CN110304662A - 硅羟基磁珠及其制备方法和应用 - Google Patents

硅羟基磁珠及其制备方法和应用 Download PDF

Info

Publication number
CN110304662A
CN110304662A CN201910647522.3A CN201910647522A CN110304662A CN 110304662 A CN110304662 A CN 110304662A CN 201910647522 A CN201910647522 A CN 201910647522A CN 110304662 A CN110304662 A CN 110304662A
Authority
CN
China
Prior art keywords
magnetic bead
silicone hydroxyl
nanoparticle
sio
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910647522.3A
Other languages
English (en)
Inventor
侯立威
王鹏
吴志能
胡三元
张军
夏振宇
周政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Dongyang Guangke Research and Development Co Ltd
Original Assignee
Dongguan Dongyang Guangke Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Dongyang Guangke Research and Development Co Ltd filed Critical Dongguan Dongyang Guangke Research and Development Co Ltd
Priority to CN201910647522.3A priority Critical patent/CN110304662A/zh
Publication of CN110304662A publication Critical patent/CN110304662A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Genetics & Genomics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种硅羟基磁珠的制备方法,包括以下步骤:将三氯化铁、柠檬酸三钠、醋酸钠以及多元醇混合均匀得到混合溶液,采用溶剂热法制备得到的Fe3O4纳米粒子;采用原子层沉积法在所述Fe3O4纳米粒子的表面包覆SiO2膜,即得硅羟基磁珠。采用原子层沉积法(简称ALD)在溶剂热法制备得到的Fe3O4纳米粒子上包覆SiO2膜,以单原子膜形式一层一层的镀在Fe3O4纳米粒子的表面,该方法层积的SiO2膜在Fe3O4纳米粒子的表面和缺陷处均能匀速长大,包覆完成后表面的SiO2膜为一个整体,SiO2对Fe3O4的包裹致密性好,且不易脱落,因此能够避免磁珠表面包覆缺陷的产生。此外通过调整沉积条件和循环次数可精准控制SiO2膜的厚度,工艺简单,可标准化操作,无需繁琐操作,误差小,避免了磁珠的后期筛选,从而实现了提高产品质量以及磁珠批次稳定性的目的。

Description

硅羟基磁珠及其制备方法和应用
技术领域
本发明实施例涉及磁性材料制备技术领域,特别涉及一种硅羟基磁珠及其制备方法和应用。
背景技术
常见的硅羟基磁珠制备方法仅仅是在上述Fe3O4纳米粒子表面通过Stober方法修饰一层纳米SiO2,具体操作是将正硅酸乙酯和Fe3O4分散在乙醇溶液中,再滴加氨水使正硅酸乙酯水解,生成的纳米SiO2在Fe3O4表面生长,但是该方法存在以下缺陷:
1.水解过程中生成SiO2形核和长大速度不易控制,造成SiO2粒径不均一、SiO2单独成球长大和Fe3O4表面包覆不均匀等问题;
2.该方法包覆100纳米以上粒径的Fe3O4时,Fe3O4纳米粒子容易团聚;
3.该方法包覆SiO2时纳米粒子表面容易产生缺陷,SiO2难以在Fe3O4纳米粒子表面裂缝、缺陷等地方沉积生长。
根据上述制备方法制备得到的硅羟基磁珠存在以下问题:
1.磁珠颗粒间磁含量不一致,质量不均匀,响应不一致;
2.磁珠表面SiO2致密度较低、缺陷多,磁珠结构不稳定,超声分散时结构容易破坏;
3.批次稳定性不高,不同批次产品差异明显,样品筛选过程繁琐。
发明内容
本发明实施例的目的在于提供一种硅羟基磁珠及其制备方法和应用,其工艺流程简单,硅羟基磁珠质量均匀、磁含量高、不易团聚、膜致密性高。
为解决上述技术问题,本发明的实施例提供了一种硅羟基磁珠的制备方法,包括以下步骤:
将三氯化铁、柠檬酸三钠、醋酸钠以及多元醇混合均匀,采用溶剂热法制备得到Fe3O4纳米粒子;
采用原子层沉积法在上述Fe3O4纳米粒子的表面包覆SiO2膜,即得硅羟基磁珠。
本发明的实施例还提供了一种由硅羟基磁珠的制备方法制备得到的硅羟基磁珠。
本发明的实施例还提供了硅羟基磁珠在提取DNA中的应用。
另外,溶剂热法包括以下步骤:
将混合溶液进行超声分撒得到乳液;
将乳液过筛以除去乳液内未完全分散的颗粒;
将过筛后的乳液倒入聚四氟乙烯反应釜中,于160℃~240℃保温4~18h后进行磁性分离,优选地,于160~220℃保温8~18h后进行磁性分离;更优选地,于200~220℃保温10~18h后进行磁性分离;再洗涤、干燥。
另外,多元醇为乙二醇、丙三醇、1,3-丙二醇中的至少一种,多元醇物质的量为三氯化铁物质的量的50~150倍,醋酸钠物质的量为三氯化铁物质的量的1~6倍。
优选地,多元醇物质的量为三氯化铁物质的量的80~120倍;醋酸钠物质的量为三氯化铁物质的量的2~4倍。
本发明中,柠檬酸三钠的用量对最终得到的Fe3O4纳米粒子的表面电荷大小有重要影响。优选地,三氯化铁物质的量是柠檬酸三钠物质的量的1-6倍,在该用量范围内得到Fe3O4纳米粒子的表面电荷高(Zeta电位小于-30mV),不易团聚,适宜用于后续的原子沉积工艺。
更优选地,三氯化铁物质的量是柠檬酸三钠物质的量的1-3倍。
本发明所述的柠檬酸三钠为二水合柠檬酸三钠。
另外,原子层沉积法包括以下步骤:
将Fe3O4纳米粒子置于原子层沉积装置的反应腔内,设置反应腔的温度为80~300℃,真空度为1~10mbar;优选地,反应腔的温度为160~200℃,真空度为3~8mbar;更优选地,反应腔的温度为160~185℃,真空度为3~5mbar,更优选地,反应腔的温度为160~185℃,真空度为3mbar。
将SiO2前驱体通入反应腔,保持脉冲时间为120ms~300ms;优选地,保持脉冲时间为180ms;再通入惰性气体进行清洗。
另外,多次循环以下步骤:将SiO2前驱体通入反应腔,保持脉冲时间为120ms~300ms;优选地,保持脉冲时间为120ms~180ms再通入惰性气体进行清洗。
所述循环次数为可控制在10-1000,可以根据后期产品的使用要求进行调节。
在一些实施方式中,所述循环次数为100-500。
还在一些实施方式中,所述循环次数为100-300。
另外,SiO2前驱体选自SiH2Cl2、SiH3Cl、SiHCl3、SiCl4、Si2Cl6,BMAS中的任一种。所述前驱体可以在加热状态下容易汽化且其反应活化能较低,在较温和的环境下获得高质量SiO2膜。
另外,Fe3O4纳米粒子的粒径为20-1000nm,优选地,Fe3O4纳米粒子的粒径为150-540nm,更优选地,Fe3O4纳米粒子的粒径为380-540nm,更优选地,Fe3O4纳米粒子的粒径为380-450nm。
在一些实施方案中,Fe3O4纳米粒子的粒径为150nm、380nm或450nm。
另外,SiO2膜的厚度为5nm-500nm,优选地,SiO2膜的厚度为30-100nm,更优选地,SiO2膜的厚度为60-100nm。
在一些实施方案中,SiO2膜的厚度为30nm、60nm或100nm。
本发明实施例相对于现有技术而言,具有以下有益效果:
1.在溶剂热法中添加柠檬酸三钠合成Fe3O4纳米粒子,一步完成Fe3O4纳米粒子的合成与其表面改性。工艺流程简单,不仅使得Fe3O4的粒径均一及粒径可控,分散性好,而且其表面电荷高(Zeta电位小于-30mV),不易团聚,易于后续处理;
2.采用原子层沉积法(简称ALD)在溶剂热法制备得到的Fe3O4纳米粒子上包覆SiO2膜,以单原子膜形式一层一层的镀在Fe3O4纳米粒子的表面,该方法层积的SiO2膜在Fe3O4纳米粒子的表面和缺陷处均能匀速长大,包覆完成后表面的SiO2膜为一个整体,SiO2对Fe3O4的包裹致密性好,且不易脱落,因此能够避免磁珠表面包覆缺陷的产生。此外通过调整沉积条件和循环次数可精准控制SiO2膜的厚度,工艺简单,可标准化操作,无需繁琐操作,误差小,避免了磁珠的后期筛选,从而实现了提高产品质量以及磁珠批次稳定性的目的;
3.原子层沉积法包覆溶剂热法制备得到的Fe3O4纳米粒子,制备的硅羟基磁珠的磁响应性高,表面羟基密度高,可达500mmol/mg以上,与生物素结合能力强,对链霉亲和素的结合能力大于1000pmol/μg;
4.SiO2前驱体在加热状态下容易汽化且其反应活化能较低,SiO2前驱体在较温和的环境下在Fe3O4包覆高质量的SiO2膜。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是为本发明实施例1中Fe3O4纳米粒子的SEM电镜图;
图2是为本发明实施例1中硅羟基磁珠的TEM电镜图;
图3是对比例1得到的硅羟基磁珠的SEM电镜图;
图4是对比例2得到的硅羟基磁珠的SEM电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
实施例1
1.Fe3O4纳米粒子的合成
(1)将8.1g(0.03mol)的FeCl3·6H2O、120mL(2.15mol)乙二醇(EG)、4.86g(0.0165mol)的柠檬酸三钠、10.0g(0.12mol)的醋酸钠(NaAc)混合搅拌,30w超声处理15min,使之形成均一乳液,之后将乳液过400目标准筛,去掉未形成乳液的大颗粒;
(2)将上述标准乳液转移到聚四氟内胆消解罐中,放入反应釜中,在220℃保温18h后取出;
(3)在高压消解罐冷却后,使用磁铁分离出其中的黑色沉淀,用纯水和无水乙醇洗涤3次,磁吸洗涤干净,烘干即可,Fe3O4粒径约380nm。
2.ALD沉积SiO2
(1)将上述制备的Fe3O4粉末取1.0g置于ALD设备中,反应室内温度为160℃,真空度为3mbar;
(2)通入前驱体Si2Cl6至反应室内,保持脉冲时间为180ms;
(3)通入氮气清洗,清洗时间为3s,然后通入H2O至反应室,脉冲时间180ms,通入氮气清洗,清洗时间为3s;
(4)循环操作步骤(2)和(3)300次,即可得到包覆一定厚度的SiO2的Fe3O4粉体,即硅羟基磁珠,SiO2膜厚度约为100nm。
实施例2
1.Fe3O4纳米粒子的合成
(1)将4.0g(0.015mol)FeCl3·6H2O、100mL(1.8mol)乙二醇1.86mol(EG)、3.12g(0.0106mol)柠檬酸三钠、4.86g(0.059mol)醋酸钠(NaAc)混合搅拌,30w超声处理15min,使之形成均一乳液,之后将乳液过400目标准筛,去掉未形成乳液的大颗粒;
(2)将上述标准乳液转移到聚四氟内胆消解罐中,放入反应釜中,在160℃保温8h后取出;
(3)在高压消解罐冷却后,使用磁铁分离出其中的黑色沉淀,用纯水和无水乙醇洗涤3次,磁吸洗涤干净,烘干即可,Fe3O4粒径150nm。
2.ALD沉积SiO2
(1)将上述制备的Fe3O4粉末取1.0g置于ALD设备中,反应室内温度为185℃,真空度为3mbar;
(2)通入前驱体SiH3Cl至反应室内,保持脉冲时间为180ms;
(3)通入氮气清洗,清洗时间为3s,然后通入H2O至反应室,脉冲时间180ms,通入氮气清洗,清洗时间为3s;
(4)循环操作步骤(2)和(3)200次,即可得到包覆一定厚度的SiO2的Fe3O4粉体,即硅羟基磁珠,SiO2膜厚度约为60nm。
实施例3
1.Fe3O4纳米粒子的合成
(1)将6.0g(0.022mol)FeCl3·6H2O、120mL(2.15mol)乙二醇(EG)、4.86g(0.0165mol)柠檬酸三钠、7.92g(0.096mol)醋酸钠(NaAc)混合搅拌,30w超声处理15min,使之形成均一乳液,之后将乳液过400目标准筛,去掉未形成乳液的大颗粒;
(2)将上述标准乳液转移到聚四氟内胆消解罐中,放入反应釜中,在200℃保温10h后取出;
(3)在高压消解罐冷却后,使用磁铁分离出其中的黑色沉淀,用纯水和无水乙醇洗涤3次,磁吸洗涤干净,烘干即可,Fe3O4粒径540nm。
2.ALD沉积SiO2
(1)将上述制备的Fe3O4粉末取1.0g置于ALD设备中,反应室内温度为200℃,真空度为3mbar;
(2)通入前驱体SiH2Cl2至反应室内,保持脉冲时间为180ms;
(3)通入氮气清洗,清洗时间为3s,然后通入H2O至反应室,脉冲时间180ms,通入氮气清洗,清洗时间为3s;
(4)循环操作步骤(2)和(3)100次,即可得到包覆一定厚度的SiO2的Fe3O4粉体,即硅羟基磁珠,SiO2膜厚度约为30nm。
为了验证的Fe3O4纳米粒子以及硅羟基磁珠的优异性能,由于实施例1~3使用相同的方法制备得到了Fe3O4纳米粒子以及硅羟基磁珠,实施例1~3中的Fe3O4纳米粒子的SEM电镜图以及硅羟基磁珠的TEM电镜图和实施例1相似。因此本发明仅对实施例1中的Fe3O4纳米粒子以及硅羟基磁珠分别扫描SEM电镜图以及TEM电镜图,具体如图1~2所示,由图1可以看出,Fe3O4纳米粒子粒度均一,球形度高,单分散性良好。由图2可以看出硅羟基磁珠的内核为Fe3O4,表面包裹一层SiO2膜,磁珠具有优良的保型性,高球形度,微球质量均匀,磁含量高,致密性高。
需要说明的是,实施例1~3中除了使用乙二醇(EG)之外,也可以使用其他多元醇,比如丙三醇、1,3-丙二醇等。
对比例1(共沉淀法合成Fe3O4)
1.Fe3O4纳米粒子的合成
(1)250mL烧杯中加入100mL蒸馏水,加入4.0g无水氯化铁(FeCl3)和1.56g氯化亚铁(FeCl2),充分溶解后转移到四口烧瓶中,25℃,300rpm搅拌下,滴加NH3·H2O,调节pH为10,然后升温至70℃熟化6h。反应结束后取出,用纯水磁吸洗涤3次,真空干燥,备用。
(2)柠檬酸钠修饰:取上述Fe3O4 2g分散到100mL水中,加入3.0g柠檬酸钠,转移到四口烧瓶中,水浴70℃下搅拌4h,磁吸洗涤3次,真空干燥,常温保存。
2.ALD沉积SiO2
(1)将上述制备的Fe3O4粉末取1.0g置于ALD设备中,反应室内温度为160℃,真空度为3mbar;
(2)通入前驱体Si2Cl6至反应室内,保持脉冲时间为180ms;
(3)通入氮气清洗,清洗时间为3s,然后通入H2O至反应室,脉冲时间180ms,通入氮气清洗,清洗时间为3s;
(4)循环操作步骤(2)和(3)50次,即可得到包覆一定厚度的SiO2的Fe3O4粉体,即硅羟基磁珠。
对比例1制备得到的硅羟基磁珠的SEM图如附图3所示,可以看出,微球颗粒较小,分散不均匀,沉积后完全团聚形成块状,沉积效果较差,无法达到生物磁珠要求。
对比例2(Stober法包覆SiO2)
1.Fe3O4的合成
采用溶剂热法合成Fe3O4:将5.6g FeCl3·6H2O、100mL乙二醇(EG)、9.7g醋酸钠(NaAc)混合搅拌,超声分散均匀;将上述乳液转移到聚四氟内胆消解罐中,放入反应釜中,在220℃保温12h后取出。冷却后,磁吸去除黑色Fe3O4,纯水洗涤3次。分散到100mL水中,加入3.0g柠檬酸钠,转移到四口烧瓶中,水浴70℃下搅拌4h,磁吸洗涤3次,真空干燥即可。
2.Stober法包覆SiO2
配制混合液A:在250mL烧杯中分别加入120mL乙醇,浓氨水3mL,10mL水,混合均匀,再加入2g上述Fe3O4,超声分散均匀,转移到四口烧瓶中,通入氮气,转速240rpm;混合液B:将4mL正硅酸乙酯分散到20mL乙醇中,搅拌均匀。将B溶液以3秒每滴的速度滴加到盛有混合液A的四口烧瓶中,30℃下反应6h,待反应结束后,取出,用乙醇和纯水分别洗涤3次,即可获得硅羟基磁珠。
对比例2制备得到的硅羟基磁珠的SEM图如附图4所示,该方法包覆SiO2的厚度无法精确控制,球形度较差,容易形成纯SiO2微球颗粒,且磁珠单分散性较差,颗粒间差别较大,出现部分团聚,内部Fe3O4易暴露,重复性不稳定。
综上可知,本发明实施例1~3制备得到的硅羟基磁珠的性能均优于对比例1~2。
本领域的普通技术人员可以理解,上述各实施例是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

1.一种硅羟基磁珠的制备方法,其特征在于,包括以下步骤:
将三氯化铁、柠檬酸三钠、醋酸钠以及多元醇混合均匀得到混合溶液,采用溶剂热法制备得到Fe3O4纳米粒子;
采用原子层沉积法在所述Fe3O4纳米粒子的表面包覆SiO2膜,即得硅羟基磁珠。
2.根据权利要求1所述的硅羟基磁珠的制备方法,其特征在于,所述溶剂热法包括以下步骤:
将所述混合溶液进行超声分散得到乳液;
将所述乳液过筛以除去乳液内未完全分散的颗粒;
将所述乳液倒入聚四氟乙烯反应釜中,于160℃~240℃保温4~18h后进行磁性分离,再洗涤、干燥。
3.根据权利要求1所述的硅羟基磁珠的制备方法,其特征在于,所述原子层沉积法包括以下步骤:
将所述Fe3O4纳米粒子置于原子层沉积装置的反应腔内,设置反应腔的温度为80~300℃,真空度为1~10mbar;
将SiO2前驱体通入所述反应腔,保持脉冲时间为120ms~300ms;再通入惰性气体进行清洗。
4.根据权利要求3所述的硅羟基磁珠的制备方法,其特征在于,多次循环以下步骤:
将SiO2前驱体通入所述反应腔,保持脉冲时间为120ms~300ms;再通入惰性气体进行清洗。
5.根据权利要求3所述的硅羟基磁珠的制备方法,其特征在于,所述SiO2前驱体选自SiH2Cl2、SiH3Cl、SiHCl3、SiCl4、Si2Cl6、BMAS中的任一种。
6.根据权利要求3所述的硅羟基磁珠的制备方法,其特征在于,所述多元醇为乙二醇、丙三醇、1,3-丙二醇中的至少一种,所述多元醇物质的量为所述三氯化铁物质的量的50~150倍,所述醋酸钠物质的量为所述三氯化铁物质的量的1~6倍,所述三氯化铁的物质的量为所述柠檬酸三钠物质的量的1-6倍。
7.根据权利要求3所述的硅羟基磁珠的制备方法,其特征在于,所述Fe3O4纳米粒子的粒径为20-1000nm。
8.一种由权利要求1~7任一项所述的硅羟基磁珠的制备方法制备得到的硅羟基磁珠。
9.根据权利要求8所述的硅羟基磁珠,其特征在于,所述SiO2膜的厚度为5nm-500nm。
10.权利要9中所述的硅羟基磁珠在提取DNA中的应用。
CN201910647522.3A 2019-07-17 2019-07-17 硅羟基磁珠及其制备方法和应用 Pending CN110304662A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910647522.3A CN110304662A (zh) 2019-07-17 2019-07-17 硅羟基磁珠及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910647522.3A CN110304662A (zh) 2019-07-17 2019-07-17 硅羟基磁珠及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110304662A true CN110304662A (zh) 2019-10-08

Family

ID=68080303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910647522.3A Pending CN110304662A (zh) 2019-07-17 2019-07-17 硅羟基磁珠及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110304662A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563016A (zh) * 2020-12-23 2021-03-26 四川迈克生物新材料技术有限公司 核酸提取用磁性微球的制备方法、所制备的产品及用途
CN113004546A (zh) * 2021-03-01 2021-06-22 安徽为臻生物工程技术有限公司 一种硅羟基磁珠及其制备方法和应用
CN115254067A (zh) * 2022-09-29 2022-11-01 山东博科科学仪器有限公司 一种硅羟基磁珠及其合成方法、应用
CN117550650A (zh) * 2023-11-21 2024-02-13 无锡国盛生物工程股份有限公司 一种SiO2包裹磁性Fe3O4纳米粒子的制备方法
CN117805367A (zh) * 2023-12-25 2024-04-02 江苏宁普医疗科技有限公司 一种Fe3O4@SiO2@Tosyl磁性微球及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693920A (zh) * 2017-02-14 2017-05-24 上海工程技术大学 一种磁性纳米复合材料及其制备方法和应用
CN109355641A (zh) * 2018-11-06 2019-02-19 华中科技大学无锡研究院 一种无机颜料表面改性的方法
CN109569548A (zh) * 2018-12-07 2019-04-05 兰州大学 一种用于海水提铀的磁性纳米功能材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693920A (zh) * 2017-02-14 2017-05-24 上海工程技术大学 一种磁性纳米复合材料及其制备方法和应用
CN109355641A (zh) * 2018-11-06 2019-02-19 华中科技大学无锡研究院 一种无机颜料表面改性的方法
CN109569548A (zh) * 2018-12-07 2019-04-05 兰州大学 一种用于海水提铀的磁性纳米功能材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIAN LIU ET AL.: ""Rapid, cost-effective DNA quantification via a visuallydetectable aggregation of superparamagnetic silica–magnetite nanoparticles"", 《NANO RESEARCH》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563016A (zh) * 2020-12-23 2021-03-26 四川迈克生物新材料技术有限公司 核酸提取用磁性微球的制备方法、所制备的产品及用途
CN113004546A (zh) * 2021-03-01 2021-06-22 安徽为臻生物工程技术有限公司 一种硅羟基磁珠及其制备方法和应用
CN113004546B (zh) * 2021-03-01 2023-09-29 安徽为臻生物工程技术有限公司 一种硅羟基磁珠及其制备方法和应用
CN115254067A (zh) * 2022-09-29 2022-11-01 山东博科科学仪器有限公司 一种硅羟基磁珠及其合成方法、应用
CN117550650A (zh) * 2023-11-21 2024-02-13 无锡国盛生物工程股份有限公司 一种SiO2包裹磁性Fe3O4纳米粒子的制备方法
CN117550650B (zh) * 2023-11-21 2024-06-11 无锡国盛生物工程股份有限公司 一种SiO2包裹磁性Fe3O4纳米粒子的制备方法
CN117805367A (zh) * 2023-12-25 2024-04-02 江苏宁普医疗科技有限公司 一种Fe3O4@SiO2@Tosyl磁性微球及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110304662A (zh) 硅羟基磁珠及其制备方法和应用
Wang et al. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition
Lee et al. Preparation of silica coated magnetic nanoparticles for bioseparation
CN110201613B (zh) 一种聚苯乙烯磁性微球及其制备方法
Fan et al. A new method of synthesis well-dispersion and dense Fe3O4@ SiO2 magnetic nanoparticles for DNA extraction
JP2021151944A (ja) シリカ粒子及びその製造方法
JP2017001944A (ja) イプシロン酸化鉄とその製造方法、磁性塗料および磁気記録媒体
US9708191B2 (en) Silica composite particles and method of preparing the same
JP5688807B2 (ja) ポリマー被覆フェライト微粒子および製造方法
JP5811620B2 (ja) シリカ粒子の製造方法
CN102092795A (zh) 有机高分子修饰的四氧化三铁多级球的制备方法
JP2010155931A (ja) コアシェル型酸化セリウムポリマーハイブリッドナノ粒子及びその分散液の製造方法
CN110665465A (zh) 用于糖肽富集的磁性共价有机框架材料及其制备方法与应用
He et al. Magnetic Fe3O4@ chitosan nanoparticle: synthesis, characterization and application as catalyst carrier
CN109950014A (zh) 一种弱水解体系制备磁性介孔二氧化硅复合微球的方法
CN113559828B (zh) 一种聚丙烯酸磁性纳米复合材料、制备方法及应用
CN110343218B (zh) 一种免疫磁珠及其制备方法
CN104212203B (zh) 二氧化硅复合颗粒及其制造方法
Joshi et al. Critical island size, scaling, and ordering in colloidal nanoparticle self-assembly
JP5915555B2 (ja) シリカ複合粒子及びその製造方法
CN106680486B (zh) 免疫磁珠的制备方法
JP2509798B2 (ja) シリカ球をコ―ティングする方法
Saputra et al. Highly monodisperse and colloidal stable of L-serine capped magnetite nanoparticles synthesized via sonochemistry assisted co-precipitation method
Kafshboran et al. Au nanoparticles decorated on EDTA functionalized Poly (NIPAM-co-allylamine) grafted Fe3O4 for reduction of nitroarenes
US8993057B2 (en) Method for preparing silica-dysprosium oxide core-shell nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191008

RJ01 Rejection of invention patent application after publication