CN110372389B - 一种碳陶汽车刹车盘的制备方法 - Google Patents

一种碳陶汽车刹车盘的制备方法 Download PDF

Info

Publication number
CN110372389B
CN110372389B CN201910694423.0A CN201910694423A CN110372389B CN 110372389 B CN110372389 B CN 110372389B CN 201910694423 A CN201910694423 A CN 201910694423A CN 110372389 B CN110372389 B CN 110372389B
Authority
CN
China
Prior art keywords
carbon
ceramic
temperature
brake disc
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910694423.0A
Other languages
English (en)
Other versions
CN110372389A (zh
Inventor
伍盼阳
杨江
赵倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Bowang Carbon Ceramic Co ltd
Original Assignee
Hunan Bowang Carbon Ceramic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Bowang Carbon Ceramic Co ltd filed Critical Hunan Bowang Carbon Ceramic Co ltd
Priority to CN201910694423.0A priority Critical patent/CN110372389B/zh
Publication of CN110372389A publication Critical patent/CN110372389A/zh
Application granted granted Critical
Publication of CN110372389B publication Critical patent/CN110372389B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

本发明公开了一种碳陶汽车刹车盘的制备方法,包括如下步骤:以密度为0.8‑1.0g/cm3的C/C复合材料为坯体依次经过PIP处理、高温处理、RMI处理即获得密度为1.9‑2.0g/cm3的碳陶复合材料;然后再将碳陶复合材料进行渗低熔点金属处理即获得碳陶汽车刹车盘,所述低熔点金属的熔点<1200℃;所述RMI处理的过程为,将经高温处理的坯体置于铺设有硅粉和无定型碳化硅粉的石墨模具中,在真空条件下,渗硅反应,所述无定型碳化硅粉由碳化硅陶瓷先驱体于800‑1000℃烧结获得。本发明提供的是一种成本较低、摩擦性能稳定、散热性优良的碳陶汽车刹车盘的制备方法。

Description

一种碳陶汽车刹车盘的制备方法
技术领域
本发明属于制动材料开发领域,具体涉及一种碳陶汽车刹车盘的制备方法。
背景技术
碳陶材料是近二十年来出现并发展的一类新型摩擦材料,具有密度低、耐高温、摩擦性能高且稳定等优点,在汽车、高速列车、飞机等高能刹车领域具有广泛的应用前景。和高速列车以及飞机相比,汽车刹车盘更偏向于功能性要求,其摩擦性能在保证安全的前提下,对其使用寿命、刹车减震、成本等方面有更高的要求。
碳陶材料主要是采用先驱体浸渍裂解法(PIP)和反应渗硅法(RMI) 制备,目前,碳陶摩擦材料制备方法主要有先驱体浸渍裂解(PIP) 和反应渗硅工艺(RMI)。这两种制备方法的基础是碳碳复合材料,而碳碳复合材料在制备过程中其热解碳基体的分布均匀性很难控制,且密度越高,不均匀性梯度越大。在反应渗硅工艺中,由于需消耗部分碳,要求碳碳坯体密度较高,且坯体中的大孔中填充的大量液态硅与碳又不能完全反应,导致硅的残余量高,制备的碳陶摩擦材料内部与表面微观结构和组分有较大差异,且在融渗过程中,液态硅与热解碳或部分碳纤维生成过强界面,造成材料强度损伤。因而采用RMI制备的汽车刹车盘,刹车系数偏高,刹车过程中震动较大。而PIP工艺可以很好的消除碳碳材料在制备过程中引起的不均匀性,但是先驱体裂解生成的碳化硅与碳碳坯体或自身的结合能力较反应渗硅弱,因而用PIP法制备的汽车刹车盘,在刹车过程中,刹车性能稳定,无震动,但其成本较高,磨损量偏大
发明内容
针对现有技术的不足,本发明的目的在于提供一种成本较低、摩擦性能稳定、散热性优良的碳陶汽车刹车盘的制备方法。
为实现上述目的,本发明采取的技术方案为:
本发明一种碳陶汽车刹车盘的制备方法,包括如下步骤:以密度为0.8-1.0g/cm3的C/C复合材料为坯体依次经过PIP处理、高温处理、 RMI处理即获得密度为1.9-2.0g/cm3的碳陶复合材料;然后再将碳陶复合材料进行渗低熔点金属处理即获得碳陶汽车刹车盘,所述低熔点金属的熔点<1200℃;所述RMI处理的过程为,将经高温处理的坯体置于铺设有硅粉和无定型碳化硅粉的石墨模具中,在真空条件下,渗硅反应,所述无定型碳化硅粉由碳化硅陶瓷先驱体于800-1000℃烧结获得。
本发明的制备方法,采用PIP和RMI工艺的结合,在RMI过程中同时以硅粉及无定型碳化硅粉作为渗硅原料,无定型碳化硅是由陶瓷先驱体于低温裂解所得的,发明人通过测试发现,当同时采用硅粉及无定型碳化硅粉作为渗硅原料,所得刹车材料的结合性能更佳,摩擦曲线更加平稳,磨损率降低,且具有湿态摩擦系数无衰减的特点,发明人推断,这是由于无定型碳化硅在较低温度开始即有很大的蒸发量,可以促进产品中PIP制备的碳化硅晶粒长大,同时,发现其在 1300℃以上,在真空条件下,会被蒸发进入工件内,并作为一种粘结剂,可以促进两种碳化硅的烧结为一体,主要是利用重结晶碳化硅烧结的蒸发凝聚机理,无定型碳化硅粉蒸发后,在真空条件下,会进入工件中,在两种工艺生成的碳化硅颗粒间凝聚,形成烧结颈,促进两种碳化硅间的结合。
另外由于汽车刹车盘的盘片是采用不同材质的,目前市面上的刹车片主要是粉冶和半合成的。碳陶刹车盘具有很高的硬度和较大摩擦系数,与刹车片对磨时,摩擦系数偏高,且刹车过程中易因温度过高导致片的磨损过大。本发明中,在碳陶刹车盘中渗入金属,可以改善碳陶汽车刹车盘的导热性和降低刹车盘的硬度,同时对摩擦系数也有一定程度的降低,从而减少刹车片的磨损,提高使用寿命。
优选的方案,所述渗硅反应程序为:先以3-5℃/min的速率升温至1200℃,再以2-3℃/min的速率升温至1550-1650℃,保温3-5h,自然降温。
优选的方案,所述渗硅反应时,真空度控制为100-500Pa。
优选的方案,所述硅粉与无定型碳化硅粉的质量比为10:2-4。
优选的方案,硅粉的粒径为2-5mm。
发明人发现,硅粉的粒径对反应渗硅影响较大,粒径越小,表面积越大,硅的蒸发量越多,增密至相同的密度,所需硅量也越多,同时硅表面有一层二氧化硅膜,粒径越小,二氧化硅含量越多,不利于硅的渗入;粒径太大,在反应渗硅过程中,硅不能完全消耗完,没消耗完的硅会残留在工装内或工件上,堵塞工件表面或者影响工件外观。
在本发明中所用硅粉为工业级。
优选的方案,所述无定型碳化硅粉的制备方法如下:将碳化硅陶瓷先驱体与交联剂A按质量比100:10-20混合获得浆液,将浆液于 800-1000℃烧结、研磨、过80目筛,取筛下物即得。
进一步的优选,所述烧结程序为:先以5-10℃/min的速率升温至90-150℃,保温30-120min,再以5-10℃/min的速率升温至 280-350℃,保温60-180min;再以3-5℃/min的速率升温至800-1000℃,保温60-150min。
发明人发现,对于无定型碳化硅,其烧结程序对其性能具有较大的影响,本发明中烧结程序可使陶瓷先驱体和交联剂最大程度的交联和反应,使最终烧结出来的无定型碳化硅粉中只有碳化硅相,不含硅或碳等相,如果不按本发明的程序走将有无定型碳与硅杂质存在,而杂质的存在会提高无定型碳化硅蒸发温度,影响渗硅效果和最终产品性能;此外此烧结程序烧结出来的无定型碳化硅是粉状,无需球磨,只需简单研磨,即能达到所需粒径的无定型碳化硅粉,而在本发明的粒径下可以保证碳化硅粉顺利蒸发至坯体中。
进一步的优选,所述碳化硅陶瓷先驱体选自聚碳硅烷、聚甲基硅烷中的至少一种。
作为更进一步的优选,所述碳化硅陶瓷先驱体选自聚甲基硅烷。
进一步的优选,所述交联剂A选自苯乙烯、二乙烯基苯中的至少一种。
优选的方案,所述低熔点金属选自铋、铝、铜中的至少一种。
优选的方案,所述渗低熔点金属处理的温度为400-1200℃,时间为2-5h。
优选的方案,密度为0.8-1.0g/cm3的C/C复合材料的制备过程为:将密度为0.5-0.55g/cm3的2.5D针刺的网胎加碳布层叠碳纤维预制件置于沉积炉内,在保护气氛下进行化学气相沉积,直至其密度增加至 0.8-1.0g/cm3;所述化学气相沉积时,控制炉内气压为2.0-3.0KPa、温度为900~1000℃、控制碳源气体与稀释气体的体积比为1-5:1,所述碳源为丙烯和/或天然气。
优选的方案,所述PIP处理的过程为,将密度为0.8-1.0g/cm3的 C/C复合材料置于含碳化硅陶瓷先驱体的浸渍剂中,先进行真空浸渍,然后进行加压浸渍,加压浸渍后,在保护气氛下于800-1000℃进行裂解1-2h,然后重复循环真空浸渍-加压浸渍-裂解的操作2-3次,得到密度为1.4-1.5g/cm3碳陶复合材料。
作为进一步的优选,所述含陶瓷先驱体的浸渍剂中,陶瓷先驱体选自聚碳硅烷、聚甲基硅烷中的至少一种。
作为更进一步的优选,所述含陶瓷先驱体的浸渍剂中,陶瓷先驱体为聚甲基硅烷。
作为进一步的优选,含陶瓷先驱体的浸渍剂由陶瓷先驱体与交联剂B组成,所述交联剂B选自苯乙烯、二乙烯基苯中的一种。
作为更进一步的优选,所述浸渍剂中,按质量比计,交联剂B:陶瓷先驱体=30-40:100。
在工业化应用时,裂解后,随炉冷却至室温,后取出样品,对样品表面进行打磨后,重复循环真空浸渍-加压浸渍-裂解的操作2-3次,直至得到密度为1.4-1.5g/cm3的碳陶复合材料;
作为进一步的优选,所述真空浸渍时,控制单次真空浸渍的时间为1-2h,控制真空度≤10Pa;
作为进一步的优选,所述加压浸渍时,控制单次加压浸渍的时间为4-6h,控制压力为4-6MPa;
作为进一步的优选,所述保护气氛选自氮气气氛、氩气气氛中的至少一种。
优选的方案,将PIP处理所得坯体于真空环境下进行高温处理,所述高温处理温度为1450-1600℃,高温处理的程序为:先以 5-10℃/min的速率升温至1300℃,保温3-5h,再以2-5℃/min的速率升温至1450-1600℃,保温3-5h,自然降温。
在本发明中,PIP工艺中仅进行了裂解未进行碳化硅的结晶高温烧结即降温,后续通过增加高温处理程序再进行碳化硅的结晶烧结,这是因为发明人发现,PIP处理过程中,裂解后炉内有残留固体粉末存在,主要是无定型碳、硅以及碳化硅,如果不降温直升,在炉内残留的固体粉末会影响后期工件内碳化硅的结晶和高温开孔,从而增加反应渗硅的难度;其次,真空烧结比惰性气氛烧结更能保持材料的强度,如果直升,后期真空烧结,对设备损伤极大,如果气氛烧结,材料强度降低更大。
作为进一步的优选,所述真空环境下,真空度控制在500-1000Pa。
原理与优势
本发明提出了一种成本较低、摩擦性能稳定、散热性优良的碳陶汽车刹车盘的制备方法。
现有技术一般采用的是将多孔碳纤维预制体进行热处理,再在气相沉积炉中经过数百小时的沉积,至密度到1.5g/cm3左右,由于碳沉积的过程,随着密度的提高,沉积效率越来越低,表面结痂等,导致生产周期长,坯体内部分布不均匀,影响碳化硅的复合,对材料刹车性能有很大的影响。
本发明选用短时间沉碳处理的C/C复合材料作坯体,在对其进行 2-3周期的先驱体浸渍裂解,在通过一次高温处理,一次渗硅处理,一次渗金属处理,制备碳陶汽车刹车盘,从生产成本和周期来说,都有较大幅度的改善。同时,选用短时间沉碳处理的C/C材料作为刹车盘坯体,还避免了因坯体致密化过程中引起的材料内部孔隙分布不均匀,在反应渗硅过程中存在残留硅的问题,对刹车盘的刹车稳定性和使用寿命都有提高。
同时,汽车刹车盘对摩擦系数的范围要求更窄,也就是要求更好的散热,这不仅是从结构上,还从材料自身导热上调整。碳陶刹车盘导热低于金属盘,在高速刹车时,存在一定程度的热衰,而金属的引入,可以很大程度的改善刹车盘的导热系数,减小高速下的热衰问题。
传统的反应渗硅制备的碳陶刹车盘,因此工艺制备的碳化硅晶粒为亚微米级,且含量偏高,导致材料整体摩擦系数偏高,又因有残留硅存在,刹车过程中有震动。本发明中采用先驱体浸渍裂解和反应渗硅工艺相结合的制备方法,引入两种不同硬度和粒径的碳化硅,通过两者含量分配,可以对其摩擦系数很好的进行调节,同时,刹车盘中无硅残留,使刹车过程中,刹车性能稳定,无震动。
附图说明
图1为实施例1所制备的某轿车的碳陶刹车盘。
具体实施方式
所有实施例和对比例中制备的碳陶汽车刹车盘按SAE J2522标准与同一类粉冶片进行测试。
实施例1
本发明实施例1中将制备的碳陶汽车刹车盘,其所用坯体是密度为0.93g/cm3的C/C复合材料。
步骤一:
按质量比聚甲基硅烷:苯乙烯=100:35配置浸渍液Ⅰ,将C/C坯体放入金属浸渍罐中,采用真空浸渍1h,加压浸渍5h。浸渍完成后放出浸渍液Ⅰ,将浸渍好的坯体放入石墨工装中并装入裂解炉中900℃裂解。全程采用惰性气氛保护,重复上述浸渍-裂解工艺2次。
真空浸渍时,控制真空度≤10Pa,加压浸渍压力为5MPa。
步骤二:
将步骤一制备的预成品在真空度为700Pa的真空环境下于1600℃进行高温处理,其升温程序为:以5℃/min升温速率至1300℃,保温 3h,再以3℃/min升温速率至1600℃,保温4h,得到密度为1.46g/cm3的刹车盘预成品。
步骤三:
碳化硅粉的制备。按质量比,聚甲基硅烷:苯乙烯=100:10配置成混合液,置于氧化铝坩埚内,在裂解炉内按以下曲线裂解:以 10℃/min升温至120℃,保温60min;再以10℃/min升温至300℃保温120min,再以5℃/min升温至900℃,保温120min。烧结完成,将烧结所得粉体、球磨,过80目筛,取筛下物即得无定型碳化硅粉。
将粒径为4mm的硅颗粒和碳化硅粉按质量比10:3混合,平铺在石墨工装底部,将步骤二得到的刹车盘半成品置于混合固体上,盖上盖子,先以3℃/min升温速率至1200℃,再以2℃/min升温速率至 1650℃,保温3h,自然降温,全程抽真空,真空度控制在200Pa左右,得到密度为1.97g/cm3刹车盘半成品。
步骤四:
按步骤三得到的刹车盘放在底部铺有铋颗粒的石墨工装内,盖上盖子,全程抽真空下进行500℃热处理,保温4小时,即得碳陶汽车刹车盘。热处理时,控制真空度在800Pa左右。
制备的碳陶汽车刹车盘试样组分分析:
刹车盘终密度:2.01g/cm3
浸渍裂解引入的碳化硅含量:26.36%
反应渗硅制备碳化硅含量:25.37%
金属含量:2%
制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.433
磨损量:盘:0mm,主片:-0.6mm,从片:-0.57mm
盘温度:224℃
实施例2
本发明实施例1中将制备的碳陶汽车刹车盘,其所用坯体是密度为0.80g/cm3的C/C复合材料。
步骤一:
按质量比聚甲基硅烷:苯乙烯=100:40配置浸渍液Ⅰ,将C/C坯体放入金属浸渍罐中,采用真空浸渍1h,控制真空度≤10Pa,加压浸渍4h,控制压力为4MPa,浸渍完成后放出浸渍液,将浸渍好的坯体放入石墨工装中并装入裂解炉中900℃裂解。全程采用惰性气氛保护,重复上述浸渍-裂解工艺3次。
步骤二:
将步骤一制备的预成品在真空度为500Pa的真空环境下于1500℃进行高温处理,其升温程序为:以5℃/min升温速率至1300℃,保温 3h,再以2℃/min升温速率至1450℃,保温3h,得到密度为1.5g/cm3的刹车盘预成品。
步骤三:
碳化硅粉的制备。按质量比,聚甲基硅烷:苯乙烯=100:15配置成混合液,置于氧化铝坩埚内,在裂解炉内按以下曲线裂解:以 5℃/min升温至90℃,保温120min;再以5℃/min升温至280℃保温 60min,再以3℃/min升温至800℃,保温150min。烧结完成,将烧结所得粉体、球磨,过80目筛,取筛下物即得无定型碳化硅粉。
将粒径为2mm的硅颗粒和碳化硅粉按质量比10:2混合,平铺在石墨工装底部,将步骤二得到的刹车盘半成品置于混合固体上,盖上盖子,先以4℃/min升温速率至1200℃,再以2℃/min升温速率至 1550℃,保温5h,自然降温,全程抽真空,真空度控制在100Pa左右,得到密度为1.99g/cm3刹车盘半成品。
步骤四:
按步骤三得到的刹车盘放在底部铺有铝颗粒的石墨工装内,盖上盖子,全程抽真空下进行800℃热处理,保温2小时即得碳陶汽车刹车盘。热处理时,控制真空度在800Pa左右。
制备的碳陶汽车刹车盘试样组分分析:
刹车盘终密度:2.03g/cm3
浸渍裂解引入的碳化硅含量:34.48%
反应渗硅制备碳化硅含量:24.13%
金属含量:2%
制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.401
磨损量:盘:0mm,主片:-0.52mm,从片:-0.54mm
盘温度:180℃
实施例3
本发明实施例3中将制备的碳陶汽车刹车盘,其所用坯体是密度为1.02g/cm3的C/C复合材料。
步骤一:
按质量比聚甲基硅烷:苯乙烯=100:30配置浸渍液,将C/C坯体放入金属浸渍罐中,采用真空浸渍2h,加压浸渍6h。浸渍完成后放出浸渍液,将浸渍好的坯体放入石墨工装中并装入裂解炉中900℃裂解。全程采用惰性气氛保护,重复上述浸渍-裂解工艺2次。
真空浸渍时,控制真空度≤10Pa,加压浸渍压力为6MPa。
步骤二:
将步骤一制备的预成品在真空度为1000Pa的真空环境下于1600℃进行高温处理,其升温程序为:以10℃/min升温速率至1300℃,保温3h,再以5℃/min升温速率至1600℃,保温3h,得到密度为 1.45g/cm3的刹车盘预成品。
步骤三:
碳化硅粉的制备。按质量比,聚甲基硅烷:苯乙烯=100:20配置成混合液,置于氧化铝坩埚内,在裂解炉内按以下曲线裂解:以 10℃/min升温至150℃,保温60min;再以10℃/min升温至300℃保温60min,再以5℃/min升温至1000℃,保温60min。烧结完成,将烧结所得粉体、球磨,过80目筛,取筛下物即得无定型碳化硅粉。
将粒径为5mm的硅颗粒和碳化硅粉按质量比10:4混合,平铺在石墨工装底部,将步骤二得到的刹车盘半成品置于混合固体上,盖上盖子,先以5℃/min升温速率至1200℃,再以3℃/min升温速率至 1650℃,保温3h,自然降温,全程抽真空,真空度控制在100Pa左右,得到密度为1.92g/cm3刹车盘半成品。
步骤四:
按步骤三得到的刹车盘放在底部铺有铜颗粒的石墨工装内,盖上盖子,全程抽真空下进行1200℃热处理,保温4小时即得碳陶汽车刹车盘。热处理时,控制真空度在800Pa左右。
制备的碳陶汽车刹车盘试样组分分析:
刹车盘终密度:1.95g/cm3
浸渍裂解引入的碳化硅含量:22.05%
反应渗硅制备碳化硅含量::24.10%
金属含量:1.54%
制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.387
磨损量:盘:0mm,主片:-0.49mm,从片:-0.53mm
盘温度:195℃
对比例1
其他条件与实施例1相同,仅是渗硅反应时,渗硅源料只用硅粉,即不加入无定型碳化硅粉。最终获得密度为2.03g/cm3碳陶汽车刹车盘。
经检测制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.452
磨损量:盘:-0.02mm,主片:-1.15mm,从片:-1.05mm
盘温度:258℃
在反应渗硅过程中,不加入无定型碳化硅粉,引入的两种碳化硅无法结合,使刹车盘中小晶粒碳化硅结合弱,在刹车过程中,易被磨削掉,最终造成盘片磨损增大,摩擦系数偏大,超出范围。
对比例2
其他条件与实施例1相同,无定型碳化硅粉的质量比为10:5,最终获得密度为1.95g/cm3碳陶汽车刹车盘。
经检测制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.37
磨损量:盘:0mm,主片:-0.66mm,从片:-0.7mm
盘温度:297℃
无定型碳化硅粉含量太高,导致产品最终密度偏低,金属渗入量减少,同时小晶粒碳化硅含量增多,而大晶粒碳化硅含量大量减少,引起摩擦系数的降低,盘温度升高。
对比例3
其他条件与实施例1相同,仅PIP处理与高温处理同时进行,即将浸渍好的坯体放入石墨工装中并装入裂解炉中900℃裂解,然后继续以5℃/min升温速率至1300℃,保温3h,再以3℃/min升温速率至1600℃,保温4h全程在氮气气氛保护。最终获得密度为1.94g/cm3碳陶汽车刹车盘。
经检测制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.37
磨损量:盘:+0.0005mm,主片:-1.74mm,从片:-1.51mm
盘温度:577℃
PIP与高温处理同时进行,PIP裂解的固体粉尘对高温处理的开孔有很大的影响,导致反应渗硅过程中,液硅进不去,且后期金属铋也很难渗进去,残留在表面,导致盘导热性能较差,温度升高,且在铋的熔点之上,造成粘盘现象。
对比例4
其他条件与实施例1相同,仅无定型碳化硅烧结时,升温程序为以10℃/min升温至120℃,保温60min;再以10℃/min至900℃,保温120min。最终获得密度为1.94g/cm3碳陶汽车刹车盘。
经检测制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.34
磨损量:盘:0mm,主片:-1.16mm,从片:-0.72mm
盘温度:611℃
无定型碳化硅粉烧结时,在300℃温度范围内未进行保温处理,烧结出来的无定型碳化硅为粉末状,但XRD检测其含碳,在反应渗硅过程中,液硅与无定型碳化硅粉中的碳反应,且反应生成的碳化硅与无定型碳化硅粘结一起,会减少碳化硅的蒸发,同时,粘结一起的碳化硅粘在工件表面和工装内,堵塞了液硅的渗入,也影响后期金属的渗入,影响最终产品的密度和摩擦性能。
对比例5
其他条件与实施例1相同,仅不进行渗金属处理,
经检测制备的碳陶汽车刹车盘其刹车性能如下:
平均摩擦系数:0.48
磨损量:盘:-0.02mm,主片:-2.03mm,从片:-2.18mm
盘温度:709℃
对碳陶汽车刹车盘来说,PIP结合RMI工艺制备的碳陶刹车盘,其摩擦系数偏高,硬度偏高,导热性偏差,而引入金属,主要是改善其导热性,降低硬度,减少对片的磨损,同时,金属的引入,也可以对摩擦系数进行调整。不进行渗金属处理,会引起其摩擦系数、磨损量以及温度都提高。

Claims (7)

1.一种碳陶汽车刹车盘的制备方法,其特征在于:包括如下步骤:以密度为0.8-1.0g/cm3的C/C复合材料为坯体依次经过PIP处理、高温处理、RMI处理即获得密度为1.9-2.0g/cm3的碳陶复合材料;然后再将碳陶复合材料进行渗低熔点金属处理即获得碳陶汽车刹车盘,所述低熔点金属的熔点<1200℃;所述RMI处理的过程为,将经高温处理的坯体置于铺设有硅粉和无定型碳化硅粉的石墨模具中,在真空条件下,渗硅反应,所述无定型碳化硅粉由碳化硅陶瓷先驱体于800-1000℃烧结获得;
将PIP处理所得坯体于真空环境下进行高温处理,所述高温处理温度为1450-1600℃;所述高温处理的程序为:先以5-10℃/min的速率升温至1300℃,保温3-5h,再以2-5℃/min的速率升温至1450-1600℃,保温3-5h,自然降温;所述真空环境下,真空度控制在500-1000Pa;
所述硅粉与无定型碳化硅粉的质量比为10:2-4;硅粉的粒径为2-5mm;
所述无定型碳化硅粉的制备方法如下,将碳化硅陶瓷先驱体与交联剂A按质量比100:10-20混合获得浆液,将浆液于800-1000℃烧结、研磨、过80目筛,取筛下物即得;
所述烧结程序为:先以5-10℃/min的速率升温至90-150℃,保温30-120min,再以5-10℃/min的速率升温至280-350℃,保温60-180min;再以3-5℃/min的速率升温至800-1000℃,保温60-150min。
2.根据权利要求1所述的一种碳陶汽车刹车盘的制备方法,其特征在于:所述渗硅反应程序为:先以3-5℃/min的速率升温至1200℃,再以2-3℃/min的速率升温至1550-1650℃,保温3-5h,自然降温;所述渗硅反应时,真空度控制为100-500Pa。
3.根据权利要求1所述的一种碳陶汽车刹车盘的制备方法,其特征在于:所述碳化硅陶瓷先驱体选自聚碳硅烷、聚甲基硅烷中的至少一种;所述交联剂A选自苯乙烯、二乙烯基苯中的至少一种。
4.根据权利要求1所述的一种碳陶汽车刹车盘的制备方法,其特征在于:所述低熔点金属选自铋、铝、铜中的至少一种;所述渗低熔点金属处理的温度为400-1200℃,时间为2-5h。
5.根据权利要求1所述的一种碳陶汽车刹车盘的制备方法,其特征在于:所述PIP处理的过程为,将密度为0.8-1.0g/cm3的C/C复合材料置于含碳化硅陶瓷先驱体的浸渍剂中,先进行真空浸渍,然后进行加压浸渍,加压浸渍后,在保护气氛下于800-1000℃进行裂解1-2小时,然后重复循环真空浸渍-加压浸渍-裂解的操作2-3次,直至得到密度为1.4-1.5g/cm3碳陶复合材料。
6.根据权利要求5所述的一种碳陶汽车刹车盘的制备方法,其特征在于:所述含碳化硅陶瓷先驱体的浸渍剂中,陶瓷先驱体选自聚碳硅烷、聚甲基硅烷中的至少一种;所述含陶瓷先驱体的浸渍剂由陶瓷先驱体与交联剂B组成,所述交联剂B选自苯乙烯、二乙烯基苯中的一种;
所述含碳化硅陶瓷先驱体的浸渍剂中,按质量比计,交联剂B:陶瓷先驱体=30~40:100。
7.根据权利要求5所述的一种碳陶汽车刹车盘的制备方法,其特征在于:所述真空浸渍时,控制单次真空浸渍的时间为1-2h,控制真空度≤10Pa;所述加压浸渍时,控制单次加压浸渍的时间为4-6h,控制压力为4-6MPa。
CN201910694423.0A 2019-07-30 2019-07-30 一种碳陶汽车刹车盘的制备方法 Active CN110372389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910694423.0A CN110372389B (zh) 2019-07-30 2019-07-30 一种碳陶汽车刹车盘的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910694423.0A CN110372389B (zh) 2019-07-30 2019-07-30 一种碳陶汽车刹车盘的制备方法

Publications (2)

Publication Number Publication Date
CN110372389A CN110372389A (zh) 2019-10-25
CN110372389B true CN110372389B (zh) 2021-12-28

Family

ID=68257007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910694423.0A Active CN110372389B (zh) 2019-07-30 2019-07-30 一种碳陶汽车刹车盘的制备方法

Country Status (1)

Country Link
CN (1) CN110372389B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286393B (zh) * 2022-07-21 2023-08-11 湖南世鑫新材料有限公司 一种低成本长寿命的碳陶热场产品及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553695A (zh) * 2013-10-23 2014-02-05 中南大学 一种碳陶复合材料制动盘及制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用
CN109055798A (zh) * 2018-08-03 2018-12-21 北京汽车股份有限公司 用于车辆的刹车盘的制备方法、刹车盘及车辆
CN109748595A (zh) * 2017-11-01 2019-05-14 航天特种材料及工艺技术研究所 一种混合渗剂、用途及反应熔渗制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101260005B (zh) * 2008-01-09 2010-06-02 西安航天复合材料研究所 一种炭/炭/碳化硅复合材料的制备方法
CN102537155B (zh) * 2011-12-29 2014-02-26 中国科学院过程工程研究所 C/C-SiC-ZrC-ZrB2复相陶瓷基摩擦制动材料及其制备方法
CN103880461B (zh) * 2014-03-26 2015-10-21 西安航空制动科技有限公司 高速列车碳/陶复合材料摩擦对偶的制备方法
CN105565837B (zh) * 2015-12-17 2019-01-25 湖南博望碳陶有限公司 一种碳陶复合材料的制备方法及其应用
CN105884389B (zh) * 2016-04-19 2018-07-27 李永军 一种低成本密度梯度c/c-sic复合材料的制备方法
CN106966751B (zh) * 2016-11-21 2018-05-04 北京航空航天大学 高性能低成本C/C-SiC复合材料制动盘及其制备方法与应用
CN108046819B (zh) * 2017-11-23 2020-08-07 西北工业大学 一种结构功能一体化C/C-SiC摩擦材料及制备方法
CN109372916B (zh) * 2018-09-03 2020-06-30 湖南金天铝业高科技股份有限公司 一种陶瓷增强碳/碳复合材料制动盘的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553695A (zh) * 2013-10-23 2014-02-05 中南大学 一种碳陶复合材料制动盘及制备方法
CN109748595A (zh) * 2017-11-01 2019-05-14 航天特种材料及工艺技术研究所 一种混合渗剂、用途及反应熔渗制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用
CN109055798A (zh) * 2018-08-03 2018-12-21 北京汽车股份有限公司 用于车辆的刹车盘的制备方法、刹车盘及车辆

Also Published As

Publication number Publication date
CN110372389A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
US20140072710A1 (en) Method for the Infiltration of a Porous Material with a Second Material Related Plant
CN109320251B (zh) 一种高性能无压烧结碳化硅复合陶瓷的制备方法
JP2004510674A (ja) 炭化ホウ素をベースとしたセラミックマトリックス複合材料
CN106478125A (zh) 一种B4C改性C/C‑SiC刹车材料的制备方法
JP2009503396A (ja) ブレーキディスクおよびクラッチディスクの改良またはブレーキディスクおよびクラッチディスクに関連する改良
US7335331B1 (en) Method for making ceramic plates
CN110372389B (zh) 一种碳陶汽车刹车盘的制备方法
US4381271A (en) Use of fired fibrous graphite in fabricating polycrystalline diamond and/or cubic boron nitride/silicon carbide/silicon composite bodies
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN111993297B (zh) 一种陶瓷金属复合金刚石修整器的制备方法
US3459566A (en) Process for producing silicon carbide articles employing pyromellitic dianhydride-limonene dioxide mixture
CN110395999B (zh) 一种碳陶摩擦材料的制备方法和应用
JP2008535769A (ja) 炭化ホウ素構成材並びにその製造方法
CN1494985A (zh) 超级研磨磨石
CN110041089B (zh) 一种碳/陶摩擦材料及其制备方法
CN109336607A (zh) 一种碳化硼制备方法
CN110396000B (zh) 一种碳陶飞机刹车盘的制备方法
CN108048685B (zh) 一种TiC/SiC/Al复合材料
CN101774806A (zh) 自愈合碳/碳、碳/碳化硅复合材料的制备方法
CN110713386B (zh) 一种C/SiC摩擦材料的制备方法
CN115368140B (zh) 一种低磨损的碳陶刹车材料及其制备方法
KR102255465B1 (ko) 붕소화지르코늄이 포함된 탄화규소 방탄 세라믹 및 이의 제조방법
CN114346921B (zh) 一种陶瓷结合剂及其制备方法和陶瓷结合剂磨具
CN111892416A (zh) 一种碳陶刹车盘的制备方法
CN112142499B (zh) 在碳/碳复合材料表面制备SiO2-SiC镶嵌结构微孔抗氧化涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant