CN110395993B - 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法 - Google Patents

一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法 Download PDF

Info

Publication number
CN110395993B
CN110395993B CN201910676572.4A CN201910676572A CN110395993B CN 110395993 B CN110395993 B CN 110395993B CN 201910676572 A CN201910676572 A CN 201910676572A CN 110395993 B CN110395993 B CN 110395993B
Authority
CN
China
Prior art keywords
powder
nano
sic
sio
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910676572.4A
Other languages
English (en)
Other versions
CN110395993A (zh
Inventor
王铀
贾近
刘勇
王澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910676572.4A priority Critical patent/CN110395993B/zh
Publication of CN110395993A publication Critical patent/CN110395993A/zh
Application granted granted Critical
Publication of CN110395993B publication Critical patent/CN110395993B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法,属于热防护涂层领域,特别是环境障涂层和热/环境障涂层的技术领域。本发明中的纳米SiC在高温下会氧化为SiO2,从而会对裂纹起到一定的弥补和愈合作用,延长涂层的使用寿命。本发明采用球磨混粉、喷雾干燥、固相烧结(或者固相烧结后等离子处理)制备了纳米结构或者改性纳米结构莫来石粉体喂料。本发明粉体材料用于制备环境障涂层和热/环境障涂层。

Description

一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体 喂料的制备方法
技术领域
本发明属于热防护涂层领域,特别是环境障涂层和热/环境障涂层的技术领域;具体涉及一种用于等离子喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法。
背景技术
环境障涂层应用于航空发动机环境下,服役环境不仅复杂而且要求高,加上涂层的选材基本上都是脆性陶瓷材料,因此极易发生损伤失效。认识环境障涂层在服役环境下的失效行为和机理对于涂层的开发和优化具有重要意义。环境障涂层在发动机工况条件下的的失效形式主要有高温氧化失效、热冲击失效、水氧耦合失效和CMAS腐蚀失效等,所以环境障涂层的抗高温氧化性、热冲击下的稳定性及耐水氧腐蚀、耐CMAS腐蚀性能备受关注。
目前虽然第三代涂层系统以硅层为粘结层、莫来石层为中间层,以稀土硅酸盐为面层的结构已基本成型,但是如何选择稀土硅酸盐使其同时具有良好的耐高温、耐热冲击、耐水氧腐蚀、耐CMAS腐蚀性能是十分困难的,目前的研究也主要集中在硅酸盐顶层上,科学家们对硅酸盐顶层的耐高温、耐熔盐、耐水氧腐蚀性能较为关注,对莫来石中间层的研究较少。
而且,由于对航空发动机性能的要求日益提高,热/环境障涂层也已开始成为研发热点,这也要求对莫来石中间层进行研究,期望得到兼具自愈合功能的莫来石中间层材料。
采用纳米技术能够制造出具有十分优异性能的纳米结构陶瓷涂层,其强韧性能、耐磨抗蚀性能、抗热震性能及加工性能都由于传统结构陶瓷涂层。如能将纳米结构与自愈合功能融为一体,无疑会提升环境障涂层和热/环境障涂层中莫来石中间层的性能。
发明内容
本发明提供了一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法,本发明的SiC在高温下会氧化为SiO2并产生体积膨胀,会对裂纹起到一定的弥补和愈合作用,从而延长涂层的使用寿命。
本发明中一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法是通过下述步骤完成的:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体或者依次加入纳米Al2O3粉体、纳米SiO2粉体、纳米SiC粉体和助烧结剂MgF2,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤二、然后喷雾造粒;
步骤三、然后进行松装固相烧结,即可得到纳米SiC改性纳米结构莫来石粉体喂料。
本发明的另一个技术方案是通过下述步骤完成的:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体或者依次加入纳米Al2O3粉体、纳米SiO2粉体、纳米SiC粉体和助烧结剂MgF2,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤二、然后喷雾造粒;
步骤三、然后进行松装固相烧结,采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,烘干,过筛,得到用于等离子体喷涂的高球形度高致密度的纳米SiC改性纳米结构莫来石粉体喂料。
进一步地限定,步骤一中纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%,纳米SiC粉体的质量纯度>97%。
进一步地限定,步骤一中,纳米Al2O3粉体平均粒径为10-20nm,纳米SiO2粉体平均粒径为10-30nm,纳米SiC粉体平均粒径为20-50nm。
进一步地限定,步骤一中Al2O3与SiO2的质量分数分别为71.83%和28.17%。
进一步地限定,步骤一中纳米SiC粉体用量是Al2O3粉体、纳米SiO2粉体总重量的10%~40%。
进一步地限定,步骤一中聚乙烯醇胶是纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体总重量的10%。
进一步地限定,步骤二中喷雾造粒工艺参数:进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1
进一步地限定,不加助烧结剂,步骤三所述烧结是在氮气保护下,在1450℃~1500℃下保温4h~5h,升温速率为10℃/min~15℃/min;加助烧结剂,步骤三烧结是在氮气保护下,在1000℃下保温1h,然后升温至1200℃,保温1h,升温速率均为10℃/min~15℃/min。
进一步地限定,步骤四中所述的等离子喷涂为大气等离子喷涂(APS)、真空等离子喷涂(VPS)、低压等离子喷涂(LPPS)或者等离子-物理气相沉积(PS-PVD),所述大气等离子喷涂技术工艺参数:电流为550A,电压为55V,主气流量为120SCFH,载气流量为12SCFH,送粉速度为20g/min,喷涂距离为40cm。
进一步地限定,步骤四中过筛使粉体喂料的粒度满足35-75微米或20-35微米或5-20微米,以满足不同技术要求。
进一步地限定,MgF2粉体用量是Al2O3粉体、纳米SiO2粉体总重量的2%~5%,MgF2粉体平均粒径不大于20μm,MgF2粉体的质量纯度>99%。
本发明方法加入SiC改性的喂料流动性与莫来石喂料相差不大。
本发明方法制备的用于等离子体喷涂的纳米SiC改性莫来石粉体基本上全是莫来石。
当基体的厚度为6mm时,Si粘结层的厚度为120~140μm、莫来石层的厚度为70~90μm、Yb2SiO5层的厚度为40~60μm时,涂层中的残余应力较低。从涂层的表面形貌可以看出,加入MgF2喂料制备的涂层的熔化程度略好于未加MgF2喂料的莫来石涂层;在同样的喷涂工艺下,加入SiC改性的的涂层,随着涂层中SiC含量的增多,涂层的熔化效果有所降低。从涂层的截面形貌来看,硅层与莫来石层结合良好,基体与硅层的结合稍差,两者之间的界面平直且起伏较少,涂层中各元素分布均匀。
SiC添加含量为10%时,涂层的孔隙率减少超过10%;SiC添加含量为20%时,涂层的孔隙率与无SiC添加者相当;当SiC的添加量大于20%时,涂层的孔隙率反而有所上升,涂层的致密度下降。
本发明添加SiC可提高所制备莫来石涂层的结合强度,添加10%SiC的莫来石涂层结合强度可提高27%。
本发明中纳米SiC改性后提高陶瓷的强度和韧性,SiC在高温空气条件下会发生氧化,生成SiO2,高温下自愈合,从而提高陶瓷材料及其涂层的性能。
本发明中高温热处理过程中,涂层中的SiC氧化为熔点相对低的SiO2,易于填充进入裂纹孔隙,且增加的体积造成了使得涂层中产生了密封效应,体积增加造成的填充或者挤压效应,使涂层截面的孔隙率下降,微裂纹得到愈合,具有一定自愈合效果。计算表明SiC氧化后体积最大可以增加118%。
本发明应用于环境障涂层领域。
附图说明
图1是SiC改性Al2O3/SiO2喂料1500℃烧结5h后的XRD图谱;
图2是喷雾造粒过程示意图;
图3是喂料等离子处理后的XRD图谱,a)MgF2助烧结Al2O3/SiO2喂料,b)Al2O3/SiO2喂料,c)SiC改性Al2O3/SiO2喂料;
图4是喂料等离子处理后的表面形貌与截面形貌,MgF2助烧结Al2O3/SiO2喂料:(a)表面形貌200×,(b)表面形貌1000×,(c)截面形貌900×,Al2O3/SiO2喂料:(d)表面形貌200×,(e)表面形貌1000×,(f)截面形貌100×,SiC改性Al2O3/SiO2喂料:(g)表面形貌200×,(h)表面形貌1000×,(i)截面形貌100×;
图5是喂料等离子处理后的TEM形貌,a)MgF2助烧结莫来石喂料,b)莫来石喂料,c)SiC改性莫来石喂料;
图6是不同SiC含量改性Al2O3/SiO2喂料涂层的截面形貌,(a)0%,(b)10%,(c)20%,(d)30%,(e)40%;
图7是涂层的孔隙率;
图8是涂层的硬度;
图9是涂层的结合强度;
图10是不同SiC含量改性Al2O3/SiO2喂料涂层的物相组成,(a)0%,(b)10%,(c)20%,(d)30%,(e)40%;
图11是20%SiC改性Al2O3/SiO2喂料涂层热处理前后形貌,(a)热处理前,(b)热处理后。
具体实施方式
实施例1:本实施例中一种用于等离子体喷涂的纳米SiC改性莫来石粉体的制备方法是通过下述步骤完成的:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤一中球磨过程中,粉末1wt%,PVA0.05wt%,ZrO2磨球5wt%,去离子水3wt%;纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%,纳米SiC粉体的质量纯度>97%;纳米Al2O3粉体平均粒径为13nm,纳米SiO2粉体平均粒径为20nm,纳米SiC粉体平均粒径为50nm,Al2O3与SiO2的质量分数分别为71.83%和28.17%,纳米SiC粉体用量是Al2O3粉体、纳米SiO2粉体总重量的10%,聚乙烯醇胶是纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体总重量的10%。
步骤二、然后喷雾造粒,进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1(见图2);
步骤三、然后烧结:在氮气保护下在氮气保护下,在1500℃下保温5h,升温速率为10℃/min;
步骤四、然后采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,放入烘箱中烘干至蒸干水分,过筛粉末的粒度满足-200~+400目,得到用于等离子体喷涂的纳米SiC改性莫来石粉体。
本实施例获得的纳米SiC改性莫来石粉体的相组成为Al2.3Si0.7O4.85,仅有少量的Al2O3残留,Al2O3的残留量为4.8wt.%(参见图1)。
实施例2:本实施例中一种用于等离子体喷涂的纳米SiC改性莫来石粉体的制备方法是通过下述步骤完成的:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体、纳米SiC粉体和助烧结剂MgF2,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤一中球磨过程中,粉末1wt%,PVA0.05wt%,ZrO2磨球5wt%,去离子水3wt%;纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%,纳米SiC粉体的质量纯度>97%;纳米Al2O3粉体平均粒径为13nm,纳米SiO2粉体平均粒径为20nm,纳米SiC粉体平均粒径为50nm,Al2O3与SiO2的质量分数分别为71.83%和28.17%,纳米SiC粉体用量是Al2O3粉体、纳米SiO2粉体总重量的10%,聚乙烯醇胶是纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体总重量的10%,MgF2粉体用量是Al2O3粉体、纳米SiO2粉体总重量的2%,MgF2粉体平均粒径不大于20μm,MgF2粉体的质量纯度>99%。
步骤二、然后喷雾造粒,进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1
步骤三、然后烧结:在氮气保护下在氮气保护下,在1000℃下保温1h,然后升温至1200℃,保温1h,升温速率均为10℃/min;
步骤四、然后采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,放入烘箱中烘干至蒸干水分,过筛粉末的粒度满足-200~+400目,得到用于等离子体喷涂的纳米SiC改性莫来石粉体。
采用下述实验验证发明效果:
SiC改性Al2O3/SiO2喂料制备方法:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤一中球磨过程中,粉末1wt%,PVA0.05wt%,ZrO2磨球5wt%,去离子水3wt%;纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%,纳米SiC粉体的质量纯度>97%;纳米Al2O3粉体平均粒径为13nm,纳米SiO2粉体平均粒径为20nm,纳米SiC粉体平均粒径为50nm,Al2O3与SiO2的质量分数分别为71.83%和28.17%,纳米SiC粉体用量是Al2O3粉体、纳米SiO2粉体总重量的0%、10%、20%、30%或40%,聚乙烯醇胶是纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体总重量的10%。
步骤二、然后喷雾造粒,进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1(见图2);
步骤三、然后烧结:在氮气保护下在氮气保护下,在1500℃下保温5h,升温速率为10℃/min;
步骤四、然后采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,放入烘箱中烘干至蒸干水分,过筛粉末的粒度满足-200~+400目,分别得到0%SiC改性Al2O3/SiO2喂料,10%SiC改性Al2O3/SiO2喂料,20%SiC改性Al2O3/SiO2喂料,30%SiC改性Al2O3/SiO2喂料,40%SiC改性Al2O3/SiO2喂料。
MgF2助烧结Al2O3/SiO2喂料制备方法:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体和助烧结剂MgF2,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤一中球磨过程中,粉末1wt%,PVA0.05wt%,ZrO2磨球5wt%,去离子水3wt%;纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%;纳米Al2O3粉体平均粒径为13nm,纳米SiO2粉体平均粒径为20nm,Al2O3与SiO2的质量分数分别为71.83%和28.17%,聚乙烯醇胶是纳米Al2O3粉体和纳米SiO2粉体总重量的10%,MgF2粉体用量是Al2O3粉体、纳米SiO2粉体总重量的2%,MgF2粉体平均粒径不大于20μm,MgF2粉体的质量纯度>99%。
步骤二、然后喷雾造粒,进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1
步骤三、然后烧结:在氮气保护下在氮气保护下,在1000℃下保温1h,然后升温至1200℃,保温1h,升温速率均为10℃/min;
步骤四、然后采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,放入烘箱中烘干至蒸干水分,过筛粉末的粒度满足-200~+400目,得到MgF2助烧结Al2O3/SiO2喂料。
Al2O3/SiO2喂料制备方法:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体和纳米SiO2粉体,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤一中球磨过程中,粉末1wt%,PVA0.05wt%,ZrO2磨球5wt%,去离子水3wt%;纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%;纳米Al2O3粉体平均粒径为13nm,纳米SiO2粉体平均粒径为20nm,Al2O3与SiO2的质量分数分别为71.83%和28.17%,聚乙烯醇胶是纳米Al2O3粉体和纳米SiO2粉体总重量的10%。
步骤二、然后喷雾造粒,进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1
步骤三、然后烧结:在氮气保护下在氮气保护下,在1000℃下保温1h,然后升温至1200℃,保温1h,升温速率均为10℃/min;
步骤四、然后采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,放入烘箱中烘干至蒸干水分,过筛粉末的粒度满足-200~+400目,得到Al2O3/SiO2喂料。
对得到的喷涂喂料测试了物相组成,结果如图3所示,图(a)和(b)中的相基本上全是莫来石相,只不过莫来石相的成分有细微的差别,MgF2助烧结Al2O3/SiO2喂料中莫来石的相组成为Al(Al1.272Si0.728O4.864),不加助烧结剂的Al2O3/SiO2喂料中莫来石的相组成为Al2.3Si0.7O4.85,等离子处理后SiC改性Al2O3/SiO2喂料的相组成基本没有变化,其相组成变为Al2(Al2.8Si1.2)O9.6
粉末的表面相貌与截面形貌如图4所示。由图4可知喂料的形状基本为球形和椭球形,喂料中存在着少量由小喂料粘结起来形成的形状不规则喂料,经等离子处理过后的喂料颗粒表面粗糙度降低,但是喂料表面仍能看到一些气孔,喂料截面为实心的球形形状。
所制备喂料在透射电子显微镜下的形貌,如图5所示,由图5可知,喂料中有些地方发生了团聚,但是能够看到三种喂料中均存在纳米尺度的晶粒。
所制备的三种喂料的松装密度与振实密度,测试结果见表1。
表1喂料的松装密度和振实密度
Figure BDA0002143464780000071
由表1可知,加入MgF2的莫来石喂料松装密度和振实密度比不加MgF2的喂料要低,而加入SiC的莫来石喂料松装密度和振实密度比也较的莫来石喂料低。
采用流速法和休止角法测量了制备的3种喂料的流动性,喂料的流动性如表2所示。
表2喂料的流动性
喂料种类 加MgF<sub>2</sub>莫来石喂料 莫来石喂料 40%SiC/莫来石喂料
休止角(°) 32 27 26
流速(g/mL) 17.658 23.603 20.801
由表2可知,无论是采用休止角法还是流速法测定,加入MgF2的莫来石喂料的流动性比不加MgF2的喂料要低;而加入SiC后喂料的休止角略低于莫来石喂料的休止角,流动性略有提高。
当基体的厚度为6mm时,Si粘结层的厚度为120~160μm,莫来石层的厚度为70~90μm,Yb2SiO5层的厚度为40~60μm时,涂层中的应力较低。
SiC改性Al2O3/SiO2喂料涂层的制备:
基体选用SiC陶瓷片,放入无水乙醇中超声清洗,清除基体表面的油污和杂质,用碳化硼喷砂,喷砂后再次进行超声清洗,清洗干净后使用吹风机吹干表面残留的无水乙醇,准备喷涂。
由于等离子喷涂过程中喷枪喷出的焰流不仅温度高而且速度很快,所以喷涂前要利用夹具将基体固定好,防止基体在气流的作用下被吹开,喷涂之前使用等离子焰流对基体进行预热,使其产生适度的热膨胀,避免基体和涂层温差太大而导致的内应力。在莫来石层与基体上喷涂120~140μm的硅粘接层,使基体与莫来石层能够良好地匹配。然后喷涂厚度为70~90μm的莫来石层。
表3等离子喷涂参数
Figure BDA0002143464780000081
莫来石涂层中的物相组成包括:成分为Al2(Al2.8Si1.2)O9.54的莫来石相和少量的硅线石相;SiC/莫来石涂层的物相组成包括:SiC相、成分为Al2(Al2.8Si1.2)O9.54的莫来石相、少量硅线石相和少量SiO2相。
从硅层的表面相貌来看,总体来看涂层较平坦,但是小孔洞较多,喷涂参数有待于进一步提高。从莫来石涂层的表面形貌可以看出,加入MgF2喂料制备的涂层的熔化程度略好于未加MgF2喂料的莫来石涂层;在同样的喷涂工艺下,加入SiC改性的涂层,随着涂层中SiC含量的增多,涂层的熔化效果有所降低。
从涂层的截面形貌来看,硅层与莫来石层结合良好,基体与硅层的结合稍差,两者之间的界面平直且起伏较少,这不利于涂层与基体机械结合。涂层中各元素分布均匀。
加入不同SiC含量的涂层的截面形貌如图6所示,在制备涂层的截面的过程中,随着涂层中SiC含量的增多,涂层易在打磨的过程中从硅层脱落,从涂层的截面形貌来看,当SiC添加量大于20%时涂层里开始出现大的孔洞,涂层的致密性明显下降。采用Image ProPlus软件对图片进行了处理,计算得到如图7所示的孔隙率。SiC添加含量为10%、20%时,涂层的孔隙率变化不大,当SiC的添加量大于20%时,涂层的孔隙率上升,涂层的致密度下降。
涂层的硬度是一个综合的性能指标,一般与涂层的耐磨性、强度、使用寿命等多种性能相关。采用维氏硬度计测试了涂层表面的硬度,实验时加载的载荷为300g,保压时间为15s。由于硬度值测量的区域很小,硬度值的大小与测试位置的结构状态关系很大,实验时需要多次测量以确保硬度值的准确性,本实验中在涂层随机测试五个点的硬度值,以平均值作为涂层的的硬度值。图8为涂层硬度的柱状图,可以看到SiC的添加对于涂层的硬度值没有增益,随着SiC添加含量的增加,涂层的硬度值下降。SiC硬度较大,添加到涂层中导致的下降可能归结于涂层结构的疏松,SiC的密度为3.2g/cm3而莫来石的密度为3.21g/cm3,二者数值非常接近,但是40%SiC/莫来石喂料的松装密度和振实密度仅为莫来石喂料的二分之一,所以加入SiC改性的涂层的结构不如莫来石层致密,在压头压入的时候更易产生压痕,从而硬度降低。
采用对偶拉伸法测定了涂层的结合强度,每种涂层测试三个样品,取平均值作为涂层的结合强度,结果如图9所示。本发明制备的涂层的结合强度在4MPa-6MPa之间。莫来石层的结合强度最低,仅为4.348MPa,SiC的添加在一定程度上增加了涂层的结合强度,虽然数值相差很小,当SiC添加量为10wt.%时,涂层结合强度增至5.528MPa,增加了27%。
热处理后涂层得到的XRD图谱如图10所示。可以看到莫来石涂层经高温热处理后产生了一部分Al2O3,加入SiC改性的涂层中,一部分SiC被氧化成了SiO2
对涂层氧化后的的截面形貌进行了观察,如图11为20%涂层氧化前后的对比图,可以看到涂层截面孔隙数量有所下降。
改性涂层从涂层的孔隙率、硬度、结合强度和自愈合性性能来比较,10%SiC改性的性能较好。

Claims (7)

1.一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法,其特征在于所述制备方法是通过下述步骤完成的:
步骤一、将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;
步骤二、然后喷雾造粒;
步骤三、然后进行松装固相烧结,采用等离子喷涂技术将烧结后的粉体喷射到水中,收集水中的粉末,烘干,过筛,即得到纳米SiC改性纳米结构莫来石粉体喂料;
其中,步骤一中Al2O3与SiO2的质量分数分别为71.83%和28.17%,纳米SiC粉体用量是Al2O3粉体、纳米SiO2粉体总重量的10%~40%;纳米Al2O3粉体平均粒径为10-20nm,纳米SiO2粉体平均粒径为10-30nm,纳米SiC粉体平均粒径为20-50nm;
步骤二中喷雾造粒工艺参数:进风温度为250℃,出风温度为110℃,转速18000r/min,进料速率为0.46L·h-1
步骤三所述烧结是在氮气保护下,在1450℃~1500℃下保温4h~5h,升温速率为10℃/min~15℃/min。
2.根据权利要求1所述的制备方法,其特征在于步骤一中纳米Al2O3粉体的质量纯度>99%,纳米SiO2粉体的质量纯度>99%,纳米SiC粉体的质量纯度>97%。
3.根据权利要求1所述的制备方法,其特征在于步骤一中纳米Al2O3粉体平均粒径为13nm,纳米SiO2粉体平均粒径为20nm,纳米SiC粉体平均粒径为50nm。
4.根据权利要求1所述的制备方法,其特征在于步骤一中聚乙烯醇胶是纳米Al2O3粉体、纳米SiO2粉体和纳米SiC粉体总重量的10%。
5.根据权利要求1所述的制备方法,其特征在于所述的等离子喷涂为大气等离子喷涂、真空等离子喷涂、低压等离子喷涂或者等离子-物理气相沉积;大气等离子喷涂技术工艺参数:电流为550A,电压为55V,主气流量为120SCFH,载气流量为12SCFH,送粉速度为20g/min,喷涂距离为40cm;过筛使粉体喂料的粒度满足35微米-75微米,或20微米-35微米,或5微米-20微米。
6.根据权利要求1、2、3、4、或5所述的一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法,其特征在于采用下述操作替换步骤一:将水和磨球放入球磨机中搅拌,然后依次加入纳米Al2O3粉体、纳米SiO2粉体、纳米SiC粉体和MgF2,搅拌至均匀,加入聚乙烯醇(PVA)胶,搅拌24h之后,得到浆料;MgF2粉体用量是Al2O3粉体、MgF2粉体总重量的2%~5%,MgF2粉体平均粒径不大于20μm,MgF2粉体的质量纯度>99%。
7.根据权利要6所述的一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法,其特征在于步骤三烧结是在氮气保护下,在1000℃下保温1h,然后升温至1200℃,保温1h,升温速率均为10℃/min~15℃/min。
CN201910676572.4A 2019-07-25 2019-07-25 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法 Active CN110395993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910676572.4A CN110395993B (zh) 2019-07-25 2019-07-25 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910676572.4A CN110395993B (zh) 2019-07-25 2019-07-25 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法

Publications (2)

Publication Number Publication Date
CN110395993A CN110395993A (zh) 2019-11-01
CN110395993B true CN110395993B (zh) 2021-10-01

Family

ID=68326011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910676572.4A Active CN110395993B (zh) 2019-07-25 2019-07-25 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法

Country Status (1)

Country Link
CN (1) CN110395993B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922188A (zh) * 2019-12-02 2020-03-27 昊石新材料科技南通有限公司 一种高耐磨抗烧蚀沉积碳化硅涂层及其制备工艺
CN111410201B (zh) * 2020-03-06 2021-09-10 哈尔滨工业大学 一种适合等离子喷涂的纳米结构硅酸镱喂料的制备方法
CN111534796B (zh) * 2020-04-17 2022-02-15 哈尔滨工业大学 一种等离子物理气相沉积用纳米莫来石粉体及其制备方法
CN112645699B (zh) * 2020-12-24 2022-08-19 中国航发北京航空材料研究院 晶须协同max相增韧的稀土硅酸盐材料及其制备方法
CN114276169A (zh) * 2021-12-30 2022-04-05 广东省科学院新材料研究所 一种自愈合高致密环境障涂层及其制备方法与应用
CN114262216B (zh) * 2021-12-30 2023-04-11 哈尔滨工业大学 一种利用TiC改性莫来石制备环境障涂层中间层的方法
CN114657497B (zh) * 2022-03-14 2023-07-11 西安热工研究院有限公司 一种高温合金板用莫来石防氧化涂层及其制备方法
CN114622151B (zh) * 2022-03-14 2023-07-21 西安热工研究院有限公司 一种莫来石防氧化涂层及其制备方法
CN114804844B (zh) * 2022-03-17 2023-05-16 河南龙德福新材料科技研究院有限公司 一种通过SiC模板法综合利用水基岩屑的方法
CN114561114B (zh) * 2022-03-29 2022-08-05 北京理工大学 一种涂料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980006A (zh) * 2014-05-12 2014-08-13 西北工业大学 构件表面具有自愈合能力的环境屏障涂层及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838157B (zh) * 2010-05-25 2012-05-23 陕西科技大学 碳/碳复合材料纳米碳化硅-莫来石复合外涂层的制备方法
CN102674891A (zh) * 2012-05-15 2012-09-19 陕西科技大学 一种碳/碳复合材料SiCn-MoSi2-莫来石复合外涂层的制备方法
CN107299345A (zh) * 2017-06-16 2017-10-27 中国人民解放军第五七九工厂 一种SiCf/SiC复合材料导向器叶片的环境防护涂层及其制备方法
CN107722934A (zh) * 2017-10-09 2018-02-23 山东天汇研磨耐磨技术开发有限公司 一种以陶瓷和金属的混合料为基础的研磨体及其生产方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980006A (zh) * 2014-05-12 2014-08-13 西北工业大学 构件表面具有自愈合能力的环境屏障涂层及制备方法

Also Published As

Publication number Publication date
CN110395993A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN110395993B (zh) 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法
JP5750060B2 (ja) セラミックス円筒形スパッタリングターゲット材およびその製造方法
US7842383B2 (en) Yttrium-aluminum double oxide thermal spraying powder
JP6608580B2 (ja) 超低熱伝導性及び摩耗性の高温tbcの構造及び製造方法
JP2020073420A (ja) 炭化ホウ素焼結体及びこれを含むエッチング装置
WO2007108793A1 (en) Method for forming a ceramic containing composite structure
JP2023532379A (ja) 高温保護用NiCrBSi-ZrB2サーメット粉末、複合コーティング及びその製造方法
CN111943702B (zh) 一种原位自生β-SIALON晶须增韧碳化钨复合材料及其制备方法与应用
KR102405683B1 (ko) 용사용 재료
US10889900B2 (en) Ceramic laminate
CN116377372A (zh) 一种高熵陶瓷热障涂层及其制备方法
CN111410201B (zh) 一种适合等离子喷涂的纳米结构硅酸镱喂料的制备方法
JP5784849B2 (ja) セラミックス円筒形スパッタリングターゲット材およびその製造方法
CN110877980A (zh) 一种高强度碳化硅/氮化硅复相陶瓷及其制备方法
JP2014125422A (ja) 酸化物焼結体、酸化物焼結体スパッタリングターゲットおよびその製造方法
CN114774834A (zh) 一种高熵稀土铝酸盐热防护涂层的制备方法
CN113684439A (zh) 一种氧化钇热障涂层的制备方法
CN103422047A (zh) 一种制备碳化硼-钼复合涂层的方法
CN107363736A (zh) 一种高密度微晶陶瓷研磨体及其制备方法
JP3550420B2 (ja) 耐摩耗性窒化珪素質焼結体及びその製造方法、並びに切削工具
JP2011026666A (ja) 硼化物系サーメット溶射用粉末
CN111018530A (zh) 高硬超轻陶瓷复合材料及其制备方法
CN116752069B (zh) 一种原位合成真空热处理炉隔热复合涂层及其制备方法
JP2016014191A (ja) セラミックス円筒形スパッタリングターゲット材およびその製造方法
CN1876365A (zh) Cu-Al2O3梯度复合材料涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant