CN110355614B - 一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法 - Google Patents

一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法 Download PDF

Info

Publication number
CN110355614B
CN110355614B CN201910587931.9A CN201910587931A CN110355614B CN 110355614 B CN110355614 B CN 110355614B CN 201910587931 A CN201910587931 A CN 201910587931A CN 110355614 B CN110355614 B CN 110355614B
Authority
CN
China
Prior art keywords
point
grinding wheel
grinding
coordinate system
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910587931.9A
Other languages
English (en)
Other versions
CN110355614A (zh
Inventor
江磊
丁国富
罗斌
丁国华
陈思远
张剑
付建林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Tianyou Chuangruan Technology Co ltd
Southwest Jiaotong University
Original Assignee
Chengdu Tianyou Chuangruan Technology Co ltd
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Tianyou Chuangruan Technology Co ltd, Southwest Jiaotong University filed Critical Chengdu Tianyou Chuangruan Technology Co ltd
Priority to CN201910587931.9A priority Critical patent/CN110355614B/zh
Publication of CN110355614A publication Critical patent/CN110355614A/zh
Application granted granted Critical
Publication of CN110355614B publication Critical patent/CN110355614B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/02Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters

Abstract

本发明公开了一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法,在周刃后刀面末端和周刃螺旋槽衔接位置加工一处刀体间隙,具体为:1、设定刀体间隙的几何参数,包括间隙深度、间隙角度和磨削点偏移量;2、设定砂轮磨削姿态,包括工件坐标系和法截面坐标系及对应坐标系下的砂轮姿态;3、计算砂轮磨削轨迹,包括在法截面坐标系计算砂轮中心点坐标以及在工件坐标系计算砂轮轴矢量;4、将计算的轨迹输入五轴数控磨床进行实际磨削,获得需要的齿型和槽型;本发明弥补了整体式立铣刀周刃工艺存在的缺陷,可约束后刀面宽度,改善周刃螺旋槽槽型,获得了较为理想的齿型和槽型。

Description

一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法
技术领域
本发明涉及整体立铣刀加工技术领域,具体涉及一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法。
背景技术
整体式立铣刀形状复杂,其磨削工艺按照刀具结构可分为周刃工艺和端刃工艺两类。其中,周刃工艺主要包括周刃螺旋槽、周刃辅助开槽、周刃后刀面。但是实际生产中,受到砂轮形状、砂轮磨削姿态的制约,周刃后刀面和周刃螺旋槽工艺只能保证有限的立铣刀周刃几何参数,在一些关键参数的控制上仍存在较大缺陷,主要体现在以下两个方面:
(1)独立的周刃后刀面工艺只能保证后刀面角度,无法保证后刀面宽度。因此后刀面设计角度较大时,实际加工后会出现后刀面宽度过大的情况。
(2)周刃螺旋槽工艺只能保证槽深和周刃前角,无法保证槽宽。在砂轮切削深度一定的情况下,当刀具齿数较少时,很难通过直接调整工艺参数的方式使螺旋槽末端与后刀面末端衔接,导致槽宽不足。
发明内容
为了弥补周刃工艺存在的缺陷,获得较为理想的齿型和槽型。
本发明提供一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法,在周刃后刀面末端和周刃螺旋槽衔接位置加工一处刀体间隙,具体包括以下步骤:
步骤1:设定刀体间隙的几何参数,包括间隙深度d、间隙角度α和磨削点偏移量l;
步骤2:设定砂轮磨削姿态,包括工件坐标系Ow-XwYwZw和法截面坐标系On-XnYnZn及对应坐标系下的砂轮姿态;
步骤3:计算砂轮磨削轨迹,包括在法截面坐标系计算砂轮中心点坐标以及在工件坐标系计算砂轮轴矢量;
步骤4:将计算的轨迹输入五轴数控磨床进行实际磨削,获得需要的齿型和槽型。
其步骤1具体为:在周刃法截面定义基准线和基准点:基准线为法截面内刀刃点与刀具回转轴的连线;由于磨削点偏移量的存在,基准点为理论后刀面宽度(并非实际后刀面宽度)末点,即周刃后刀面与周刃法截面的交线段理论宽度末点;间隙深度d为砂轮磨削点从后刀面末点开始沿着基准线方向向内切入的深度;间隙角度α为法截面内刀体间隙与基准线的夹角;磨削点偏移量l为磨削点沿着与基准线垂直的方向平移过的距离。
其步骤2具体为:选择代号为1A1的标准形状平型砂轮进行磨削,并使砂轮侧边轮廓与被加工刀具相接触;
工件坐标系Ow-XwYwZw:以刀具回转轴线方向为Zw轴,以工件端面与Zw轴的交点为原点Ow,以原点和周刃曲线起点的连线为Xw轴。
工件坐标系下的砂轮姿态:在工件坐标系下,设点P(xp,yp,zp)是周刃曲线上一刀刃点,砂轮中心点所在平面与刀具表面接触点为磨削点Pt,该点位于过刀刃点P的法截面内;设磨削点Pt所在的砂轮端平面为平面M,该平面亦为砂轮中心点Og所在平面;平面M与周刃曲线在Pt点的切矢量Ft平行;将平面M绕着砂轮径向矢量Fb,即从点Og指向点Pt的矢量进行旋转的角度定义为砂轮切削角度αt
法截面坐标系On-XnYnZn:以刀刃点P为法截面坐标系原点On,以切矢量Ft方向为Zn轴,以法截面内刀刃点与刀具回转轴的连线(基准线)为Xn轴。
法截面坐标系下的砂轮姿态:点P1为后刀面末点,砂轮磨削点Pt与刀位点P保持相对位置不变;砂轮中心点Og始终位于XnOnYn平面内。
其步骤3具体为:
A、计算砂轮中心点坐标
设砂轮半径为Rg,则法截面坐标系下的砂轮中心点O'g(x'g,y'g,z'g)坐标为:
Figure BDA0002115056150000021
式中后刀面宽度lr和后刀面角度λr均为已知量,将该点坐标变换到工件坐标系下,得到工件坐标系下的砂轮中心点坐标Og(xg,yg,zg):
Og=Rn-wO′g+Tn-w (2)
式中,Rn-w表示从法截面坐标系到工件坐标系的旋转矩阵,Tn-w表示从法截面坐标系到工件坐标系的平移矩阵,其具体表达式如下:
Figure BDA0002115056150000022
Figure BDA0002115056150000023
其中,
Figure BDA0002115056150000024
表示刀刃点P处的刀刃曲线回转角,κ表示刀具锥度角,β表示刀刃曲线螺旋角,ρ(zp)表示刀刃点P处的刀具回转半径。
ρ(zp)的表达式为:
ρ(zp)=Rw-zptanκ (5)
Figure BDA0002115056150000031
的表达式根据锥度角κ是否为0分为两种情况:
当κ=0时:
Figure BDA0002115056150000032
式中,
Figure BDA0002115056150000033
表示刀刃曲线初始回转角,Rw表示刀具初始回转半径。
当κ≠0时:
Figure BDA0002115056150000034
B、计算砂轮轴矢量
在工件坐标系下计算砂轮轴矢量Fg(fgx,fgy,fgz),其计算公式为:
Fg=-Fb×Ft′ (8)
式中,Fb表示从砂轮中心点Og(xg,yg,zg)指向磨削点Pt(xt,yt,zt)的单位矢量,其表达式为:
Figure BDA0002115056150000035
Ft'(ftx',fty',ftz')表示砂轮大端圆平面M的切矢量,其计算公式为:
Ft′=Rot(Fbt)Ft (10)
其中,Rot(Fbt)表示绕Fb轴旋转切削角度αt的旋转矩阵,其计算式为:
Figure BDA0002115056150000036
其中,versαt=1-cosαt
Ft(ftx,fty,ftz)表示刀刃曲线在刀刃点P处的切矢量,其表达式根据锥度角κ是否为0分为两种情况:
当κ=0时:
Figure BDA0002115056150000041
当κ≠0时:
Figure BDA0002115056150000042
本发明的有益效果是:
本发明定义了刀体间隙几何参数及刀体间隙磨削工艺的砂轮姿态,计算了刀体间隙工艺磨削过程的砂轮运动轨迹。该工艺可约束后刀面宽度,改善周刃螺旋槽槽型,从而弥补整体式立铣刀周刃工艺的不足,为实际磨削加工提供理论参考,为进一步完善整体立铣刀工艺提供依据。
附图说明
图1是周刃法截面下刀体间隙示意图。
图2是工件坐标系下砂轮磨削姿态示意图。
图3是法截面坐标系下砂轮磨削姿态示意图。
图4是刀体间隙磨削仿真结果图。
图5未添加刀体间隙刀具剖面仿真结果图。
图6添加刀体间隙刀具剖面仿真结果图。
图7是刀体间隙实际加工结果图。
具体实施方式
下面结合附图和具体实施方法对本发明做进一步详细说明。
本发明在周刃后刀面末端和周刃螺旋槽衔接位置加工一处刀体间隙,求解刀体间隙磨削工艺的砂轮轨迹,然后在磨床中按此轨迹加工所需的槽型。具体如下:
步骤1刀体间隙几何参数定义:
如图1所示,在周刃法截面(垂直于刀刃点沿刃线切线的截面)定义基准线和基准点:基准线为法截面内刀刃点与刀具回转轴的连线;由于磨削点偏移量的存在,基准点为理论后刀面宽度(并非实际后刀面宽度)末点,即周刃后刀面与周刃法截面的交线段理论宽度末点。
间隙深度d:砂轮磨削点从后刀面末点开始沿着基准线方向向内切入的深度。
间隙角度α:法截面内刀体间隙与基准线的夹角。
磨削点偏移量l:磨削点沿着与基准线垂直的方向平移过的距离。
步骤2砂轮磨削姿态定义
为了使砂轮轮廓与本文所设计的刀体间隙轮廓能够较好地匹配,选择代号为1A1的标准形状平型砂轮进行磨削,并使砂轮侧边轮廓与被加工刀具相接触;
工件坐标系Ow-XwYwZw:如图2所示,工件坐标系以刀具回转轴线方向为Zw轴,以工件端面与Zw轴的交点为原点Ow,以原点和周刃曲线起点的连线为Xw轴。
工件坐标系下的砂轮姿态:在工件坐标系下,设点P(xp,yp,zp)是周刃曲线上一刀刃点,砂轮中心点所在平面与刀具表面接触点为磨削点Pt,该点位于过刀刃点P的法截面内;设磨削点Pt所在的砂轮端平面为平面M,该平面亦为砂轮中心点Og所在平面;平面M与周刃曲线在Pt点的切矢量Ft平行;将平面M绕着砂轮径向矢量Fb,即从点Og指向点Pt的矢量进行旋转的角度定义为砂轮切削角度αt
法截面坐标系On-XnYnZn:如图3所示,法截面坐标系以刀刃点P为法截面坐标系原点On,以切矢量Ft方向为Zn轴,以法截面内刀刃点与刀具回转轴的连线(基准线)为Xn轴。
法截面坐标系下的砂轮姿态:点P1为后刀面末点,砂轮磨削点Pt与刀位点P保持相对位置不变;砂轮中心点Og始终位于XnOnYn平面内。
步骤3计算砂轮磨削轨迹:
A、计算砂轮中心点坐标
设砂轮半径为Rg,则法截面坐标系下的砂轮中心点O'g(x'g,y'g,z'g)坐标为:
Figure BDA0002115056150000051
式中后刀面宽度lr和后刀面角度λr均为已知量,将该点坐标变换到工件坐标系下,得到工件坐标系下的砂轮中心点坐标Og(xg,yg,zg):
Og=Rn-wO′g+Tn-w (2)
式中,Rn-w表示从法截面坐标系到工件坐标系的旋转矩阵,Tn-w表示从法截面坐标系到工件坐标系的平移矩阵,其具体表达式如下:
Figure BDA0002115056150000052
Figure BDA0002115056150000061
其中,
Figure BDA0002115056150000062
表示刀刃点P处的刀刃曲线回转角,κ表示刀具锥度角,β表示刀刃曲线螺旋角,ρ(zp)表示刀刃点P处的刀具回转半径。
ρ(zp)的表达式为:
ρ(zp)=Rw-zptanκ (5)
Figure BDA0002115056150000063
的表达式根据锥度角κ是否为0分为两种情况:
当κ=0时:
Figure BDA0002115056150000064
式中,
Figure BDA0002115056150000065
表示刀刃曲线初始回转角,Rw表示刀具初始回转半径。
当κ≠0时:
Figure BDA0002115056150000066
B、计算砂轮轴矢量
在工件坐标系下计算砂轮轴矢量Fg(fgx,fgy,fgz),其计算公式为:
Fg=-Fb×Ft′ (8)
式中,Fb表示从砂轮中心点Og(xg,yg,zg)指向磨削点Pt(xt,yt,zt)的单位矢量,其表达式为:
Figure BDA0002115056150000067
Ft'(ftx',fty',ftz')表示砂轮大端圆平面M的切矢量,其计算公式为:
Ft′=Rot(Fbt)Ft (10)
其中,Rot(Fbt)表示绕Fb轴旋转切削角度αt的旋转矩阵,其计算式为:
Figure BDA0002115056150000071
其中,versαt=1-cosαt
Ft(ftx,fty,ftz)表示刀刃曲线在刀刃点P处的切矢量,其表达式根据锥度角κ是否为0分为两种情况:
当κ=0时:
Figure BDA0002115056150000072
当κ≠0时:
Figure BDA0002115056150000073
步骤4将计算的轨迹输入五轴数控磨床进行实际磨削,获得需要的齿型和槽型。
基于上述磨削算法,在VC++环境开发了一套算法模块,输入表1所示的相关参数以后,即可得到刀位轨迹,部分运算结果如表2所示。使用VERICUT进行三维加工仿真并使用五轴数控磨床进行实际加工验证。刀体间隙磨削仿真结果如图4所示,未添加刀体间隙刀具剖面仿真结果如图5所示,添加刀体间隙刀具剖面仿真结果如图6所示。由此可见本发明明显弥补周刃工艺存在的缺陷,取得较为理想的齿型和槽型。
表1刀体间隙工艺相关参数
Figure BDA0002115056150000074
表2部分刀位轨迹运算结果
Figure BDA0002115056150000075
Figure BDA0002115056150000081
刀体间隙实际加工结果如图7所示。

Claims (3)

1.一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法,其特征在于,在周刃后刀面末端和周刃螺旋槽衔接位置加工一处刀体间隙,具体包括以下步骤:
步骤1:设定刀体间隙的几何参数,包括间隙深度d、间隙角度α和磨削点偏移量l
步骤2:设定砂轮磨削姿态,包括工件坐标系O w-X w Y w Z w和法截面坐标系O n-X n Y n Z n及对应坐标系下的砂轮姿态;
步骤3:计算砂轮磨削轨迹,包括在法截面坐标系计算砂轮中心点坐标以及在工件坐标系计算砂轮轴矢量,具体为:
A、计算砂轮中心点坐标
设砂轮半径为R g,则法截面坐标系下的砂轮中心点O'g(x'g, y'g, z'g)坐标为:
Figure DEST_PATH_IMAGE001
(1)
式中后刀面宽度l r和后刀面角度λ r均为已知量,将该点坐标变换到工件坐标系下,得到工件坐标系下的砂轮中心点坐标O g(x g, y g, z g):
Figure 415051DEST_PATH_IMAGE002
(2)
式中,R n-w表示从法截面坐标系到工件坐标系的旋转矩阵,T n-w表示从法截面坐标系到工件坐标系的平移矩阵,其具体表达式如下:
Figure DEST_PATH_IMAGE003
(3)
Figure 941978DEST_PATH_IMAGE004
(4)
其中,φ(z p)表示刀刃点P处的刀刃曲线回转角,κ表示刀具锥度角,β表示刀刃曲线螺旋角,ρ(z p)表示刀刃点P处的刀具回转半径;
ρ(z p)的表达式为:
Figure DEST_PATH_IMAGE005
(5)
φ(z p)的表达式根据锥度角κ是否为0分为两种情况:
κ= 0时:
Figure 95617DEST_PATH_IMAGE006
(6)
式中,φ 0表示刀刃曲线初始回转角,R w表示刀具初始回转半径;
κ≠ 0时:
Figure DEST_PATH_IMAGE007
(7)
B、计算砂轮轴矢量
在工件坐标系下计算砂轮轴矢量F g(f gx, f gy, f gz),其计算公式为:
Figure 366192DEST_PATH_IMAGE008
(8)
式中,F b表示从砂轮中心点O g(x g, y g, z g)指向磨削点P t(x t, y t, z t)的单位矢量,其表达式为:
Figure DEST_PATH_IMAGE009
(9)
F t'(f tx ', f ty ', f tz ')表示砂轮大端圆平面M的切矢量,其计算公式为:
Figure 554466DEST_PATH_IMAGE010
(10)
其中,Rot(F b, α t)表示绕F b轴旋转切削角度α t的旋转矩阵,其计算式为:
Figure DEST_PATH_IMAGE011
(11)
其中,versα t = 1-cosα t
F t(f tx, f ty, f tz)表示刀刃曲线在刀刃点P处的切矢量,其表达式根据锥度角κ是否为0分为两种情况:
κ= 0时:
Figure 517874DEST_PATH_IMAGE012
(12)
κ≠ 0时:
Figure DEST_PATH_IMAGE013
(13)
步骤4:将计算的轨迹输入五轴数控磨床进行实际磨削,获得需要的齿型和槽型。
2.如权利要求1所述的一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法,其特征在于,所述步骤1具体为:在周刃法截面定义基准线和基准点:基准线为法截面内刀刃点与刀具回转轴的连线;由于磨削点偏移量的存在,基准点为理论后刀面宽度末点,即周刃后刀面与周刃法截面的交线段理论宽度末点;
所述间隙深度d为砂轮磨削点从后刀面末点开始沿着基准线方向向内切入的深度;
所述间隙角度α为法截面内刀体间隙与基准线的夹角;
所述磨削点偏移量l为磨削点沿着与基准线垂直的方向平移过的距离。
3.如权利要求1所述的一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法,其特征在于,所述步骤2具体为:选择代号为1A1的标准形状平型砂轮进行磨削,并使砂轮侧边轮廓与被加工刀具相接触,
所述工件坐标系O w-X w Y w Z w:以刀具回转轴线方向为Z w轴,以工件端面与Z w轴的交点为原点O w,以原点和周刃曲线起点的连线为X w轴;
所述工件坐标系下的砂轮姿态:在工件坐标系下,设点P(x p, y p, z p)是周刃曲线上一刀刃点,砂轮中心点所在平面与刀具表面接触点为磨削点P t,该点位于过刀刃点P的法截面内;设磨削点P t所在的砂轮端平面为平面M,该平面亦为砂轮中心点O g所在平面;平面M与周刃曲线在P t点的切矢量F t平行;将平面M绕着砂轮径向矢量F b,即从点O g指向点P t的矢量进行旋转的角度定义为砂轮切削角度α t
所述法截面坐标系O n-X n Y n Z n:以刀刃点P为法截面坐标系原点O n,以切矢量F t方向为Z n轴,以法截面内刀刃点与刀具回转轴的连线为X n轴;
所述法截面坐标系下的砂轮姿态:点P 1为后刀面末点,砂轮磨削点P t与刀刃点P保持相对位置不变;砂轮中心点O g始终位于X n O n Y n平面内。
CN201910587931.9A 2019-07-02 2019-07-02 一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法 Active CN110355614B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910587931.9A CN110355614B (zh) 2019-07-02 2019-07-02 一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910587931.9A CN110355614B (zh) 2019-07-02 2019-07-02 一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法

Publications (2)

Publication Number Publication Date
CN110355614A CN110355614A (zh) 2019-10-22
CN110355614B true CN110355614B (zh) 2021-05-18

Family

ID=68217615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910587931.9A Active CN110355614B (zh) 2019-07-02 2019-07-02 一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法

Country Status (1)

Country Link
CN (1) CN110355614B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002112B (zh) * 2019-12-13 2021-06-08 西南交通大学 一种立铣刀端齿分屑槽的磨削轨迹求解方法
CN111008441B (zh) * 2019-12-13 2022-08-19 西南交通大学 整体平头立铣刀端齿直纹型后刀面的磨削轨迹求解方法
CN111251084A (zh) * 2020-04-03 2020-06-09 德阳天和机械制造有限责任公司 一种铣刀前角的磨削工艺
CN111571316B (zh) * 2020-04-30 2021-10-26 科德数控股份有限公司 一种丝锥螺纹加工的磨削轨迹优化方法及系统
CN111644909B (zh) * 2020-05-26 2021-08-03 四川新迎顺信息技术股份有限公司 一种木工成型铣刀的后刀面的磨削轨迹求解方法
CN112318215A (zh) * 2020-11-04 2021-02-05 苏州大学 一种微型刀具的刃磨工艺
CN113868805A (zh) * 2021-10-22 2021-12-31 西南交通大学 一种钻尖直线刃后刀面磨削轨迹计算方法
CN114770233A (zh) * 2022-05-31 2022-07-22 西南交通大学 一种针对数控铣刀螺旋槽磨削工艺的砂轮轨迹计算方法
CN115401536B (zh) * 2022-08-30 2024-04-12 深圳数马电子技术有限公司 铰刀磨削方法、装置、数控机、计算机设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318303B (zh) * 2008-03-11 2011-05-04 贵州大学 球头立铣刀的磨削加工方法及磨削加工四轴联动设备
EP2480364A1 (en) * 2009-09-22 2012-08-01 Rolls-Royce PLC Form milling cutter for the machining of titanium alloys etc
CN106334972A (zh) * 2016-09-18 2017-01-18 大连理工大学 一种球头铣刀平面加工的刀刃接触判据方法
CN106826417A (zh) * 2017-02-06 2017-06-13 成都天佑创软科技有限公司 一种立铣刀磨削过程二维图形仿真方法
CN106853598A (zh) * 2015-12-08 2017-06-16 华南理工大学 一种虚拟球刀半径的圆柱形砂轮曲面磨削方法
CN107097106A (zh) * 2017-05-26 2017-08-29 天津大学 一种球头立铣刀前刀面新型加工算法
DE102017206144B3 (de) * 2017-03-16 2018-07-26 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Fräskopf für einen Kugelbahnfräser und Kugelbahnfräser mit einem solchen Fräskopf
CN109702567A (zh) * 2019-01-29 2019-05-03 西南交通大学 一种圆弧头立铣刀圆弧刃前刀面的磨削轨迹求解方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318303B (zh) * 2008-03-11 2011-05-04 贵州大学 球头立铣刀的磨削加工方法及磨削加工四轴联动设备
EP2480364A1 (en) * 2009-09-22 2012-08-01 Rolls-Royce PLC Form milling cutter for the machining of titanium alloys etc
CN106853598A (zh) * 2015-12-08 2017-06-16 华南理工大学 一种虚拟球刀半径的圆柱形砂轮曲面磨削方法
CN106334972A (zh) * 2016-09-18 2017-01-18 大连理工大学 一种球头铣刀平面加工的刀刃接触判据方法
CN106826417A (zh) * 2017-02-06 2017-06-13 成都天佑创软科技有限公司 一种立铣刀磨削过程二维图形仿真方法
DE102017206144B3 (de) * 2017-03-16 2018-07-26 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Fräskopf für einen Kugelbahnfräser und Kugelbahnfräser mit einem solchen Fräskopf
CN107097106A (zh) * 2017-05-26 2017-08-29 天津大学 一种球头立铣刀前刀面新型加工算法
CN109702567A (zh) * 2019-01-29 2019-05-03 西南交通大学 一种圆弧头立铣刀圆弧刃前刀面的磨削轨迹求解方法

Also Published As

Publication number Publication date
CN110355614A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN110355614B (zh) 一种整体式立铣刀刀体间隙磨削工艺的砂轮轨迹求解方法
CN109702567B (zh) 一种圆弧头立铣刀圆弧刃前刀面的磨削轨迹求解方法
Chiou Accurate tool position for five-axis ruled surface machining by swept envelope approach
CN111644909B (zh) 一种木工成型铣刀的后刀面的磨削轨迹求解方法
CN106843152B (zh) 一种基于五轴机床在线测量的法向圆孔数控加工方法
CN110355615B (zh) 一种球头立铣刀端刃间隙磨削工艺的砂轮轨迹求解方法
CN112222959B (zh) 一种基于砂轮磨损参数的立铣刀后刀面磨削轨迹补偿方法
CN103412514B (zh) 一种多轴联动砂带磨削加工中的路径规划方法
CN102129232A (zh) 五轴侧铣加工工艺参数设计方法
CN111008441A (zh) 整体平头立铣刀端齿直纹型后刀面的磨削轨迹求解方法
CN105739432A (zh) 基于改进型Butterfly细分的网格自由曲面环形刀具轨迹规划方法
CN111638682B (zh) 一种使用磨损砂轮磨削周齿螺旋刃后刀面的补偿方法
CN106334972A (zh) 一种球头铣刀平面加工的刀刃接触判据方法
CN104959666A (zh) 双圆弧大进给环形铣刀及其制备工艺与检测方法
Shih et al. A flank correction face-milling method for bevel gears using a five-axis CNC machine
CN107544433B (zh) 数控机床加工过程球头铣刀与工件接触区域半解析建模法
CN113204852B (zh) 一种球头铣刀铣削加工表面形貌预测方法及系统
CN100424601C (zh) 一种加工鞋楦的方法
CN107052914B (zh) 一种球头铣刀接刀痕迹的高效消除方法
CN105759717B (zh) 一种用于五轴数控加工的刀具轨迹防过切的方法
Wang et al. An approach to interference-free cutter position for five-axis free-form surface side finishing milling
CN110262399B (zh) 一种螺旋锥齿轮齿面侧刃铣的加工方法
CN110125490B (zh) 一种平底锥度铣刀全刀刃侧刃精铣尼曼蜗轮齿面的方法
CN108255133B (zh) 一种圆刀片式环形刀五轴加工的材料去除率计算方法
CN115167275A (zh) 一种无干涉刀轴方向获得方法及刀具轨迹规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant