275 280 285
Arg Cys Ile Gly Val Val Val Trp Asp Phe Asp Asp Ala Tyr Ser Trp
290 295 300
Val Pro Ser Ala Phe Ala Gly Gln Gly Gly Ala Cys Leu Phe Asn Asn
305 310 315 320
Thr Leu Glu Ala Lys Pro Ala Tyr Tyr Ala Val Ala Asp Ala Leu Glu
325 330 335
Gly Lys Pro Cys Ser Val Cys
340
<210> 6
<211> 349
<212> PRT
<213> Artificial Sequence
<400> 6
Ala Pro His Leu Pro Gly Asn Lys Asp Ile Asp Leu Asn Lys Leu Ala
1 5 10 15
Gln Arg Arg Gly Lys His Trp Phe Gly Thr Ala Ala Asp Ile Pro Gly
20 25 30
Thr Ala Glu Thr Thr Asp Ala Ala Tyr Leu Lys Val Leu Lys Gln Asn
35 40 45
Phe Gly Glu Ile Thr Pro Ala Asn Ala Met Lys Phe Met Tyr Thr Glu
50 55 60
Thr Glu Gln Asn Val Phe Asn Phe Thr Glu Gly Glu Gln Phe Leu Glu
65 70 75 80
Val Ala Glu Arg Phe Gly Ser Lys Val Arg Cys His Asn Leu Val Trp
85 90 95
Ala Ser Gln Val Ser Asp Phe Val Thr Ser Lys Thr Trp Thr Ala Lys
100 105 110
Glu Leu Thr Ala Val Met Lys Asn His Ile Phe Lys Thr Val Gln His
115 120 125
Phe Gly Arg Arg Cys Tyr Ser Trp Asp Val Val Asn Glu Ala Leu Asn
130 135 140
Gly Asp Gly Thr Phe Ser Ser Ser Val Trp Tyr Asp Thr Ile Gly Glu
145 150 155 160
Glu Tyr Phe Tyr Leu Ala Phe Lys Tyr Ala Gln Glu Ala Leu Ala Gln
165 170 175
Ile Gly Ala Asn Asp Val Lys Leu Tyr Tyr Asn Asp Tyr Gly Ile Glu
180 185 190
Asn Pro Gly Thr Lys Ser Thr Ala Val Leu Gln Leu Val Ser Asn Leu
195 200 205
Arg Lys Arg Gly Ile Arg Ile Asp Gly Val Gly Leu Glu Ser His Phe
210 215 220
Ile Val Gly Glu Thr Pro Ser Leu Ala Asp Gln Leu Ala Thr Lys Gln
225 230 235 240
Ala Tyr Ile Lys Ala Asn Leu Asp Val Ala Val Thr Glu Leu Asp Val
245 250 255
Arg Phe Ser Thr Val Pro Tyr Tyr Thr Ala Ala Ala Gln Lys Gln Gln
260 265 270
Ala Glu Asp Tyr Tyr Val Ser Val Ala Ser Cys Met Asn Ala Gly Pro
275 280 285
Arg Cys Ile Gly Val Val Val Trp Asp Phe Asp Asp Ala Tyr Ser Trp
290 295 300
Val Pro Ser Ala Phe Ala Gly Gln Gly Gly Ala Cys Leu Phe Phe Gln
305 310 315 320
Pro Asp Gly Pro Asn Thr Pro Leu Glu Ala Lys Pro Ala Tyr Tyr Ala
325 330 335
Val Ala Asp Ala Leu Glu Gly Lys Pro Cys Ser Val Cys
340 345
<210> 7
<211> 1032
<212> DNA
<213> Artificial Sequence
<400> 7
gcacctcact tgcccggcaa caaggacatt gatctcaata agcttgctca gcgccggggc 60
aagcactggt ttggcactgc agccgatatc cctggaactg ctgagaccac cgatgctgcg 120
tatctcaaag tactgaagca gaactttggc gagatcacac ctgctaacgc aatgaagttc 180
atgtacaccg agactgagca aaacgtgttc aacttcaccg agggcgagca gttcctggag 240
gtggccgagc gcttcggtag caaggtccgc tgccacaacc ttgtctgggc cagccaggtg 300
tccgatttcg tcacatccaa gacctggaca gccaaggagc tcactgctgt catgaagaac 360
cacatcttca agaccgttca gcacttcgga cgtcgctgtt actcttggga tgtggtcaac 420
gaggctctca acggtgatgg cacattctcc tcaagtgtct ggtatgacac catcggcgag 480
gaatacttct accttgcatt caagtatgcc caggaggcat tggcacagat cggtgccaat 540
gatgtgaagc tgtactacaa cgactatggt atcgagaacc ccggtaccaa gtcgaccgcc 600
gttcttcagc tcgtcagcaa cctgcgtaag cgcggtattc gcattgacgg tgttggtttg 660
gaatcacact ttatcgtggg cgaaactcct tctcttgccg atcaacttgc cacgaagcag 720
gcctacatca aggccaacct ggatgttgct gtcacggagc ttgacgttcg cttctcgact 780
gtgccatatt acaccgctgc cgctcagaag cagcaggctg aggactacta tgtgagcgtc 840
gccagttgca tgaatgctgg tcctcgttgc attggtgtgg ttgtttggga ctttgatgat 900
gcttactcct gggtcccgag tgcttttgct ggtcagggtg gtgcctgtct cttcaacaat 960
acacttgagg cgaagccggc gtactacgcc gtcgccgatg ctctcgaggg aaagccttgc 1020
agtgtgtgct ag
1032
<210> 8
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gacgaattcg cacctcactt gcccggcaac 30
<210> 9
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gtcgcggccg cctagcacac actgcaaggc tttc 34
<210> 10
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ccacatgggt tactaactgg acagccaagg agctc 35
<210> 11
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
aacccatgtg ggaagctcgc tggcccagac aagg 34
<210> 12
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
aaagcaagga acattcgcat tgacggtgtt gg 32
<210> 13
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tgttccttgc tttcaggttg ctgacgagct g 31
<210> 14
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
gacggcccca acactcccct tgaggcgaag ccgg 34
<210> 15
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
agtgttgggg ccgtctggct ggaagaagag acaggcacc 39

Claims (6)

1.一种高催化效率木聚糖酶突变体,其特征在于,以木聚糖酶野生型XylE的序列SEQID NO.7为基础,进行突变得木聚糖酶突变体XylE-M3、XylE-M6或XylE-M9;
当木聚糖酶突变体为XylE-M3时,其核苷酸序列如SEQ ID NO.1所示;
当木聚糖酶突变体为XylE-M6时,其核苷酸序列如SEQ ID NO.2所示;
当木聚糖酶突变体为XylE-M9时,其核苷酸序列如SEQ ID NO.3所示。
2.根据权利要求1所述的高催化效率木聚糖酶突变体,其特征在于,编码木聚糖酶突变体XylE-M3的氨基酸序列如SEQ ID NO.4;编码木聚糖酶突变体XylE-M6的氨基酸序列如SEQID NO.5;编码木聚糖酶突变体XylE-M9的氨基酸序列如SEQ ID NO.6所示。
3.一种重组载体,含有核苷酸序列如SEQ ID NO.1、SEQ ID NO.2或SEQ ID NO.3所示的重组表达载体。
4.一种重组菌株,含有表核苷酸序列如SEQ ID NO.1、SEQ ID NO.2或SEQ ID NO.3所示的表达载体的重组菌株。
5.基于权利要求1所述的高催化效率木聚糖酶突变体的构建方法,其特征在于,包括以下步骤:1)采用over-lap PCR的方法扩增高催化效率木聚糖酶突变体序列片段;2)将木聚糖酶突变体序列片段克隆到表达载体pPIC9r的EcoR I和Not I限制性酶切位点之间,得重组载体;3)将突变体重组载体转化毕赤酵母GS115,诱导表达,获得突变株;4)培养重组菌株,诱导重组木聚糖酶表达;5)回收并纯化所表达的高催化效率木聚糖酶突变体。
6.基于权利要求要求1所述的高催化效率木聚糖突变体、权利要求3所述的重组载体或权利要求4所述的重组菌株在降解木质纤维素上的应用。
CN201910659589.9A 2019-07-22 2019-07-22 一种高催化效率木聚糖酶突变体及其构建方法与应用 Active CN110564710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910659589.9A CN110564710B (zh) 2019-07-22 2019-07-22 一种高催化效率木聚糖酶突变体及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910659589.9A CN110564710B (zh) 2019-07-22 2019-07-22 一种高催化效率木聚糖酶突变体及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN110564710A CN110564710A (zh) 2019-12-13
CN110564710B true CN110564710B (zh) 2022-02-08

Family

ID=68773818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910659589.9A Active CN110564710B (zh) 2019-07-22 2019-07-22 一种高催化效率木聚糖酶突变体及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN110564710B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094832B (zh) * 2020-09-04 2022-01-18 山东大学 一种突变的耐热耐碱造纸用木聚糖酶及其应用
CN112708608B (zh) * 2021-02-07 2021-08-10 江苏科技大学 木聚糖酶突变体及其制备方法与应用
CN113444707B (zh) * 2021-07-28 2022-07-22 江苏科技大学 一组gh10家族耐高温木聚糖酶突变体及其应用
CN114438057B (zh) * 2022-03-16 2023-05-19 齐鲁工业大学 一种耐热耐碱木聚糖酶及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142253A (zh) * 2017-03-23 2017-09-08 中国农业科学院饲料研究所 一种高催化效率且耐高温木聚糖酶突变体及其制备方法和应用
CN108676787A (zh) * 2018-05-28 2018-10-19 湖北大学 一种比酶活提高的嗜热嗜碱木聚糖酶突变体及其在工业中的应用
CN109355272A (zh) * 2018-12-28 2019-02-19 江南大学 一种催化效率提高的木聚糖酶突变体
CN109402091A (zh) * 2017-08-18 2019-03-01 青岛蔚蓝生物集团有限公司 木聚糖酶突变体
CN109468305A (zh) * 2017-12-29 2019-03-15 吉林中粮生化有限公司 木糖异构酶突变体、编码该酶的dna分子、导入该dna分子的重组菌株及它们的应用
CN109750015A (zh) * 2019-03-27 2019-05-14 云南师范大学 一种热稳性提高的木聚糖酶突变体及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107142253A (zh) * 2017-03-23 2017-09-08 中国农业科学院饲料研究所 一种高催化效率且耐高温木聚糖酶突变体及其制备方法和应用
CN109402091A (zh) * 2017-08-18 2019-03-01 青岛蔚蓝生物集团有限公司 木聚糖酶突变体
CN109468305A (zh) * 2017-12-29 2019-03-15 吉林中粮生化有限公司 木糖异构酶突变体、编码该酶的dna分子、导入该dna分子的重组菌株及它们的应用
CN108676787A (zh) * 2018-05-28 2018-10-19 湖北大学 一种比酶活提高的嗜热嗜碱木聚糖酶突变体及其在工业中的应用
CN109355272A (zh) * 2018-12-28 2019-02-19 江南大学 一种催化效率提高的木聚糖酶突变体
CN109750015A (zh) * 2019-03-27 2019-05-14 云南师范大学 一种热稳性提高的木聚糖酶突变体及其应用

Also Published As

Publication number Publication date
CN110564710A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN110564710B (zh) 一种高催化效率木聚糖酶突变体及其构建方法与应用
CN112481240B (zh) 一种gh16家族耐热葡聚糖酶突变体及其构建方法与应用
CN107142253B (zh) 一种木聚糖酶突变体及其制备方法和应用
CN110656099B (zh) 一种40℃下高比活木聚糖酶突变体及其构建方法与应用
CN110551699B (zh) 一种定点突变改造的裂解性多糖单加氧酶及其构建方法与应用
CN112708608B (zh) 木聚糖酶突变体及其制备方法与应用
CN112725311B (zh) 动物体温下高比活耐热木聚糖酶突变体及其应用
US9890371B2 (en) Thermophilic ethanol-resistant β-glucosidase and encoding gene and application thereof
CN111676210B (zh) 一种提高纤维素酶活性的方法及纤维素酶突变体5i77-m和应用
CN105950640A (zh) 以海洋细菌为来源获取的κ-卡拉胶酶基因及重组酶制备方法
CN113684198B (zh) 一种提高纤维素酶催化效率的方法及突变体5i77-m2
Song et al. Cloning of two cellobiohydrolase genes from Trichoderma viride and heterogenous expression in yeast Saccharomyces cerevisiae
CN113862243B (zh) 一种耐热木聚糖酶突变体及其应用
CN114107262B (zh) 一种高比活木聚糖酶突变体及其应用
WO2021029828A1 (en) Talaromyces pinophilus strain for producing cellulolytic enzymes
CN106754987A (zh) 一种多糖裂解单加氧酶lpmo m1编码基因及其酶与制备方法和应用
CN110093326B (zh) 一种胞外AA9家族多糖单加氧酶EpLPMOa及其应用
CN108410903B (zh) 一种耐低pH值的内切木聚糖酶及其编码基因和应用
CN107022536B (zh) 高催化效率的纤维素酶突变体及其基因和应用
CN116064616A (zh) 一种纤维素酶基因、纤维素酶、重组载体及应用
WO2021129396A1 (zh) 一种生产乙醇的重组丝状真菌及其构建和应用
CN114381448A (zh) 一种葡聚糖酶突变体及其应用
Brumm et al. Identification, cloning and characterization of Dictyoglomus turgidum CelA, an endoglucanase with cellulase and mannanase activity
CN111733169A (zh) 调控真菌木质纤维素降解酶系表达的元件及其应用
CN100370030C (zh) 一种β-甘露聚糖酶基因及其编码产物的氨基酸序列和制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230809

Address after: 212125, 100 meters west of Nangong Village Committee, Baoyan Town, Dantu District, Zhenjiang City, Jiangsu Province

Patentee after: JIANGSU BAOYUAN NEW ENERGY TECHNOLOGY CO.,LTD.

Address before: 212003, No. 2, Mengxi Road, Zhenjiang, Jiangsu

Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY