CN110438523A - 一种以重水为氘源的无催化剂电化学氘代方法 - Google Patents

一种以重水为氘源的无催化剂电化学氘代方法 Download PDF

Info

Publication number
CN110438523A
CN110438523A CN201910837412.3A CN201910837412A CN110438523A CN 110438523 A CN110438523 A CN 110438523A CN 201910837412 A CN201910837412 A CN 201910837412A CN 110438523 A CN110438523 A CN 110438523A
Authority
CN
China
Prior art keywords
ester
deuterated
heavy water
cinnamic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910837412.3A
Other languages
English (en)
Other versions
CN110438523B (zh
Inventor
程旭
刘旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Nanxin Medical Technology Research Institute Co Ltd
Nanjing University
Original Assignee
Nanjing Nanxin Medical Technology Research Institute Co Ltd
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Nanxin Medical Technology Research Institute Co Ltd, Nanjing University filed Critical Nanjing Nanxin Medical Technology Research Institute Co Ltd
Priority to CN201910837412.3A priority Critical patent/CN110438523B/zh
Publication of CN110438523A publication Critical patent/CN110438523A/zh
Priority to JP2021504374A priority patent/JP7029572B2/ja
Priority to US17/281,625 priority patent/US20210404070A1/en
Priority to PCT/CN2020/113159 priority patent/WO2021043197A1/zh
Application granted granted Critical
Publication of CN110438523B publication Critical patent/CN110438523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/34Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/424Elution mode
    • B01D15/426Specific type of solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/08Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
    • B01D3/085Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs using a rotary evaporator
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/056Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of textile or non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/05Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/09Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/11Halogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Furan Compounds (AREA)
  • Epoxy Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明涉及一种以重水为氘源的无催化剂电化学氘代方法,往反应器中加入电解质、含有烯键或炔键的有机物、重水和有机溶剂,以碳毡作为电极材料,在惰性气体氛围下,通入4‑8V的直流电压进行电解反应,将反应产物进行纯化,即得到氘代产物。本发明采用重水作为氘源,利用廉价易得的碳电极材料作为阴极和阳极,在有机溶剂中通过直流电解,获得氘化产物,反应过程无需任何过渡金属催化剂,反应的产率在50%‑90%,氘代率在90%以上。由于避免了过渡金属的使用,反应适合在后期对药物分子进行修饰,同时,由于反应路径与过渡金属催化的反应历程不同,可以实现与过渡金属催化的氘化反应不同的化学选择性。

Description

一种以重水为氘源的无催化剂电化学氘代方法
技术领域
本发明涉及一种以重水为氘源的氘代方法,尤其是一种以重水为氘源的无催化剂电化学氘代方法,属于有机合成技术领域。
背景技术
在分子中将碳氢键替换为碳氘键,可以显著提高对应位点的化学稳定性,对于药物的代谢与药效有独特的作用,目前第一例氘代药物Austedo已经于2017年获得FDA批准,在药物合成中是一个里程碑的事件。同时,在已经上市的药物中引入氘原子,可以最小程度的改变药物的性质,同时可以作为一种新药申请。由于这个独特的优势,氘代技术近两年来获得了广泛的关注。
以往的氘代技术需要用到特殊的氘代试剂,例如,需要利用氘代醇,氘代二甲亚砜,氘代乙腈等溶剂,成本高,难以大规模实施。作为最基本的氘的来源,重水廉价易得,无需昂贵的二次氘代试剂,安全环保。利用重水作为氘源直接对有机分子进行氘化,会获得最大的原子经济性和步骤经济性。但是,现有技术中利用重水作为氘源直接对有机分子进行氘化,主要是在过渡金属催化下以还原剂现场产生金属氘络合物,进而发生与氢化反应类似的氘化反应。而在药物合成中,在最后阶段需要尽量避免过渡金属催化剂的使用,以免在药物活性成分引入高毒性物质。因此,迫切需要一种以重水为氘源的无催化剂氘代方法。
发明内容
本发明的目的在于解决现有技术的不足,一种以重水为氘源的无催化剂电化学氘代方法,该方法可以利用阴极还原的方式实现将不饱和键转化为阴离子自由基,通过与重水直接反应,就可以生成碳氘键,整个反应无需过渡金属的参与。
技术方案
一种以重水为氘源的无催化剂电化学氘代方法:往反应器中加入电解质、含有烯键或炔键的有机物、重水和有机溶剂,以碳毡作为电极材料,在惰性气体氛围下,通入4-8V的直流电压进行电解反应,将反应产物进行纯化,即得到氘代产物。
所述含有烯键或炔键的有机物选自烯烃、炔烃、不饱和酯、不饱和酰胺或不饱和羧酸中的一种。
进一步,所述含有烯键或炔键的有机物选自3-苯基-2-丙烯酸乙酯、3-苯基-2-丙烯酸丁酯、3-苯基-丙酸-1-戊烯-4-酯、3-苯基-2-丙烯酸-环己酯、3-苯基-2-丙烯酸-环己酯四氢呋喃基-3酯,3-苯基-2-丙烯酸-磷酸二乙酯基甲酯,3-苯基-2-丙烯酸苄酯,3-苯基-2-丙烯酸苯酯、3-苯基-2-丙烯酸薄荷醇酯、3-苯基-2-丙烯酸雌酚酮酯、3-苯基-2-丙烯酸龙脑酯、3-苯基-2-丙烯酸孕酮酯、3-苯基-2-丙烯酸雌酚酮酯或3-苯基-2-丙酸胆固醇酯中的任意一种。
进一步,所述电解质为四丁基四氟硼酸铵或LiClO4中的任意一种,电解质浓度为0.02mol/L。
进一步,所述重水与含有烯键或炔键的有机物的摩尔比为5-20:1。
进一步,所述有机溶剂为DMF或乙腈中的任意一种。
进一步,所述惰性气体为氮气或氩气。
进一步,所述纯化过程为:先将反应产物用乙酸乙酯萃取,萃取后的有机相用饱和食盐水洗涤,再用无水硫酸钠干燥,接着过滤,将滤液旋干,然后采用以300-400目硅胶作为固定相的柱层析技术,干法上样,以石油醚/乙酸乙酯混合液为洗脱剂进行洗脱,GC-MS检测洗脱液,将收集的层析液浓缩。
本发明的有益效果:本发明以含有烯键或炔键的有机物作为原料,采用重水作为氘源,利用廉价易得的碳电极材料作为阴极和阳极,在有机溶剂中通过直流电解,获得氘化产物,反应过程无需任何过渡金属催化剂,并且采用廉价通用玻璃仪器作为反应器,无需特殊仪器及隔膜。反应的产率在50%-90%,氘代率在90%以上。由于避免了过渡金属的使用,反应适合在后期对药物分子进行修饰。同时,由于反应路径与过渡金属催化的反应历程不同,可以实现与过渡金属催化的氘化反应不同的化学选择性,反应可以耐受富电子烯烃,多种杂环,对氢化敏感的保护基团如Cbz,Alloc等,反应无需任何酸碱添加剂,无任何辅助试剂,转化能耗为200-500mW/mmol。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
一种以重水为氘源的无催化剂电化学氘代方法:往容积为10mL的透明两口反应瓶中,加入四丁基四氟硼酸铵(32.9mg,0.1mmol),将装有电极的橡胶塞塞住一个瓶口,用微量进样器加入3-苯基-2-丙烯酸乙酯(35.2mg,0.2mmol)和氘水(80.0mg,4mmol),再加入5mLN,N-二甲基甲酰胺,以氩气吹扫,将反应瓶放于磁力搅拌器上,接上电极,将电压设为6V,在6V电压下搅拌2-10小时,反应结束之后,将反应产物用乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤,将滤液旋干。采用以300-400目硅胶作为固定相的柱层析技术,干法上样,以石油醚/乙酸乙酯混合液为洗脱剂进行洗脱,GC-MS检测洗脱液,将收集的层析液浓缩,得到32.7mg氘代产物2a(3-苯基-2-丙酸乙酯),产率91%,氘代率为苄位99%,羰基邻位99%。
产物2a的核磁数据为:1H NMR(400MHz,Chloroform-d)δ7.30–7.25(m,2H),7.21–7.18(m,3H),4.12(q,J=7.2Hz,1H),2.95–2.91(m,1.01H,99%D),2.62–2.58(m,1.01H,99%D),1.23(t,J=7.1Hz,1H);13C NMR(100MHz,CDCl3)δ172.9,140.5,128.5,128.3,126.2,60.4,35.6(t,J=20.0Hz),30.6(t,J=20.0Hz),14.2.
实施例2
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸丁酯,其余与实施例1相同,最后得到氘代产物2b(3-苯基-丙酸正丁酯),产率为89%,氘代率为苄位99%,羰基邻位98%。
1H NMR(400MHz,Chloroform-d)δ7.30–7.26(m,2H),7.21–7.17(m,3H),4.07(t,J=6.7Hz,2H),2.95–2.91(m,1.03H,97%D),2.62–2.59(m,1.04H,96%D),1.61–1.54(m,2H),1.38–1.28(m,2H),0.91(t,J=7.4Hz,3H);13C NMR(100MHz,CDCl3)δ173.0,140.5,128.5,128.3,126.2,64.3,35.6(t,J=20.0Hz),30.7,30.6(t,J=20.0Hz),19.1,13.7.
实施例3
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸-1-戊烯-4-酯,其余与实施例1相同,最后得到氘代产物2c(3-苯基-丙酸-1-戊烯-4-酯),产率为86%,氘代率苄位为97%,羰基邻位为98%。
1H NMR(400MHz,Chloroform-d)δ7.30–7.25(m,2H),7.21–7.17(m,3H),5.75–5.65(m,1H),5.06(d,J=8.3Hz,1H),5.03(s,1H),5.00–4.92(m,1H),2.94–2.91(m,1.03H,97%D),2.60–2.56(m,1.02H,98%D),2.27(qt,J=14.1,6.6Hz,2H),1.18(d,J=6.3Hz,3H);13CNMR(100MHz,CDCl3)δ172.4,140.5,133.7,128.4,128.3,126.2,117.6,70.1,40.2,35.8(t,J=20.0Hz),30.7(t,J=20.0Hz),19.4.
实施例4
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸-环己酯,其余与实施例1相同,最后得到氘代产物2d(3-苯基-2-丙酸-环己酯),产率为80%,氘代率苄位为97%,羰基邻位为96%。
1H NMR(400MHz,Chloroform-d)δ7.30–7.25(m,2H),7.21–7.17(m,3H),4.75(dt,J=9.0,4.7Hz,1H),2.95–2.91(m,1.03H,97%D),2.61–2.57(m,1.04H,96%D),1.81–1.75(m,2H),1.72–1.67(m,2H),1.56–1.49(m,1H),1.42–1.22(m,5H);13C NMR(100MHz,CDCl3)δ172.4,140.6,128.4,128.3,126.2,72.6,35.9(t,J=20.0Hz),31.6,30.7(t,J=20.0Hz),25.4,23.7.
实施例5
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸-环己酯四氢呋喃基3酯,其余与实施例1相同,最后得到氘代产物2e(3-苯基-丙酸-环己酯四氢呋喃基3酯),产率为88%,氘代率苄位为98%,羰基邻位为95%。
1H NMR(400MHz,Chloroform-d)δ7.30–7.25(m,2H),7.22–7.18(m,3H),5.29–5.26(m,1H),3.88–3.80(m,3H),3.75(d,J=10.5Hz,1H),2.94–2.91(m,1.02H,98%D),2.64–2.60(m,1.05H,95%D),2.17–2.08(m,1H),1.94–1.88(m,1H);13C NMR(100MHz,CDCl3)δ172.7,140.2,128.5,128.3,126.3,74.8,73.1,67.0,35.5(t,J=20.0Hz),32.7,30.5(t,J=20.0Hz).
实施例6
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸-磷酸二乙酯基甲酯,其余与实施例1相同,最后得到氘代产物2f(3-苯基-丙酸-磷酸二乙酯基甲酯),产率为68%,氘代率苄位为96%,羰基邻位为91%。
1H NMR(400MHz,Chloroform-d)δ7.31–7.27(m,2H),7.21–7.19(m,3H),4.39(s,1H),4.36(s,1H),4.15(p,J=8.0,7.5Hz,4H),2.98–2.94(m,1.04H,96%D),2.73–2.69(m,1.04H,96%D),1.33(t,J=7.1Hz,3H);13C NMR(100MHz,Chloroform-d)δ171.9(d,J=7.6Hz),140.0,128.5,128.3,126.4,62.8(d,J=6.2Hz),56.9(d,J=169.4Hz),35.1(t,J=20.0Hz),30.4(t,J=20.0Hz),16.4(d,J=5.8Hz).
实施例7
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸苄酯,其余与实施例1相同,最后得到氘代产物2g(3-苯基-丙酸苄酯),产率为77%,氘代率苄为96%,羰基邻位为91%。
1H NMR(400MHz,Chloroform-d)δ7.36–7.25(m,7H),7.21–7.17(m,3H),5.10(s,2H),2.97–2.93(m,1.04H,96%D),2.68–2.64(m,1.09H,91%D);13C NMR(100MHz,CDCl3)δ172.7,140.4,136.0,128.6,128.5,128.3,128.2,126.3,66.3,35.6(t,J=20.0Hz),30.6(t,J=20.0Hz).
实施例8
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸苯酯,其余与实施例1相同,最后得到氘代产物2h(3-苯基-丙酸苯酯),产率为82%,氘代率苄为99%,羰基邻位为94%。
1H NMR(400MHz,Chloroform-d)δ7.37–7.30(m,4H),7.27–7.19(m,4H),7.00(d,J=7.8Hz,2H),3.08–3.04(m,1.01H,99%D),2.88–2.85(m,1.06H,94%D);13C NMR(100MHz,CDCl3)δ171.4,150.7,140.1,129.4,128.6,128.4,126.5,125.8,121.6,35.7(t,J=20.0Hz),30.61(t,J=20.0Hz).
实施例9
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸薄荷醇酯,其余与实施例1相同,最后得到氘代产物2i(3-苯基-丙酸薄荷醇酯),产率为73%,氘代率苄位为99%,羰基邻位为94%。
1H NMR(400MHz,Chloroform-d)δ7.29–7.25(m,2H),7.20–7.17(m,3H),4.67(td,J=10.9,4.4Hz,1H),2.94–2.90(m,1.01H,99%D),2.61–2.57(m,1.06H,94%D),1.93(d,J=12.0Hz,1H),1.76–1.64(m,3H),1.52–1.40(m,3H),1.36–1.29(m,1H),1.08–0.98(m,1H),0.96–0.83(m,8H),0.70(d,J=6.9Hz,3H);13C NMR(100MHz,CDCl3)δ172.5,140.5,128.4,128.3,126.2,74.2,47.0,40.9,35.8(t,J=20.0Hz),34.3,31.4,30.7(t,J=20.0Hz),26.2,23.4,22.0,20.8,16.3.
实施例10
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸龙脑酯,其余与实施例1相同,最后得到氘代产物2j(3-苯基-2-丙烯酸龙脑酯),产率为86%,氘代率苄位为93%,羰基邻位为97%。
1H NMR(400MHz,Chloroform-d)δ7.34–7.30(m,2H),7.26–7.21(m,3H),4.90(dt,J=9.9,2.8Hz,1H),2.98–2.93(m,1.07H,93%D),2.69–2.66(m,1.03H,97%D),2.39–2.32(m,1H),1.94–1.88(m,1H),1.79–1.71(m,2H),1.69–1.67(m,1H),1.33–1.17(m,2H),0.92(s,3H),0.89(s,3H),0.81(s,3H);13C NMR(100MHz,CDCl3)δ173.3,140.5,128.5,128.3,126.2,79.9,48.7,47.8,44.9,36.7,35.8(t,J=20.0Hz),30.7(t,J=20.0Hz),28.0,27.1,19.7,18.9,13.5.
实施例11
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸(3aR,5S,6S,6aR)-5-((R)-2,2-二甲基-1,3-二氧戊环-4-基)-2,2-二甲基四氢呋喃[2,3-d][1,3]二氧杂-6-酯,其余与实施例1相同,最后得到氘代产物2k(3-苯基-丙酸(3aR,5S,6S,6aR)-5-((R)-2,2-二甲基-1,3-二氧戊环-4-基)-2,2-二甲基四氢呋喃[2,3-d][1,3]二氧杂-6-酯),产率62%,氘代率苄为97%,羰基邻位为95%。
1H NMR(400MHz,Chloroform-d)δ7.30(t,J=7.2Hz,2H),7.24–7.19(m,3H),5.73(d,J=3.6Hz,1H),5.22(d,J=2.3Hz,1H),4.25(d,J=3.9Hz,1H),4.20–4.14(m,2H),4.06–3.98(m,2H),2.96–2.93(m,1.03H,97%D),2.69–2.64(m,1.05H,95%D),1.50(s,3H),1.40(s,3H),1.31(s,3H),1.27(s,3H);13C NMR(100MHz,CDCl3)δ171.5,139.9,128.5,128.4,126.5,112.2,109.3,105.0,83.2,79.7,76.1,72.4,67.2,35.4(t,J=20.0Hz),30.6(t,J=20.0Hz),26.9,26.7,26.2,25.3.
实施例12
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸孕酮酯,其余与实施例1相同,最后得到氘代产物2l(3-苯基-丙酸孕酮酯),产率为52%,氘代率苄位为97%,羰基邻位为96%。
1H NMR(400MHz,Chloroform-d)δ7.34–7.30(m,2H),7.27–7.22(m,4H),6.78(dd,J=8.5,2.4Hz,1H),6.74(s,1H),3.07–3.04(m,1.03H,97%D),2.89(dd,J=9.5,4.8Hz,2H),2.85–2.83(m,1.04H,96%D),2.51(dd,J=18.8,8.6Hz,1H),2.42–2.37(m,1H),2.31–2.24(m,1H),2.19–1.94(m,4H),1.65–1.41(m,6H),0.90(s,3H);13C NMR(100MHz,CDCl3)δ171.7,148.5,140.1,138.0,137.4,128.6,128.4,126.4,126.4,121.6,118.7,50.5,48.0,44.2,38.0,36.0,35.7(t,J=20.0Hz),31.6,30.6(t,J=20.0Hz),29.4,26.4,25.8,21.6,13.8.
实施例13
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸雌酚酮酯,其余与实施例1相同,最后得到氘代产物2m(3-苯基-丙酸雌酚酮酯),产率为57%,氘代率苄位为98%,酯羰基邻位为96%。
1H NMR(400MHz,Chloroform-d)δ7.31–7.26(m,2H),7.20(dd,J=7.3,5.5Hz,3H),5.37(d,J=4.6Hz,1H),4.65–4.57(m,1H),2.95–2.91(m,1.02H,98%D),2.61–2.57(m,1.04H,96%D),2.54(t,J=9.0Hz,1H),2.28(d,J=7.4Hz,2H),2.22–2.17(m,1H),2.13(s,3H),2.06–1.97(m,2H),1.89–1.81(m,2H),1.68–1.44(m,8H),1.29–1.10(m,4H),1.01(s,3H),0.63(s,3H);13C NMR(100MHz,CDCl3)δ209.6,172.4,140.5,139.7,128.5,128.3,126.2,122.3,73.9,63.7,56.8,49.9,44.0,38.8,38.0,37.0,36.6,35.9(t,J=20.0Hz),31.8,31.8,31.6,30.7(t,J=20.0Hz),27.7,24.5,22.8,21.0,19.3,13.2.
实施例14
的合成:
含有烯键或炔键的有机物为3-苯基-2-丙烯酸胆固醇酯,其余与实施例1相同,最后得到氘代产物2n(3-苯基-2-丙酸胆固醇酯),产率为45%,氘代率苄位为99%,羰基邻位为94%。
1H NMR(400MHz,Chloroform-d)δ7.30–7.26(m,2H),7.21–7.18(m,3H),5.36(d,J=5.0Hz,1H),4.65–4.57(m,1H),2.95–2.91(m,1.01H,99%D),2.60–2.56(m,1.06H,94%D),2.28(d,J=8.1Hz,2H),2.04–1.76(m,6H),1.57–1.08(m,20H),1.01(s,3H),0.91(d,J=6.4Hz,3H),0.87(d,J=1.5Hz,3H),0.86(d,J=1.5Hz,3H),0.67(s,3H);13C NMR(100MHz,CDCl3)δ172.3,140.7,139.7,128.4,128.3,126.2,122.6,74.0,56.7,56.1,50.0,42.3,39.7,39.5,38.1,37.0,36.6,36.2,35.9(t,J=20.0Hz),35.8,31.9,31.9,30.7(t,J=20.0Hz),28.2,28.0,27.8,24.3,23.8,22.8,22.6,21.0,19.3,18.7,11.9.

Claims (7)

1.一种以重水为氘源的无催化剂电化学氘代方法,其特征在于,往反应器中加入电解质、含有烯键或炔键的有机物、重水和有机溶剂,以碳毡作为电极材料,在惰性气体氛围下,通入4-8V的直流电压进行电解反应,将反应产物进行纯化,即得到氘代产物;
所述含有烯键或炔键的有机物选自烯烃、炔烃、不饱和酯、不饱和酰胺或不饱和羧酸中的一种。
2.如权利要求1所述以重水为氘源的无催化剂电化学氘代方法,其特征在于,所述含有烯键或炔键的有机物选自3-苯基-2-丙烯酸乙酯、3-苯基-2-丙烯酸丁酯、3-苯基-丙酸-1-戊烯-4-酯、3-苯基-2-丙烯酸-环己酯、3-苯基-2-丙烯酸-环己酯四氢呋喃基-3酯,3-苯基-2-丙烯酸-磷酸二乙酯基甲酯,3-苯基-2-丙烯酸苄酯,3-苯基-2-丙烯酸苯酯、3-苯基-2-丙烯酸薄荷醇酯、3-苯基-2-丙烯酸雌酚酮酯、3-苯基-2-丙烯酸龙脑酯、3-苯基-2-丙烯酸孕酮酯、3-苯基-2-丙烯酸雌酚酮酯或3-苯基-2-丙酸胆固醇酯中的任意一种。
3.如权利要求1所述以重水为氘源的无催化剂电化学氘代方法,其特征在于,所述电解质为四丁基四氟硼酸铵或LiClO4中的任意一种,电解质浓度为0.02mol/L。
4.如权利要求1所述以重水为氘源的无催化剂电化学氘代方法,其特征在于进一步,所述重水与含有烯键或炔键的有机物的摩尔比为5-20:1。
5.如权利要求1所述以重水为氘源的无催化剂电化学氘代方法,其特征在于,所述有机溶剂为DMF或乙腈中的任意一种。
6.如权利要求1所述以重水为氘源的无催化剂电化学氘代方法,其特征在于,所述惰性气体为氮气或氩气。
7.如权利要求1至6所述以重水为氘源的无催化剂电化学氘代方法,其特征在于,所述纯化过程为:先将反应产物用乙酸乙酯萃取,萃取后的有机相用饱和食盐水洗涤,再用无水硫酸钠干燥,接着过滤,将滤液旋干,然后采用以300-400目硅胶作为固定相的柱层析技术,干法上样,以石油醚/乙酸乙酯混合液为洗脱剂进行洗脱,GC-MS检测洗脱液,将收集的层析液浓缩。
CN201910837412.3A 2019-09-05 2019-09-05 一种以重水为氘源的无催化剂电化学氘代方法 Active CN110438523B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910837412.3A CN110438523B (zh) 2019-09-05 2019-09-05 一种以重水为氘源的无催化剂电化学氘代方法
JP2021504374A JP7029572B2 (ja) 2019-09-05 2020-09-03 重水を重水素源として使用する無触媒電気化学重水素化方法
US17/281,625 US20210404070A1 (en) 2019-09-05 2020-09-03 Catalyst-free electrochemical deuteration method using deuterium oxide as deuterium source
PCT/CN2020/113159 WO2021043197A1 (zh) 2019-09-05 2020-09-03 一种以重水为氘源的无催化剂电化学氘代方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910837412.3A CN110438523B (zh) 2019-09-05 2019-09-05 一种以重水为氘源的无催化剂电化学氘代方法

Publications (2)

Publication Number Publication Date
CN110438523A true CN110438523A (zh) 2019-11-12
CN110438523B CN110438523B (zh) 2021-12-03

Family

ID=68439258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910837412.3A Active CN110438523B (zh) 2019-09-05 2019-09-05 一种以重水为氘源的无催化剂电化学氘代方法

Country Status (4)

Country Link
US (1) US20210404070A1 (zh)
JP (1) JP7029572B2 (zh)
CN (1) CN110438523B (zh)
WO (1) WO2021043197A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885985A (zh) * 2019-12-05 2020-03-17 深圳大学 一种氘代化学品的制备方法
CN111004076A (zh) * 2019-12-16 2020-04-14 云南民族大学 一种以重水为氘源制备氘代氨基酸酯的方法
CN112281182A (zh) * 2020-10-29 2021-01-29 武汉大学 一种电化学条件下制备氘代芳烃的方法
WO2021043197A1 (zh) * 2019-09-05 2021-03-11 南京大学 一种以重水为氘源的无催化剂电化学氘代方法
CN112921345A (zh) * 2021-01-21 2021-06-08 浙江工业大学 一种硫代磷酸酯类化合物的直接电化学合成方法
CN114032568A (zh) * 2021-11-11 2022-02-11 南京南欣医药技术研究院有限公司 一种芳基氘代二氟甲基化合物的合成方法
CN114411177A (zh) * 2021-12-31 2022-04-29 西北工业大学 一种用于合成氘代烯烃的电催化方法
CN114438532A (zh) * 2022-01-29 2022-05-06 南京中医药大学 一种脱氧氘代还原醛酮合成偕二氘代烃的方法
CN114574883A (zh) * 2022-01-29 2022-06-03 南京中医药大学 一种脱氧氢化以及氘化还原α,β-不饱和醛酮为相应的烯烃以及氘代烯烃的方法
CN114773226A (zh) * 2022-05-27 2022-07-22 安徽贵朋功能材料科技有限公司 一种用光电一体催化制备氘代乙腈的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88100844A (zh) * 1987-02-17 1988-08-31 赫彻斯特股份公司 有机化合物中进行卤原子交换的电化学方法
JPH06293985A (ja) * 1993-04-07 1994-10-21 Osaka Gas Co Ltd パラジウム重水素化物の製造方法
CN109790631A (zh) * 2016-09-22 2019-05-21 西门子股份公司 选择性电化学氢化炔烃生成烯烃

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731914A1 (de) * 1987-09-23 1989-04-06 Hoechst Ag Verfahren zur herstellung von fluorierten acrylsaeuren und ihren derivaten
DE4029068A1 (de) * 1990-09-13 1992-03-19 Hoechst Ag Verfahren zur herstellung von halogenierten acrylsaeuren
CA2130552A1 (en) * 1992-02-22 1993-08-23 Steffen Dapperheld Electrochemical process for preparing glyoxylic acid
JP5506273B2 (ja) 2009-07-31 2014-05-28 富士フイルム株式会社 画像処理装置及び方法、データ処理装置及び方法、並びにプログラム
CN109943861B (zh) 2019-03-29 2020-11-27 南京大学 一种电化学氧化合成α-氨基磷酸酯的方法
CN110438523B (zh) * 2019-09-05 2021-12-03 南京大学 一种以重水为氘源的无催化剂电化学氘代方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88100844A (zh) * 1987-02-17 1988-08-31 赫彻斯特股份公司 有机化合物中进行卤原子交换的电化学方法
JPH06293985A (ja) * 1993-04-07 1994-10-21 Osaka Gas Co Ltd パラジウム重水素化物の製造方法
CN109790631A (zh) * 2016-09-22 2019-05-21 西门子股份公司 选择性电化学氢化炔烃生成烯烃

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043197A1 (zh) * 2019-09-05 2021-03-11 南京大学 一种以重水为氘源的无催化剂电化学氘代方法
CN110885985A (zh) * 2019-12-05 2020-03-17 深圳大学 一种氘代化学品的制备方法
CN110885985B (zh) * 2019-12-05 2021-11-02 深圳大学 一种氘代化学品的制备方法
CN111004076A (zh) * 2019-12-16 2020-04-14 云南民族大学 一种以重水为氘源制备氘代氨基酸酯的方法
CN112281182A (zh) * 2020-10-29 2021-01-29 武汉大学 一种电化学条件下制备氘代芳烃的方法
CN112921345A (zh) * 2021-01-21 2021-06-08 浙江工业大学 一种硫代磷酸酯类化合物的直接电化学合成方法
CN114032568A (zh) * 2021-11-11 2022-02-11 南京南欣医药技术研究院有限公司 一种芳基氘代二氟甲基化合物的合成方法
CN114032568B (zh) * 2021-11-11 2022-11-29 南京南欣医药技术研究院有限公司 一种芳基氘代二氟甲基化合物的合成方法
CN114411177A (zh) * 2021-12-31 2022-04-29 西北工业大学 一种用于合成氘代烯烃的电催化方法
CN114438532A (zh) * 2022-01-29 2022-05-06 南京中医药大学 一种脱氧氘代还原醛酮合成偕二氘代烃的方法
CN114574883A (zh) * 2022-01-29 2022-06-03 南京中医药大学 一种脱氧氢化以及氘化还原α,β-不饱和醛酮为相应的烯烃以及氘代烯烃的方法
CN114773226A (zh) * 2022-05-27 2022-07-22 安徽贵朋功能材料科技有限公司 一种用光电一体催化制备氘代乙腈的方法
CN114773226B (zh) * 2022-05-27 2022-10-21 安徽贵朋功能材料科技有限公司 一种用光电一体催化制备氘代乙腈的方法

Also Published As

Publication number Publication date
CN110438523B (zh) 2021-12-03
US20210404070A1 (en) 2021-12-30
WO2021043197A1 (zh) 2021-03-11
JP7029572B2 (ja) 2022-03-03
JP2022502562A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
CN110438523A (zh) 一种以重水为氘源的无催化剂电化学氘代方法
CN110885985B (zh) 一种氘代化学品的制备方法
Jones et al. Microwave-enhanced aromatic dehalogenation studies: a rapid deuterium-labelling procedure
CN113957461B (zh) 一种1,1′-联萘类化合物的电化学合成方法
CN1683320A (zh) 1l(1s)-(1(oh),2,4,5/1,3)-5-氨基-1-羟甲基-1,2,3,4-环己四醇的制备方法
Marek et al. The labeling of unsaturated γ‐hydroxybutyric acid by heavy isotopes of hydrogen: iridium complex‐mediated H/D exchange by C─ H bond activation vs reduction by boro‐deuterides/tritides
CN108441883B (zh) 一种电化学氟化法制备全氟异丁酸甲酯的方法
Lam et al. Toluates: unexpectedly versatile reagents
CN1183137C (zh) 〔3aS,6aR〕-1,3-二苄基-四氢-4H-呋喃并[3,4-d]-咪唑-2,4〔1H〕-二酮〔I〕的合成方法
CN102942511A (zh) 一种环戊二烯的制备方法
CN110078622A (zh) 一种4-乙氧基-1,1,2,4,5,6-六氢环丁烷并萘-2-苯甲酸酯的合成方法
Smith III et al. Quadrone structural and synthetic studies. Total synthesis of natural (-)-quadrone, the (+)-enantiomer, and the racemate. Conformational analysis, circular dichroism, and determination of absolute stereochemistry.
CN110305012A (zh) 一种半导体级丙二醇甲醚乙酸酯的合成工艺
CN101591248A (zh) 一种苯甲酸甲酯的合成方法
CN112609202A (zh) 一种电催化合成天然产物Xanthoisoxazoline B的方法及其产品
Anastassiou et al. Dioxa and trioxa derivatives of cyclooctatetraene
CN113816993A (zh) 含有β-氰基膦酸酯类衍生物的合成方法
Miyamoto et al. Resolution of hydrocarbons by inclusion complexation with a chiral host compound
Roush et al. Stereochemistry of the reactions of pinacol allylboronate with two α, β-dialkoxyaldehydes
CN113004109A (zh) 一种手性α-羟基-β-酮酸酯类化合物的不对称合成方法
Brown et al. Additions to bicyclic olefins. IX. Electrophilic addition of acetic acid and perdeuterioacetic acid to norbornene and 7, 7-dimethylnorbornene. Remarkable stereoselectivity for the addition process with evidence for the capture of the 2-norbornyl cation in an unsymmetrical (classical) state
CN113957114B (zh) 一种酶法合成维生素a棕榈酸酯的方法
Huang et al. Synthesis of spiro-cyclopropane derivatives containing multiple chiral centers
CN115385789B (zh) 一种4-氧代丁酸甲酯的合成方法
CN113912492B (zh) 一种氟比洛芬酯的精制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant