CN114032568B - 一种芳基氘代二氟甲基化合物的合成方法 - Google Patents

一种芳基氘代二氟甲基化合物的合成方法 Download PDF

Info

Publication number
CN114032568B
CN114032568B CN202111334451.5A CN202111334451A CN114032568B CN 114032568 B CN114032568 B CN 114032568B CN 202111334451 A CN202111334451 A CN 202111334451A CN 114032568 B CN114032568 B CN 114032568B
Authority
CN
China
Prior art keywords
nmr
chloroform
compound
aryl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111334451.5A
Other languages
English (en)
Other versions
CN114032568A (zh
Inventor
程旭
盛杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Nanxin Medical Technology Research Institute Co ltd
Nanjing University
Original Assignee
Nanjing Nanxin Medical Technology Research Institute Co ltd
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Nanxin Medical Technology Research Institute Co ltd, Nanjing University filed Critical Nanjing Nanxin Medical Technology Research Institute Co ltd
Priority to CN202111334451.5A priority Critical patent/CN114032568B/zh
Publication of CN114032568A publication Critical patent/CN114032568A/zh
Application granted granted Critical
Publication of CN114032568B publication Critical patent/CN114032568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/11Halogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及有机合成技术领域,提供了一种芳基氘代二氟甲基化合物的合成方法。本发明以芳基三氟甲基化合物为原料,以重水为氘源,通过电解反应对芳基三氟甲基化合物中的C‑F键活化,引入氘原子,实现芳基氘代二氟甲基化合物的合成。本发明以氘水为唯一氘源,无需其它氘代试剂,且不使用任何过渡金属,适合合成对重金属残留敏感的药物;本发明使用电化学方法进行制备,无需额外的还原剂,整个制备过程步骤简单,容易操作,且产物收率高,氘代率高;本发明提供的方法官能团适用范围广,能够合成多种不同官能团芳基氘代二氟甲基化合物,适合药物的后期修饰,利于嫁接到现有药物的修饰。

Description

一种芳基氘代二氟甲基化合物的合成方法
技术领域
本发明有机合成技术领域,尤其涉及一种芳基氘代二氟甲基化合物的合成方法。
背景技术
氘代二氟甲基是一种结合了三氟甲基和三氘甲基结构特点的官能团,这一官能团在调节代谢稳定性以及氢键网络方面具有独特的性质,目前,二氟甲基自由基在药物化学中已经取得了应用。
在现有的技术中,氘代二氟甲基化合物的合成主要集中于烷基取代的氘代二氟甲基官能团,如Colby课题组2017年报道了利用D2O作为氘源对水合1,3-二酮进行质子化,获得羰基ɑ-位的氘代三氟甲基,反应如式1所示(Sowaileh,M.F.;Han,C.;Hazlitt,R.A.;Kim,E.H.;John,J.P.;Colby,D.A.Tetrahedron Lett.2017,58,396-400),2020年,Jamison课题组报道了利用流动化学方式实现了对Wittig反应中间体的氘化,合成ɑ-羟基-氘代三氟甲基烃化合物,反应式如式2所示(Fu,W.C.;Jamison,T.F.Angew.Chem.Int.Ed.2020,59,13885-13890)。
Figure GDA0003890125970000011
Figure GDA0003890125970000012
目前,本领域中关于芳基氘代二氟甲基化合物的合成报道较少,且在仅有的报道中,反应过程中均需要使用过特殊的合成条件。如Lalic课题组2016年报道了反应3中的例子(Dang,H.;Whittaker,A.M.;Lalic,G.Chem.Sci.2016,7,505-509),可以获得93%氘代率的氘代二氟产物。但需要Pd等贵金属电解质,亚试剂量的有毒性的Cu电解质,昂贵的氘代叔丁醇(tBuOD)。2019年,Prakash课题组报道了一例芳基氘代二氟甲基化合物的合成(Munoz,S.B.;Ni,C.;Zhang,Z.;Wang,F.;Shao,N.;Mathew,T.;Olah,G.A.;Prakash,G.K.S.Eur.J.Org.Chem.2017,2017,2322-2326),如反应式4所示,反应过程中需要大大过量的金属镁,且需昂贵的AcOD作为溶剂。2020年,Gouverneur课题组报道了可见光催化的芳基氘代二氟甲基化合物的合成,反应式如式5所示,该反应需要非常特殊的氘源(Sap,J.B.I.;Straathof,N.J.W.;Knauber,T.;Meyer,C.F.;Médebielle,M.;Buglioni,L.;Genicot,C.;Trabanco,A.A.;
Figure GDA0003890125970000024
T.;am Ende,C.W.;Gouverneur,V.J.Am.Chem.Soc.2020,142,9181-9187)。
Figure GDA0003890125970000021
Figure GDA0003890125970000022
Figure GDA0003890125970000023
综上所述,目前合成芳基氘代二氟甲基化合物的方法普遍需要昂贵的试剂,且底物适应性较差,所得芳基氘代二氟甲基化合物种类较少。
发明内容
有鉴于此,本发明提供了一种芳基氘代二氟甲基化合物的合成方法。本发明提供的合成方法以重水为为一氘源,所用试剂廉价易得,官能团适应范围广,是一种廉价高效、广谱的芳基氘代二氟甲基化合物合成方法。
为了实现上述发明目的,本发明提供以下技术方案:
一种芳基氘代二氟甲基化合物的合成方法,包括以下步骤:
将芳基三氟甲基化合物、电解质、活化剂、重水和溶剂混合进行电解反应,得到芳基氘代二氟甲基化合物;
所述活化剂包括有机锂化合物、无机锂化合物和有机钠化合物中的一种或几种。
优选的,所述电解质包括烷基季铵盐或锂盐。
优选的,所述烷基季铵盐包括四丁基溴化铵、四丁基碘化铵、四丁基高氯酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵和四甲基四氟硼酸铵中的一种或几种;所述锂盐包括LiCl和/或LiClO4
优选的,所述有机锂化合物包括叔丁醇锂或甲氧基锂;所述无机锂化合物包括LiCl、LiOH、LiOAc或Li2CO3;所述有机钠化合物为叔丁醇钠。
优选的,所述电解反应的温度为15~30℃,电压为2.5~10V;所述电解反应在保护气氛下进行;
所述电解反应的阳极为锌片或石墨毡,阴极为石墨毡;所述电解反应的极间距>2mm;所述电解反应在非分隔池中进行。
优选的,所述芳基三氟甲基化合物、电解质、活化剂和重水的摩尔比为0.2:0.05~4:0.05~4:1~40。
优选的,所述溶剂为N,N-二甲基甲酰胺或二甲基亚砜。
优选的,所述芳基三氟甲基化合物的结构通式如式I所示:
Ar-CF3 式I;
式I中:Ar表示苯基、取代苯基、芳杂基或取代芳杂基;所述取代苯基中的取代基包括烷氧基、芳氧基、卤素、硼酸酯基、硅烷基、硫醚基、NH2-、胺基、酰基氨基、呋喃基、苯基、取代苯基或酰胺基;所述取代芳杂基中的取代基包括烷氧基。
优选的,所述芳基三氟甲基化合物为具有式I-1~式I-5所述结构中的任意一种:
Figure GDA0003890125970000031
式I-1中:R1为苯基、取代苯基、烷基、萘基、苄基、杂环基、取代杂环基、烯基、酯基、酰胺基;
Figure GDA0003890125970000032
式I-2中:R2和R3独立地为H、氨基、酰胺基、卤素、含氮杂环基、硅烷基、硼酸酯基、苯基、取代苯基或-NRaRb,Ra和Rb独立地为烷基或苯基;
Figure GDA0003890125970000041
式I-3中:R4为苯基、取代苯基或烷基;
Figure GDA0003890125970000042
Figure GDA0003890125970000043
优选的,所述电解反应完成后,还包括将所得产物料液进行后处理;所述后处理包括:将所得产物料液依次进行稀释、水洗、干燥、浓缩和柱层析分离,得到芳基氘代二氟甲基化合物。
本发明提供了一种芳基氘代二氟甲基化合物的合成方法,本发明以芳基三氟甲基化合物为原料,以重水为氘源,通过电解反应对芳基三氟甲基化合物中的C-F键活化,引入氘原子,实现芳基氘代二氟甲基化合物的合成。本发明提供的方法以氘水为唯一氘源,无需其它氘代试剂,所用试剂均廉价易得,且不使用任何过渡金属,适合合成对于重金属残留敏感的药物;本发明使用电化学方法进行制备,无需额外的还原剂,整个制备过程步骤简单,容易操作,且产物收率高,氘代率高;本发明提供的方法官能团适用范围广,能够合成多种不同官能团芳基氘代二氟甲基化合物,适合药物的后期修饰,利于嫁接到现有药物的修饰。实施例结果表明,采用本发明的方法合成氘代二氟甲基化合物,产率最高可以达到91%,氘代率最高可以达到96%。
附图说明
图1为本发明电解反应的反应原理示意图;
图2为化合物2a的1H谱图;
图3为化合物2a的13C谱图;
图4为化合物2a的19F谱图。
具体实施方式
本发明提供了一种芳基氘代二氟甲基化合物的合成方法,包括以下步骤:
将芳基三氟甲基化合物、电解质、活化剂、重水和溶剂混合进行电解反应,得到芳基氘代二氟甲基化合物。
在本发明中,所述芳基三氟甲基化合物的结构通式如式I所示:
Ar-CF3 式I;
式I中:Ar表示苯基、取代苯基、芳杂基或取代芳杂基;所述取代苯基中的取代基包括烷氧基、芳氧基、卤素、硼酸酯基、硅烷基、硫醚基、NH2-、胺基,酰基氨基、呋喃基、苯基、取代苯基或酰胺基;所述烷氧基中的烷基优选为链烷基或环烷基,所述烷氧基的碳原子数优选为1~12,更优选为3~10;所述芳氧基优选为苯氧基、取代苯氧基、萘氧基、杂环氧基或取代杂环氧基;所述卤素优选为F或Cl。
在本发明中,所述芳基三氟甲基化合物优选为具有式I-1~式I-5所述结构中的任意一种:
Figure GDA0003890125970000051
式I-1中:R1为苯基、取代苯基(取代苯基上的取代基优选为烷基或卤素,卤素优选为F或Cl)、烷基(碳原子数优选为1~12)、萘基、苄基、杂环基(优选为含氮杂环基)、取代杂环基、烯基(碳原子数优选为3~15)、酯基、酰胺基;
Figure GDA0003890125970000052
式I-2中:R2和R3独立地为H、氨基、酰胺基、卤素(优选为F或Cl)、含氮杂环基、硅烷基、硼酸酯基、苯基、取代苯基或-NRaRb,Ra和Rb独立地为烷基(碳原子优选为1~5)或苯基;
Figure GDA0003890125970000053
式I-3中:R4为苯基、取代苯基(取代苯基上的取代基优选为甲基或卤素)或烷基(碳原子优选为1~5);
Figure GDA0003890125970000061
Figure GDA0003890125970000062
在本发明的具体实施例中,所述芳基三氟甲基化合物优选为以下结构中的任意一种:
Figure GDA0003890125970000063
Figure GDA0003890125970000071
本发明对所述芳基三氟甲基化合物的来源没有特殊要求,采用市售的上述化合物或采用本领域技术人员熟知的方法合成均可。
在本发明中,所述电解质优选包括烷基季铵盐或锂盐,所述烷基季铵盐优选包括四丁基溴化铵、四丁基碘化铵、四丁基高氯酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵和四甲基四氟硼酸铵中的一种或几种,所述锂盐优选包括LiCl和/或LiClO4;在本发明的具体实施例中,所述电解质最优选为四丁基溴化铵,采用四丁基溴化铵为电解质,四丁基溴化铵在DMF中电离最充分,能够提高产物收率。
在本发明中,所述活化剂包括有机锂化合物、无机锂化合物和有机钠化合物中的一种或几种;所述有机锂化合物优选包括叔丁醇锂和/或甲氧基;所述有机钠化合物优选为叔丁醇钠;所述无机锂化合物优选包括LiCl、LiOH、LiOAc和Li2CO3中的一种或几种;在本发明的具体实施例中,所述活化剂最优选为叔丁醇锂采用叔丁醇锂为活化剂,能够提高产物收率。
在本发明中,所述溶剂优选为N,N-二甲基甲酰胺或二甲基亚砜,更优选为N,N-二甲基甲酰胺;在本发明的具体实施例中,采用N,N-二甲基甲酰胺为溶剂,有利于提高产物收率。
在本发明中,所述芳基三氟甲基化合物、电解质、活化剂和重水的摩尔比优选为0.2:0.05~4:0.05~4:1~40,更优选为0.2:0.1~3:0.1~3:5~20;所述芳基三氟甲基化合物和溶剂的用量比优选为0.2mmol:4~6mL,更优选为0.2mmol:5mL。
在本发明中,所述电解反应的温度优选为15~30℃,优选为20~25℃,在本发明的具体实施例中,优选直接在室温下进行电解反应,无需额外的加热或降温;本发明对反应时间没有特殊要求,优选采用气质联用监测反应至结束,当底物用量增加时,反应时间也增加,在本发明的具体实施例中,当底物用量为0.2mmol时,电解反应的时间优选为为8~35h,更优选为10~24h;在本发明中,所述电解反应的电压优选为2.5~10V,更优选为3~8V;所述电解反应优选在保护气氛下进行,所述保护气氛优选为氩气。
在本发明中,所述电解反应的阳极优选为锌片或石墨毡,阴极优选为石墨毡,所述锌片的尺寸优选为1cm×5cm×0.6mm,石墨毡的尺寸优选为1cm×1cm×0.5cm;所述电解反应的极间距优选>2mm,在本发明的具体实施例中,优选在阴极和阳极之间放置一片膜,以确保阴极和阳极之间的距离,所述膜优选为聚四氟乙烯膜或尼龙膜;本发明所述电解反应在非分隔池中进行,即无需使用隔膜分隔出阳极室和阴极室,本发明在非分隔池中进行反应,能够进一步降低成本。在本发明的具体实施例中,所述电解反应优选在两口心形瓶中进行。
以阴极和阳极均为石墨毡为例,说明本发明电解反应的具体操作过程:先将芳基三氟甲基化合物、电解质和活化剂加入电解反应装置中,然后将两片石墨毡放入装置中,两片石墨毡中间设置有一片聚四氟乙烯膜,以确保阴极和阳极的极间距满足要求,在两片石墨毡上分别连接一根导线,两根导线的另一端分别连接电源的正负极,连接电源正极的石墨毡为阳极,连接电源负极的石墨毡为阴极,将装置内气氛进行氩气置换后,加入溶剂和重水,石墨毡浸没在反应液中,并在阴阳极上施加电压,在搅拌条件下进行反应。在本发明中,所述电源优选为直流电源;所述导线优选为铂丝、银丝或钛丝。
以活化剂为叔丁醇锂时为例,说明电解时发生的反应以及作用原理:在电解反应过程中,阴极负责提供电子促进C-F键断裂,同时阳极负责氧化,氧化产生的碱性物种为氧气,叔丁醇锂中的锂离子能够通过Li-F作用活化三氟甲基,同时产生的tBuOD作为氘原子转移催化剂,加速C-D键的生成。电解反应的原理图如图1所示。
电解反应完成后,本发明优选将所得电解产物料液进行后处理;所述后处理优选包括:将所得电解产物料液依次进行稀释、水洗、干燥、浓缩和柱层析分离,得到氘代二氟甲基化合物;所述稀释用稀释剂优选为乙酸乙酯,本发明用乙酸乙酯进行稀释,可以避免反应液中的产物大量溶于水相;本发明对所述水洗没有特殊要求,采用本领域技术人员熟知的方法即可;所述干燥优选为使用无水硫酸钠干燥,干燥后通过过滤将干燥剂除去,本发明对所述柱层析分离没有特殊要求,采用本领域技术人员熟知的方法即可。
在本发明中,所述氘代二氟甲基化合物的结构通式如式II所示:
Ar-CF2D 式II;
式II中:Ar基团的种类和式I中一致,在此不再赘述。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
下述实施例中使用的各种芳基三氟甲基化合物购买自百灵威、伊诺凯、毕德试剂或自行合成。
实施例1
采用的原料为化合物1a,产物为化合物2a,反应式如下:
Figure GDA0003890125970000091
在两口心形瓶中加入化合物1a(0.2mmol),四丁基溴化铵(0.2mmol),叔丁醇锂(0.2mmol),在两片石墨毡(1×1×0.5cm)之间放置一个聚四氟乙烯膜,以确保极间距不小于0.2mm,将两片石墨毡放入两口心形瓶中,一片石墨毡上接入一根铂丝,连接电源正极作为阳极,一片石墨毡接入一根银丝连接电源负极作为阴极。将反应瓶内气氛以氩气置换后加入N,N-二甲基甲酰胺5mL,重水(10mmol),在阴阳极上施加3.6V电压,即铂丝与银丝之间电压为+3.6V,室温搅拌条件下电解,用气质联用监测反应,待反应结束后(总反应时间为18h),断开电源,反应液以乙酸乙酯稀释,并用水洗有机相。有机相以无水硫酸钠干燥。过滤浓缩后,反应粗产物以硅胶柱层析分离,得到化合物2a(39.3mg),收率为89%,氘代率为96%。经1H,13C,19F鉴定为目标产物。
结构鉴定数据如下:
1H NMR(400MHz,Chloroform-d)δ7.48(d,J=8.3Hz,2H),7.39(t,J=7.8Hz,2H),7.18(t,J=7.4Hz,1H),7.06(d,J=8.2Hz,4H).13C NMR(100MHz,Chloroform-d)δ159.59,156.20,129.94,128.83(t,J=22.8Hz),127.30(t,J=6.0Hz),124.09,119.61,118.24,117.04–111.35(m).19F NMR(376MHz,Chloroform-d)δ-108.94,-109.55–-109.74(m).HRMSm/z(ESI)calcd.forC13H9DF2O+(M+H)+222.0841,found222.0840.
化合物2a的1H谱图、13C谱图和19F谱图如图2~4所示。
实施例2~37
其他条件和实施例1相同,仅将原料化合物1a进行替换,对反应电压进行调整,采用气质联用监测反应至结束,记录反应时间;各个实施例中使用的原料为将产物中的-CDF2替换为-CF3后的化合物,具体结构不再一一列出;另外,2n、2ai、2aj、2an、2at组反应底物的用量为0.1mmol,四丁基溴化铵、叔丁醇锂和重水的加料量也在实施例1的基础上减半;2an组的反应温度为15℃,未列出的条件均与实施例1一致。
实施例中的产物结构、反应条件以及产率、氘代率表1所示:
表1实施例2~37的产物结构、反应条件、产率及氘代率
Figure GDA0003890125970000101
Figure GDA0003890125970000111
Figure GDA0003890125970000121
Figure GDA0003890125970000131
Figure GDA0003890125970000141
表1中各个化合物的结构鉴定数据如下:
2b:1H NMR(400MHz,Chloroform-d)δ7.46(dt,J=9.0,1.2Hz,2H),7.19(d,J=8.3Hz,2H),7.03(d,J=8.4Hz,2H),6.96(d,J=8.5Hz,2H),2.37(s,3H).13C NMR(100MHz,Chloroform-d)δ160.11,153.69,133.84,130.44,128.44(t,J=22.5Hz),127.22(t,J=5.9Hz),119.75,117.74,20.72.19F NMR(376MHz,Chloroform-d)δ-108.86,-109.35–-109.88(m).HRMS m/z(ESI)calcd.for C14H11DF2O+(M+Na)+258.0817,found258.0815.
2c:1H NMR(400MHz,Chloroform-d)δ7.47(d,J=8.7Hz,2H),7.24–7.10(m,4H),7.03(d,J=8.4Hz,2H).13C NMR(100MHz,Chloroform-d)δ159.48,155.75,153.27,142.67(d,J=11.7Hz),128.87(t,J=22.9Hz),127.30(t,J=6.0Hz),125.72(d,J=7.0Hz),124.90(d,J=3.9Hz),122.65,117.28(d,J=18.1Hz),116.75,116.59–111.46(m).19F NMR(376MHz,Chloroform-d)δ-109.09,-109.53–-110.16(m),-130.11.
2d:1H NMR(400MHz,Chloroform-d)δ7.47(d,J=8.8Hz,2H),7.12–6.96(m,6H).13CNMR(100MHz,Chloroform-d)δ160.48,159.90(d,J=2.2Hz),158.07,151.84(d,J=2.6Hz),128.81(t,J=22.8Hz),127.36(t,J=6.0Hz),121.31,121.23,117.70,116.67,116.44.19FNMR(376MHz,Chloroform-d)δ-109.02,-109.48–-109.87(m),-118.79.
2e:1H NMR(400MHz,Chloroform-d)δ7.48(dd,J=8.2,6.5Hz,3H),7.29(dd,J=7.7,1.7Hz,1H),7.16(td,J=7.7,1.6Hz,1H),7.07(dd,J=8.1,1.6Hz,1H),6.99(d,J=8.4Hz,2H).13C NMR(101MHz,Chloroform-d)δ159.13,151.38,130.99,129.37–128.47(m),128.16,127.35(t,J=5.9Hz),126.57,125.67,121.93,117.19.19F NMR(376MHz,Chloroform-d)δ-109.13,-109.59–-110.28(m).
2f:1H NMR(400MHz,Chloroform-d)δ7.48(d,J=8.8Hz,2H),7.38–7.29(m,2H),7.04(d,J=8.6Hz,2H),7.01–6.93(m,2H).13C NMR(101MHz,Chloroform-d)δ159.16(t,J=1.7Hz),154.88,129.96,129.23(d,J=8.3Hz),127.43(t,J=6.0Hz),120.79,118.34.19FNMR(376MHz,Chloroform-d)δ-109.22,-109.82–-110.20(m).
2g:1H NMR(400MHz,Chloroform-d)δ7.29(dt,J=15.7,7.9Hz,3H),7.14(d,J=7.7Hz,1H),7.09–6.99(m,3H),6.94(d,J=8.0Hz,2H).13C NMR(100MHz,Chloroform-d)δ157.83,156.47,136.06(t,J=22.4Hz),130.19,129.93,123.90,120.71(t,J=1.9Hz),120.04(t,J=6.1Hz),119.30,115.58(t,J=6.1Hz).19F NMR(376MHz,Chloroform-d)δ-110.90,-111.38–-112.13(m).HRMS m/z(ESI)calcd.for C13H9DF2O+(M+H)+222.0841,found222.0844.
2h:1H NMR(400MHz,Chloroform-d)δ7.69(d,J=7.7Hz,1H),7.38(q,J=9.0,8.3Hz,3H),7.18(dt,J=15.6,7.5Hz,2H),7.03(d,J=7.9Hz,2H),6.88(d,J=8.1Hz,1H).13C NMR(100MHz,Chloroform-d)δ156.53,155.16(t,J=6.1Hz),131.98(d,J=2.0Hz),129.91,126.60(t,J=5.5Hz),125.18(t,J=22.9Hz),123.97,123.38,119.09,118.42–117.31(m),114.89–105.76(m).19F NMR(376MHz,Chloroform-d)δ-114.39,-114.98–-115.15(m).HRMS m/z(ESI)calcd.for C13H9DF2O+(M+H)+222.0841,found 222.0840.
2i:1H NMR(400MHz,Chloroform-d)δ7.37(t,J=7.6Hz,1H),7.09(d,J=7.2Hz,1H),7.05(s,1H),7.02(d,J=8.1Hz,3H).13C NMR(100MHz,Chloroform-d)δ159.78,135.63(t,J=22.4Hz),129.84,117.79(t,J=6.3Hz),116.57,110.62(t,J=6.0Hz),55.32.19FNMR(376MHz,Chloroform-d)δ-110.64,-111.05–-111.94(m).HRMS m/z(ESI)calcd.forC8H97DF2O+(M+H)+160.0684,found 160.0688.
2k:1H NMR(400MHz,Chloroform-d)δ7.45(d,J=8.3Hz,2H),7.28(d,J=8.1Hz,1H),7.03(d,J=8.3Hz,2H),6.83(dd,J=8.5,2.6Hz,1H),6.78(s,1H),2.89(dd,J=10.5,4.9Hz,2H),2.49–2.36(m,1H),2.35–2.23(m,1H),2.02(ddd,J=28.4,12.1,4.1Hz,3H),1.70–1.39(m,8H),0.93(s,3H).13C NMR(101MHz,Chloroform-d)δ159.85,154.01,138.52,135.69,128.59(t,J=22.6Hz),127.22(t,J=6.0Hz),126.79,119.68,118.05,117.03,50.47,47.95,44.15,38.21,31.60,29.46,26.40,25.86,21.38,13.83.19F NMR(376MHz,Chloroform-d)δ-108.90,-109.28–-109.97(m).HRMS m/z(ESI)calcd.for C25H25DF2O2 +(M+H)+398.2042,found 398.2037.
2l:1H NMR(400MHz,Chloroform-d)δ7.86(t,J=8.5Hz,2H),7.74(d,J=8.0Hz,1H),7.54–7.42(m,4H),7.40(d,J=2.4Hz,1H),7.26(dd,J=8.7,2.6Hz,1H),7.11(d,J=8.3Hz,2H).13C NMR(100MHz,Chloroform-d)δ159.53,153.93,134.27,130.54,130.14,129.01(t,J=22.8Hz),127.78,127.38(t,J=6.0Hz),127.22,126.69,125.12,120.12,118.49,115.32.19F NMR(376MHz,Chloroform-d)δ-109.03,-109.46–-110.01(m).HRMS m/z(ESI)calcd.for C17H11DF2O+(M+Na)+294.2747,found 294.2748.
2m:1H NMR(400MHz,Chloroform-d)δ7.48–7.39(m,6H),7.35(t,J=6.9Hz,1H),7.04(d,J=8.4Hz,2H),5.11(s,2H).13C NMR(100MHz,Chloroform-d)δ160.49(t,J=1.8Hz),136.44,128.64,128.12,127.42,127.12(t,J=5.9Hz),117.31–111.74(m),114.89,70.06.19F NMR(376MHz,Chloroform-d)δ-108.32,-108.70–-109.76(m).HRMS m/z(ESI)calcd.for C14H11DF2O+(M+Na)+258.0817,found 258.0822.
2n:1H NMR(400MHz,Chloroform-d)δ7.60(s,1H),7.60–7.53(m,1H),7.48(d,J=5.5Hz,2H),7.36–7.27(m,2H),7.05–6.94(m,3H),5.11(s,2H).13C NMR(101MHz,Chloroform-d)δ158.52,137.91,129.63–129.57(m),129.54,128.98,125.06(t,J=6.0Hz),124.46(t,J=6.1Hz),121.20,114.82,69.34.19F NMR(376MHz,Chloroform-d)δ-110.78,-110.83–-112.52(m).HRMS m/z(ESI)calcd.for C14H12DF2O+(M+H)+236.0997,found236.0996.
2o:1H NMR(400MHz,Chloroform-d)δ7.36(d,J=8.3Hz,2H),7.23–7.06(m,4H),6.88(d,J=8.4Hz,2H),5.12(tt,J=6.2,3.0Hz,1H),3.32(dd,J=16.8,6.3Hz,2H),3.11(dd,J=16.7,2.9Hz,2H).13C NMR(100MHz,Chloroform-d)δ159.49(t,J=1.9Hz),140.46,127.13(t,J=5.9Hz),126.79,124.73,115.42,77.73,39.66.19F NMR(376MHz,Chloroform-d)δ-108.21,-108.79–-109.22(m).HRMS m/z(ESI)calcd.for C16H13DF2O+(M+Na)+284.0973,found 2840974.
2p:1H NMR(400MHz,Chloroform-d)δ7.46(d,J=8.3Hz,2H),7.37(d,J=4.8Hz,1H),7.35(s,1H),7.17(d,J=4.6Hz,1H),7.04(d,J=8.3Hz,2H),5.12(s,2H).13C NMR(101MHz,Chloroform-d)δ160.37,137.33(d,J=13.3Hz),127.10(t,J=5.9Hz),126.87,126.40,126.29,123.18,114.83,65.68(d,J=2.3Hz).19F NMR(376MHz,Chloroform-d)δ-108.27,-108.86–-109.25(m).
2q:1H NMR(400MHz,Chloroform-d)δ7.53(s,1H),7.50–7.34(m,3H),7.02(d,J=7.8Hz,2H),6.50(s,1H),4.97(s,2H).13C NMR(101MHz,Chloroform-d)δ160.32(t,J=1.9Hz),143.60,140.84,127.11(t,J=5.9Hz),120.94,114.82,110.04,62.00.19F NMR(376MHz,Chloroform-d)δ-108.37,-108.92–-109.49(m).HRMS m/z(ESI)calcd.forC12H9DF2O2 +(M+Na)+248.0609,found 248.0608.
2r:1H NMR(400MHz,Chloroform-d)δ7.43(d,J=8.8Hz,2H),6.91(d,J=8.8Hz,2H),4.95(tt,J=4.3,2.1Hz,1H),4.03–3.95(m,3H),3.90(td,J=8.3,4.3Hz,1H),2.28–2.09(m,2H).13C NMR(100MHz,Chloroform-d)δ159.09(t,J=1.9Hz),127.12(t,J=5.9Hz),117.29–111.51,115.21,77.37,72.90,67.09,32.83.19F NMR(376MHz,Chloroform-d)δ-108.32,-108.71–-109.16(m).HRMS m/z(ESI)calcd.for C11H11DF2O2 +(M+Na)+238.0766,found 238.0765.
2s:1H NMR(400MHz,Chloroform-d)δ7.38(d,J=7.9Hz,2H),6.89(d,J=8.3Hz,2H),1.59(s,6H),1.43(s,9H).13C NMR(101MHz,Chloroform-d)δ172.90,157.71(d,J=2.0Hz),127.31(t,J=22.7Hz),126.63(t,J=6.0Hz),118.15,81.96,79.59,27.75,25.34.19F NMR(376MHz,Chloroform-d)δ-108.72,-109.09–-109.93(m).19F NMR(376MHz,Chloroform-d)δ-108.32,-108.71–-109.16(m).HRMS m/z(ESI)calcd.for C15H19DF2O3 +(M+Na)+310.1341,found 310.1331.
2t:1H NMR(400MHz,Chloroform-d)δ7.40(d,J=8.7Hz,2H),6.90(d,J=8.7Hz,2H),4.07(t,J=5.3Hz,1H),1.88–1.81(m,2H),1.76(d,J=19.1Hz,2H),1.68–1.56(m,1H),1.15(qd,J=8.5,8.0,3.0Hz,2H),1.06(s,3H),0.99(s,3H),0.89(s,3H).13C NMR(101MHz,Chloroform-d)δ159.75,126.96(t,J=5.9Hz),125.98(t,J=22.9Hz),115.35,84.72,49.24,47.05,45.27,39.39,34.16,27.34,20.29,20.07,11.76.19F NMR(376MHz,Chloroform-d)δ-107.92,-108.50–-108.84(m).HRMS m/z(ESI)calcd.for C17H21DF2O+(M+H)+282.1780,found 282.1776.
2u:1H NMR(400MHz,Chloroform-d)δ7.42(d,J=8.3Hz,2H),7.29(t,J=7.4Hz,2H),7.24–7.15(m,2H),6.90(d,J=8.3Hz,3H),4.40(q,J=6.1Hz,1H),2.76(ttd,J=14.1,8.6,5.1Hz,2H),2.09(dtd,J=13.9,8.8,6.3Hz,1H),1.90(dddd,J=13.9,9.2,6.9,4.8Hz,1H),1.34(d,J=6.1Hz,3H).13C NMR(100MHz,Chloroform-d)δ159.90(t,J=1.9Hz),141.54,128.45,128.41,127.12(t,J=5.9Hz),125.93,115.58,72.75,38.06,31.70,19.53.19F NMR(376MHz,Chloroform-d)δ-108.09,-108.65–-109.02(m).HRMS m/z(ESI)calcd.for C17H17DF2O+(M+Na)+300.3227,found 300.3269.
2v:1H NMR(400MHz,Chloroform-d)δ7.40(d,J=8.3Hz,2H),6.95(d,J=8.3Hz,2H),5.90(ddd,J=16.9,10.6,5.8Hz,1H),5.39–5.11(m,2H),4.84(t,J=6.3Hz,1H),1.45(d,J=6.4Hz,3H).13C NMR(100MHz,Chloroform-d)δ159.79,138.60,126.95(t,J=5.9Hz),115.89(d,J=8.4Hz),74.71,21.25.19F NMR(376MHz,Chloroform-d)δ-108.27,-108.74–-109.36(m).HRMS m/z(ESI)calcd.for C11H11DF2O+(M+Na)+222.0817,found222.0811.
2w:1H NMR(400MHz,Chloroform-d)δ7.42(d,J=8.2Hz,2H),6.94(d,J=8.3Hz,2H),4.48(q,J=5.8Hz,1H),1.79(dt,J=14.3,7.2Hz,2H),1.65(dt,J=13.0,5.9Hz,2H),1.59–1.18(m,18H).13C NMR(100MHz,Chloroform-d)δ160.23,129.88,127.09(t,J=5.9Hz),126.24(t,J=22.8Hz),115.70,75.58,28.63,24.51,24.22,23.19,23.13,20.71.19F NMR(376MHz,Chloroform-d)δ-108.08,-108.69–-108.95(m).HRMS m/z(ESI)calcd.for C19H27DF2O+(M+Na)+334.2069,found 334.2070.
2x:1H NMR(400MHz,Chloroform-d)δ7.41(d,J=8.2Hz,2H),6.94(d,J=8.4Hz,2H),4.08(td,J=10.6,4.2Hz,1H),2.15(ddt,J=14.7,7.3,3.4Hz,2H),1.78–1.68(m,2H),1.51(dd,J=12.8,3.0Hz,2H),1.17–0.96(m,3H),0.93(d,J=6.8Hz,6H),0.76(d,J=6.9Hz,3H).13C NMR(100MHz,Chloroform-d)δ160.23,127.14(t,J=5.8Hz),115.47,77.51,47.93,40.04,34.41,31.38,26.11,23.71,22.10,20.68,16.57.19F NMR(376MHz,Chloroform-d)δ-108.03,-108.50–-109.06(m).HRMS m/z(ESI)calcd.for C17H23DF2O+(M+Na)+306.1756,found 306.1754.
2y:1H NMR(400MHz,Chloroform-d)δ7.43(d,J=8.2Hz,2H),6.96(d,J=8.2Hz,2H),5.48(t,J=6.7Hz,1H),5.09(t,J=6.6Hz,1H),4.57(d,J=6.6Hz,2H),2.12(q,J=6.8Hz,4H),1.75(s,3H),1.68(s,3H),1.61(s,3H).13C NMR(100MHz,Chloroform-d)δ160.67,141.58,131.84,127.02(t,J=5.9Hz),123.71,119.07,114.73,64.99,39.51,26.26,25.64,17.67,16.65.19F NMR(376MHz,Chloroform-d)δ-108.18,-108.59–-109.44(m).HRMS m/z(ESI)calcd.for C17H21DF2O+(M+H)+282.1780,found 282.1787.
2z:1H NMR(400MHz,Chloroform-d)δ7.47(d,J=8.8Hz,2H),7.05(d,J=8.7Hz,2H),5.93(d,J=3.8Hz,1H),4.76(d,J=3.1Hz,1H),4.58(d,J=3.9Hz,1H),4.45(dt,J=7.8,5.6Hz,1H),4.31(dd,J=7.8,3.1Hz,1H),4.19–4.07(m,2H),1.55(s,3H),1.43(s,3H),1.31(s,6H).13C NMR(100MHz,Chloroform-d)δ158.62(t,J=1.9Hz),127.30(t,J=5.9Hz),115.48,112.17,109.25,105.21,82.05,80.32,79.89,72.07,67.06,26.85,26.65,26.18,25.20.19F NMR(376MHz,Chloroform-d)δ108.65,108.17–107.37(m).HRMS m/z(ESI)calcd.for C19H23DF2O6 +(M+Na)+410.1501,found 410.1497.
2ah:1H NMR(400MHz,Chloroform-d)δ7.58(d,J=8.2Hz,2H),7.48(d,J=8.3Hz,2H),7.13(t,J=1.8Hz,2H),6.39(q,J=1.8Hz,2H).13C NMR(100MHz,Chloroform-d)δ142.46,131.32(t,J=22.7Hz),127.06(t,J=6.0Hz),120.19,119.14,114.66–113.03(m),111.14.19F NMR(376MHz,Chloroform-d)δ-110.10,-110.51–-111.24(m).HRMS m/z(ESI)calcd.for C11H8DF2N+(M+Na)+195.0844,found 195.0835.
2ai:1H NMR(400MHz,Chloroform-d)δ8.26(d,J=4.5Hz,1H),7.85(d,J=6.9Hz,1H),6.97(dd,J=7.4,5.0Hz,1H),4.00(s,3H).13C NMR(101MHz,Chloroform-d)δ161.21,149.31(t,J=2.1Hz),135.36(d,J=5.4Hz),116.62,53.67.19F NMR(376MHz,Chloroform-d)δ-116.66,-117.14–-117.47(m).HRMS m/z(ESI)calcd.for C7H6DF2NO+(M+H)+161.0637,found 161.0637.
2aj:1H NMR(400MHz,Chloroform-d)δ8.28(s,1H),7.72(dd,J=8.7,2.3Hz,1H),6.82(d,J=8.6Hz,1H),3.97(s,3H).13C NMR(100MHz,Chloroform-d)δ165.71,145.22(t,J=9.9Hz),135.77(t,J=4.0Hz),111.37,53.80.19F NMR(376MHz,Chloroform-d)δ-109.58,-110.20–-110.46(m).HRMS m/z(ESI)calcd.for C7H6DF2NO+(M+H)+161.0637,found161.0630.
2ak:1H NMR(400MHz,Chloroform-d)δ7.63(d,J=7.5Hz,2H),7.50(d,J=7.5Hz,2H),0.30(s,9H).13C NMR(100MHz,Chloroform-d)δ143.98(t,J=2.0Hz),134.58(t,J=22.3Hz),133.58,124.68(t,J=6.0Hz),118.28–109.29(m),-1.29.19F NMR(376MHz,Chloroform-d)δ-110.88,-111.33–-111.99(m).HRMS m/z(ESI)calcd.for C10H13DF2Si+(M+H)+202.0974,found 202.0969.
2al:1H NMR(400MHz,Chloroform-d)δ7.37(dd,J=8.2,3.8Hz,4H),7.22(dd,J=16.4,8.0Hz,4H),2.38(s,3H).13C NMR(100MHz,Chloroform-d)δ141.83(t,J=2.3Hz),138.73,133.69,131.67(t,J=22.6Hz),130.36,129.17,128.14,126.09(t,J=6.0Hz),21.19.19F NMR(376MHz,Chloroform-d)δ-110.25,-110.76–-111.31(m).HRMS m/z(ESI)calcd.for C14H11DF2S+(M+H)+252.0769,found 252.0771.
2am:1H NMR(400MHz,Chloroform-d)δ7.41(d,J=8.3Hz,2H),7.30(d,J=8.3Hz,2H),2.50(s,3H).13C NMR(100MHz,Chloroform-d)δ142.20(d,J=2.2Hz),130.73(t,J=22.6Hz),125.96(d,J=6.4Hz),118.60–108.98(m),15.21(d,J=9.9Hz).19F NMR(376MHz,Chloroform-d)δ-110.62–-110.81(m).
2an:1H NMR(400MHz,Chloroform-d)δ7.91(d,J=7.8Hz,2H),7.61(d,J=7.9Hz,2H),1.36(s,12H).13C NMR(101MHz,Chloroform-d)δ134.99,124.30(t,J=5.8Hz),84.26,24.86.19F NMR(376MHz,Chloroform-d)δ-108.74,-109.15–-109.64(m).HRMS m/z(ESI)calcd.for C13H16DBF2O2 +(M+Na)+278.1250,found 278.1254.
2ao:1H NMR(400MHz,Chloroform-d)δ7.67(d,J=7.9Hz,2H),7.57(d,J=8.0Hz,2H),7.23(s,2H),7.05(s,1H),2.41(s,6H).13C NMR(100MHz,Chloroform-d)δ143.97,140.19,138.44,132.94(t,J=22.5Hz),129.51,127.42,125.88(t,J=6.0Hz),125.15,21.36.19F NMR(376MHz,Chloroform-d)δ-110.24,-110.74–-111.30(m).HRMS m/z(ESI)calcd.for C15H13DF2 +(M+H)+234.1025,found 234.1205.
2ap:1H NMR(400MHz,Chloroform-d)δ7.67–7.53(m,5H),7.45(d,J=7.0Hz,1H),7.01(dd,J=8.7,3.0Hz,2H),3.87(s,3H).13C NMR(100MHz,Chloroform-d)δ159.63,143.29,128.28,126.91,125.99(t,J=6.0Hz),114.35,55.37.19F NMR(376MHz,Chloroform-d)δ-110.06,-110.53–-111.12(m).HRMS m/z(ESI)calcd.for C14H11DF2O+(M+H)+236.0997,found 236.0995.
2aq:1H NMR(400MHz,Chloroform-d)δ7.82(d,J=7.5Hz,1H),7.68(d,J=8.1Hz,2H),7.64(d,J=7.3Hz,1H),7.59(t,J=7.0Hz,2H),7.37(d,J=8.6Hz,2H).13C NMR(101MHz,Chloroform-d)δ165.87,136.02,134.87,133.07,131.24,130.78,130.17,129.22,127.08,126.51(t,J=7.1Hz),121.46.19F NMR(376MHz,Chloroform-d)δ-112.27,-111.69–-113.99(m).HRMS m/z(ESI)calcd.for C14H9DClF2NO+(M+Na)+305.0379,found305.0374.
2as:1H NMR(400MHz,Chloroform-d)δ7.43–7.28(m,6H),7.28–7.23(m,1H),6.88(d,J=8.5Hz,2H),5.15(dd,J=8.6,4.1Hz,1H),3.41(d,J=33.5Hz,1H),2.85(s,3H),2.28–2.00(m,2H),1.39(s,9H).13C NMR(101MHz,Chloroform-d)δ159.75,155.74,141.05,128.77,127.78,126.95(t,J=5.9Hz),125.68,115.81,79.41,45.78,37.07,34.55,28.35.19F NMR(376MHz,Chloroform-d)δ-108.44,-108.98–-109.28(m).HRMS m/z(ESI)calcd.for C22H26DF2NO3 +(M+Na)+432.1762,found 432.1742.
2at:1H NMR(400MHz,Chloroform-d)δ8.08–8.00(m,1H),7.88–7.83(m,1H),7.77(dd,J=7.0,2.4Hz,1H),7.53–7.47(m,2H),7.43–7.36(m,2H),7.34–7.21(m,3H),7.19–7.10(m,1H),5.94–5.75(m,2H),2.95(h,J=7.4,7.0Hz,2H),2.59–2.17(m,2H),1.56(d,J=6.4Hz,3H).13C NMR(101MHz,Chloroform-d)δ170.43,141.49,138.06,133.91,131.04,130.86(t,J=1.8Hz),128.85,128.76,128.38,126.56,125.87,125.39(t,J=6.0Hz),125.14,123.44(t,J=6.0Hz),123.33,122.48,44.62,38.14,31.39,20.58.19F NMR(376MHz,Chloroform-d)δ-110.29,-110.31,-111.02(q,J=8.5Hz).HRMS m/z(ESI)calcd.forC22H20DF2NO+(M+Na)+377.1552,found377.1547.
实施例38
采用的原料为化合物1j,产物为化合物2j,反应式如下:
Figure GDA0003890125970000201
在两口心形瓶中加入化合物1j(0.2mmol),四丁基溴化铵(0.2mmol),叔丁醇锂(0.2mmol),在锌片以锌片(1cm×5cm×0.6mm)作为阳极,以石墨毡(1×1×0.5cm)为阳极。锌片以铂丝连接电源正极,石墨毡以银丝连接电源负极,将反应瓶内气氛以氩气置换后加入N,N-二甲基甲酰胺5mL,重水(10mmol),在阴阳极上施加3.6V电压,即铂丝与银丝之间电压为+3.6V,室温搅拌条件下进行电解。用气质联用监测反应,待反应结束后,断开电源,反应液以乙酸乙酯稀释,并用水洗有机相,有机相以无水硫酸钠干燥,过滤浓缩后,反应粗产物以硅胶柱层析分离,得到化合物2j。经1H,13C,19F鉴定为目标产物。
产物的结构鉴定数据如下:
1H NMR(400MHz,Chloroform-d)δ7.46(d,J=8.2Hz,2H),7.01(d,J=8.3Hz,2H),6.87–6.76(m,2H),6.70(dd,J=8.3,2.3Hz,1H),3.85(s,2H).13C NMR(101MHz,Chloroform-d)δ159.20,140.63,139.97,130.59,127.43(t,J=5.9Hz),121.72,118.50,116.73,116.18.19F NMR(376MHz,Chloroform-d)δ-109.01,-109.65–-109.90(m).HRMS m/z(ESI)calcd.forC13H9DClF2NO+(M+H)+270.0560,found271.0558.
实施例39~47
其他条件和实施例38相同,仅将原料化合物1j进行替换,对反应电压进行调整,采用气质联用监测反应至结束,记录反应时间;各个实施例中使用的原料为将产物中的-CDF2替换为-CF3后的化合物,具体结构不再一一列出;另外,2au组为放大实验,反应底物的用量为40mmol,四丁基溴化铵、叔丁醇锂和重水的加料量也在实施例1的基础上扩大200倍;未列出的条件均与实施例38一致。
实施例中的产物结构、反应条件以及产率、氘代率如表2所示:
表2实施例39~47的产物结构、反应条件、产率及氘代率
Figure GDA0003890125970000211
Figure GDA0003890125970000221
表2中:化合物2au的底物用量为40mmol。
表2中各个产物的结构鉴定数据如下:
2aa:1H NMR(400MHz,Chloroform-d)δ7.22(t,J=7.8Hz,1H),6.87(d,J=7.7Hz,1H),6.81(s,1H),6.77(d,J=7.9Hz,1H),3.79(s,2H).13C NMR(100MHz,Chloroform-d)δ146.71,135.31(t,J=22.0Hz),129.64,117.12(t,J=2.1Hz),116.91–111.70(m),115.50(t,J=6.4Hz),111.53(t,J=6.1Hz).19F NMR(376MHz,Chloroform-d)δ-110.71,-111.13–-112.33(m).HRMS m/z(ESI)calcd.for C7H6DF2N+(M+H)+145.0688,found148.0684.
2ab:1H NMR(400MHz,Chloroform-d)δ7.33(dt,J=15.2,8.1Hz,3H),7.12(d,J=7.8Hz,2H),7.08(d,J=7.1Hz,2H),7.03(t,J=7.4Hz,2H),3.35(s,3H).13C NMR(100MHz,Chloroform-d)δ149.31,148.34,135.06(d,J=22.2Hz),129.50,129.42,123.13,122.81,120.21(d,J=1.9Hz),116.73(t,J=6.1Hz),114.65(t,J=6.2Hz),40.25.19F NMR(376MHz,Chloroform-d)δ-110.37,-110.91–-111.26(m).HRMS m/z(ESI)calcd.for C14H12DF2N+(M+Na)+257.0977,found257.0977.
2ac:1H NMR(400MHz,Chloroform-d)δ7.30(t,J=8.1Hz,1H),6.87–6.79(m,3H),2.99(s,6H).13C NMR(100MHz,Chloroform-d)δ150.59,135.04(t,J=21.6Hz),129.39,114.45(t,J=2.0Hz),113.28(t,J=6.2Hz),108.84(t,J=6.2Hz),40.43.19F NMR(376MHz,Chloroform-d)δ-110.28,-110.80–-111.15(m).HRMS m/z(ESI)calcd.for C9H10DF2N+(M+H)+173.1001,found 173.0995.
2ad:1H NMR(400MHz,Chloroform-d)δ7.61(s,1H),7.37(dt,J=15.5,8.2Hz,2H),7.17(d,J=7.3Hz,1H),6.64(s,1H),1.52(s,9H).13C NMR(100MHz,Chloroform-d)δ152.56,138.80,135.13(t,J=22.4Hz),129.37,120.44,119.88(t,J=6.0Hz),117.00–111.64(m),115.50(t,J=6.1Hz),80.95,28.26.19F NMR(376MHz,Chloroform-d)δ-110.78,-111.35–-111.68(m).HRMS m/z(ESI)calcd.for C12H14DF2NO2 +(M+Na)+267.1031,found267.1025.
2ae:1H NMR(400MHz,Chloroform-d)δ7.60(s,1H),7.47(d,J=8.2Hz,1H),7.43–7.35(m,6H),7.26(s,1H),7.21(d,J=7.7Hz,1H),6.83(s,1H),5.21(s,2H).13C NMR(101MHz,Chloroform-d)δ153.18,138.27,135.82,135.29(t,J=22.7Hz),129.51,128.64,128.44,128.31,120.69,120.45(t,J=6.0Hz),115.75,67.23.13C NMR(100MHz,Chloroform-d)δ153.18,138.27,135.82,135.29(t,J=22.7Hz),129.51,128.64,128.44,128.31,120.69,120.45(t,J=6.0Hz),115.75,67.23.19F NMR(376MHz,Chloroform-d)δ-110.92,-111.26–-111.91(m).HRMS m/z(ESI)calcd.for C15H12DF2NO2 +(M+H)+279.1055,found279.1053.
2af:1H NMR(400MHz,Chloroform-d)δ7.23(s,1H),7.20(d,J=8.2Hz,1H),6.66(d,J=8.5Hz,1H),4.06(s,2H).13C NMR(101MHz,Chloroform-d)δ143.33(t,J=2.8Hz),131.58(d,J=1.8Hz),127.09(t,J=8.1Hz),122.75,119.22(t,J=21.3Hz),118.19,117.51–111.79(m).19F NMR(376MHz,Chloroform-d)δ-114.58,-114.99–-115.56(m).HRMSm/z(ESI)calcd.for C7H5DClF2N+(M+H)+179.0298,found 179.0299.
2ag:1H NMR(400MHz,Chloroform-d)δ7.09–6.92(m,2H),6.68(dd,J=8.8,4.4Hz,1H),3.88(s,2H).13C NMR(101MHz,Chloroform-d)δ156.82,154.46,140.82,118.73–118.17(m),113.63(t,J=8.1Hz),113.39(t,J=8.0Hz).19F NMR(376MHz,Chloroform-d)δ-115.19,-115.50–-116.25(m),-126.13.HRMS m/z(ESI)calcd.for C7H5DF3N+(M+H)+163.0593,found 163.0592.
2ar:1H NMR(400MHz,Chloroform-d)δ7.73(s,1H),6.97(s,1H),6.81(s,1H),6.71(s,1H),6.69(s,1H),4.10(s,2H),2.26(s,3H).13C NMR(101MHz,Chloroform-d)δ148.35,138.85,137.04(t,J=22.6Hz),110.15(t,J=6.2Hz),108.81(d,J=2.1Hz),107.58(t,J=6.4Hz),13.58.19F NMR(376MHz,Chloroform-d)δ-111.88,-112.33–-112.87(m).HRMS m/z(ESI)calcd.for C11H10DF2N3 +(M+H)+225.1062,found 225.1064.
2au:1H NMR(400MHz,DMSO-d6)δ8.79(s,1H),7.06–6.99(m,2H),6.92(ddd,J=7.9,3.1,1.5Hz,2H),6.83(s,1H),6.78(td,J=7.5,1.3Hz,1H),6.68(dd,J=7.9,1.3Hz,1H).13CNMR(101MHz,DMSO-d6)δ142.87,141.82,133.79(t,J=22.2Hz),128.29,126.96,126.75,122.68,120.33(t,J=2.3Hz),119.42(t,J=6.6Hz),116.17,115.05,111.27(t,J=6.0Hz).19F NMR(376MHz,DMSO-d6)δ-110.29,-110.55–-111.57(m).HRMS m/z(ESI)calcd.for C13H8DF2NS+(M+Na)+251.0565,found 251.0568.
由以上实施例结果可以看出,本发明提供的方法仅以重水为氘代试剂,所用试剂均廉价易得,且官能团适用范围广,产物收率和氘代率高,是一种廉价高效、广谱的合成方法。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种芳基氘代二氟甲基化合物的合成方法,其特征在于,包括以下步骤:
将芳基三氟甲基化合物、电解质、活化剂、重水和溶剂混合进行电解反应,得到芳基氘代二氟甲基化合物;
所述芳基三氟甲基化合物的结构通式如式I所示:
Ar-CF3 式I;
式I中:Ar表示苯基、取代苯基、芳杂基或取代芳杂基;所述取代苯基中的取代基包括烷氧基、芳氧基、卤素、硼酸酯基、硅烷基、硫醚基、NH2-、胺基、酰基氨基、呋喃基、苯基、取代苯基或酰胺基;所述取代芳杂基中的取代基包括烷氧基;
所述活化剂包括有机锂化合物、无机锂化合物和有机钠化合物中的一种或几种;所述电解质包括烷基季铵盐或锂盐;所述溶剂为N,N-二甲基甲酰胺或二甲基亚砜;所述芳基三氟甲基化合物、电解质、活化剂和重水的摩尔比为0.2:0.05~4:0.05~4:1~40;
所述电解反应的温度为15~30℃,电压为2.5~10V。
2.根据权利要求1所述的合成方法,其特征在于,所述烷基季铵盐包括四丁基溴化铵、四丁基碘化铵、四丁基高氯酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵和四甲基四氟硼酸铵中的一种或几种;所述锂盐包括LiCl和/或LiClO4
3.根据权利要求1所述的合成方法,其特征在于,所述有机锂化合物包括叔丁醇锂或甲氧基锂;所述无机锂化合物包括LiCl、LiOH、LiOAc或Li2CO3;所述有机钠化合物为叔丁醇钠。
4.根据权利要求1所述的合成方法,其特征在于,所述电解反应在保护气氛下进行;所述电解反应的阳极为锌片或石墨毡,阴极为石墨毡;所述电解反应的极间距>2mm;所述电解反应在非分隔池中进行。
5.根据权利要求1所述的合成方法,其特征在于,所述芳基三氟甲基化合物为具有式I-1~式I-5所示结构中的任意一种:
Figure FDA0003890125960000011
式I-1中:R1为苯基、取代苯基、烷基、萘基、苄基、杂环基、取代杂环基、烯基、酯基、酰胺基;
Figure FDA0003890125960000021
式I-2中:R2和R3独立地为H、氨基、酰胺基、卤素、含氮杂环基、硅烷基、硼酸酯基、苯基、取代苯基或-NRaRb,Ra和Rb独立地为烷基或苯基;
Figure FDA0003890125960000022
式I-3中:R4为苯基、取代苯基或烷基;
Figure FDA0003890125960000023
6.根据权利要求1所述的合成方法,其特征在于,所述电解反应完成后,还包括将所得产物料液进行后处理;所述后处理包括:将所得产物料液依次进行稀释、水洗、干燥、浓缩和柱层析分离,得到芳基氘代二氟甲基化合物。
CN202111334451.5A 2021-11-11 2021-11-11 一种芳基氘代二氟甲基化合物的合成方法 Active CN114032568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111334451.5A CN114032568B (zh) 2021-11-11 2021-11-11 一种芳基氘代二氟甲基化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111334451.5A CN114032568B (zh) 2021-11-11 2021-11-11 一种芳基氘代二氟甲基化合物的合成方法

Publications (2)

Publication Number Publication Date
CN114032568A CN114032568A (zh) 2022-02-11
CN114032568B true CN114032568B (zh) 2022-11-29

Family

ID=80137367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111334451.5A Active CN114032568B (zh) 2021-11-11 2021-11-11 一种芳基氘代二氟甲基化合物的合成方法

Country Status (1)

Country Link
CN (1) CN114032568B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634430A (zh) * 2022-03-28 2022-06-17 安徽泽升科技有限公司 一种氘代二甲基亚砜的制备纯化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800012A (en) * 1987-02-17 1989-01-24 Hoechst Aktiengesellschaft Electrochemical process for the replacement of halogen atoms in an organic compound
CN110438523A (zh) * 2019-09-05 2019-11-12 南京大学 一种以重水为氘源的无催化剂电化学氘代方法
CN110885985A (zh) * 2019-12-05 2020-03-17 深圳大学 一种氘代化学品的制备方法
CN112281182A (zh) * 2020-10-29 2021-01-29 武汉大学 一种电化学条件下制备氘代芳烃的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800012A (en) * 1987-02-17 1989-01-24 Hoechst Aktiengesellschaft Electrochemical process for the replacement of halogen atoms in an organic compound
CN110438523A (zh) * 2019-09-05 2019-11-12 南京大学 一种以重水为氘源的无催化剂电化学氘代方法
CN110885985A (zh) * 2019-12-05 2020-03-17 深圳大学 一种氘代化学品的制备方法
CN112281182A (zh) * 2020-10-29 2021-01-29 武汉大学 一种电化学条件下制备氘代芳烃的方法

Also Published As

Publication number Publication date
CN114032568A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN114032568B (zh) 一种芳基氘代二氟甲基化合物的合成方法
US11608322B2 (en) Reagents and process for direct C—H functionalization
JP5489987B2 (ja) ビスアミド亜鉛塩基
CN111072000A (zh) 氟磺酰亚胺的碱金属盐及其制备方法和电解液
Pandey et al. Photoinduced single electron transfer activation of organophosphines: Nucleophilic trapping of phosphine radical cation
Wang et al. Highly C-selective difluoromethylation of β-ketoesters by using TMSCF 2 Br/lithium hydroxide/N, N, N-trimethylhexadecan-1-ammonium bromide
CN111118529B (zh) 一种无隔膜电化学氧化二卤化炔烃合成α,α-二溴酮类化合物的方法
CN108950592A (zh) 一种芳基亚磺酸酯化合物的电化学合成方法
Torii et al. A novel synthesis of dl-marmelolactone and dl-rose oxide by electrochemical oxyselenenylation-deselenenylation sequence
CN108863872A (zh) 一类(Z)-2-硫代-β-氨基巴豆腈化合物及其电化学制备方法
Levanova et al. Synthesis of polydentate chalcogen-containing ligands using the system hydrazine hydrate–base
Whittle et al. Cyclometallated, bis-terdentate iridium complexes as linearly expandable cores for the construction of multimetallic assemblies
Cui et al. Electrocatalytic reactivity of imine/oxime-type cobalt complex for direct perfluoroalkylation of indole and aniline derivatives
Berberova et al. Redox mediators of hydrogen sulfide oxidation in reactions with cycloalkanes
Evans et al. Reactions of cation radicals of EE [electron capture] systems. III. Chlorination of 9, 10-diphenylanthracene
Wang et al. Visible-light-driven three-component reductive 1, 2-diarylation of alkenes
CN113912525A (zh) 一种用于修饰蛋白质半胱氨酸残基的探针及其制备方法
CN113930792A (zh) 一种3-氰基吲哚类化合物的电化学制备方法
JP7164114B2 (ja) バナジウム錯体及びそれを用いた窒素固定方法
Bhavanarushi et al. Transition-metal-free borylation of propargylic alcohols: structurally variable synthesis in ionic liquid medium
Yu et al. Electrochemical oxidative thiocyanosulfonylation of aryl acetylenes
Shimakoshi et al. Electroorganic syntheses of macrocyclic lactones mediated by vitamin B12 model complexes: Part 17. Hydrophobic vitamin B12
Hayes et al. A novel sulfonamide non-classical carbenoid: a mechanistic study for the synthesis of enediynes
RU2415860C1 (ru) Способ получения комплексного соединения меди с пиридоксином
Webb Regioselective synthesis of 2-substituted pyridines via grignard addition to 1-(alkoxycarboxy)-pyridinium salts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant