CN110284102A - 一种金属碳化物晶体复合涂层及其制备方法 - Google Patents

一种金属碳化物晶体复合涂层及其制备方法 Download PDF

Info

Publication number
CN110284102A
CN110284102A CN201910511613.4A CN201910511613A CN110284102A CN 110284102 A CN110284102 A CN 110284102A CN 201910511613 A CN201910511613 A CN 201910511613A CN 110284102 A CN110284102 A CN 110284102A
Authority
CN
China
Prior art keywords
metal
layer
metal carbides
carbides
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910511613.4A
Other languages
English (en)
Other versions
CN110284102B (zh
Inventor
毕飞飞
徐一凡
姜天豪
彭林法
蓝树槐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhen Zhen New Energy Equipment Co Ltd
Original Assignee
Shanghai Zhen Zhen New Energy Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhen Zhen New Energy Equipment Co Ltd filed Critical Shanghai Zhen Zhen New Energy Equipment Co Ltd
Priority to CN201910511613.4A priority Critical patent/CN110284102B/zh
Publication of CN110284102A publication Critical patent/CN110284102A/zh
Application granted granted Critical
Publication of CN110284102B publication Critical patent/CN110284102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种增强燃料电池金属极板抗腐蚀性能的金属碳化物晶体复合涂层及其制备方法,在预处理好的金属基材上沉积有一层耐高电位腐蚀的金属底层,然后在所述的金属底层的上表面再沉积一层由金属与金属碳化物交替沉积构成的掺杂过渡层,最后在所述的掺杂过渡层的上表面再沉积一层金属碳化物的晶体涂层。本发明与现有涂层相比,金属碳化物晶体层可以在高电位和酸性环境下,具有结构完整,不易氧化的特点,使其具有更好抗腐蚀能力和导电能力,同时协同耐高电位腐蚀的底层,与基体结合力好,显著增强在燃料电池环境中稳定性,提高金属极板耐久性能。

Description

一种金属碳化物晶体复合涂层及其制备方法
技术领域
本发明属于薄膜沉积技术领域,涉及一种用于燃料电池金属极板的纳米金属层及制备方法,具体涉及一种增强燃料电池金属极板抗腐蚀性能的金属碳化物晶体复合涂层及其制备方法。
背景技术
近一个世纪来,世界经济的快速增长导致化石燃料消耗量日益攀升,二氧化碳排放量剧增,温室效应日趋加剧,随之带来的环境恶化问题引起了全球的广泛关注。在高效利用已有资源的基础上,开发可再生能源获取能量对人类社会未来的发展至关重要。质子交换膜燃料电池具有能源来源广、产物无污染、产能高等优点,在汽车、固定电站、便携式电源等方面具有广泛的应用前景。
典型的质子交换膜燃料电池主要包含膜电极组件、双极板、密封圈、端板等部件,其中双极板是燃料电池中关键部件之一,双极板占燃料电池总重量的80%,成本占总成本的30%~40%。双极板在质子交换膜燃料电池中主要起到支撑膜电极、分配反应气体、收集电流、排出反应生成的水等主要作用;为了满足这些功能,双极板应具有高热导率、高电导率、高机械强度、优异的耐腐蚀性、低成本和易加工等特点。传统的石墨极板由于加工困难,表面刻蚀严重所带来的氢泄露问题,逐渐被金属双极板所取代。但金属双极板由于暴露在腐蚀性环境中时化学稳定性差,受到腐蚀会在板表面形成薄氧化层,造成接触电阻增加;燃料电池腐蚀环境中的副产物如Ni2+、Fe3+和Cr3+会对催化剂层和固体聚合物电解质有毒化作用,降低质子交换膜燃料电池的使用寿命。因此在金属表面制备导电且抗腐蚀的涂层是提高金属极板性能促进燃料电池商业化的重要研究方向。
目前较为成熟的金属极板表面涂层主要分为金属涂层和碳基涂层。其中,类石墨碳基涂层具有良好的导电性及耐腐蚀性能,近年来得到广泛研究。中国专利文献CN102800871A公开了一种采用闭合场非平衡磁控溅射技术的方法,在不锈钢表面先沉积一层铬底层,并在最后的非晶碳层中间沉积铬碳掺杂层过渡层来提高碳层的结合力。该方法得到的碳涂层大幅降低了金属极板的接触电阻;但是,存在主要的问题是耐久性较差,高功率条件下性能衰减严重。采用传统方法制备的非晶碳涂层在燃料电池环境中抗氧化性能不足,碳会逐渐流失,表面氧元素增加,导电性下降,输出性能降低等等。以铂,钯或金等为代表的金属在酸性条件下具有较好的稳定性与导电性,可作为于燃料电池极板涂层,但成本太高,不适于金属极板商业化需求。因此制备一种低成本,高耐久性的金属极板涂层变的尤为重要。
发明内容
本发明提供一种增强燃料电池金属极板抗腐蚀性能的金属碳化物晶体涂层及其制备方法,以解决现有技术中的燃料电池金属极板导电性能、抗腐蚀性能不佳、涂层在燃料电池酸性环境下耐久性能不高等技术问题。
本发明的一种金属碳化物晶体复合涂层,其特征在于,在预处理好的金属基材上沉积有一层耐高电位腐蚀的金属底层,然后在所述的金属底层的上表面再沉积一层由金属与金属碳化物交替沉积构成的掺杂过渡层,最后在所述的掺杂过渡层的上表面再沉积一层金属碳化物的晶体涂层;
所述的金属底层为金属铬(Cr)、镍(Ni)、钛(Ti)、铌(Nb)、金(Au)、铑(Rh)、钯(Pd)、钽(Ta)、钨(W)、锆(Zr)中的一种;所述的金属碳化物为金属Cr、Ni、Ti、Nb、Ta、W或Zr的碳化物中的一种;
在所述的掺杂过渡层中,所述的金属和金属碳化物的掺杂状态为层叠状掺杂或者无序混合状掺杂。
进一步地,在所述的掺杂过渡层中,如果金属与金属碳化物为层叠状掺杂状态,则二者交替复合的次数最少为一次。
进一步地,所述金属底层的厚度为1~2000 nm;所述掺杂过渡层的厚度为1~200nm,其中金属与金属碳化物的质量比为(1~90):100,以增强涂层结合力提高耐腐蚀性能。
进一步地,所述晶体涂层的晶粒尺寸为100~1000nm。
本发明的一种金属碳化物晶体复合涂层的制备方法,其特征在于,包括如下步骤:
(1)采用等离子体清洗、离子束清洗、脉冲清洗或其它类似方法,将金属基材的表面进行清洗预处理;
(2)采用真空磁控溅射、真空蒸发镀膜、真空卷绕镀膜、等离子喷涂、电弧离子镀、化学气相沉积或其它类似方法,在金属基材的表面沉积一层金属底层;所述金属底层为金属铬(Cr)、镍(Ni)、钛(Ti)、铌(Nb)、金(Au)、铑(Rh)、钯(Pd)、钽(Ta)、钨(W)、锆(Zr)中的一种;
(3)采用真空磁控溅射、真空蒸发镀膜、真空卷绕镀膜、等离子喷涂、电弧离子镀、化学气相沉积或其它类似方法,在金属底层的上表面再交替沉积金属与金属碳化物的掺杂过渡层;所述的金属碳化物为金属Cr、Ni、Ti、Nb、Ta、W或Zr的碳化物中的一种,金属与金属碳化物的质量比为(1~90):100;
(4)采用真空磁控溅射、真空蒸发镀膜、真空卷绕镀膜、等离子喷涂、电弧离子镀、化学气相沉积或其它类似方法,在过渡层的上表面再沉积一层金属碳化物的晶体;所述的金属碳化物为金属Cr、Ni、Ti、Nb、Ta、W或Zr的碳化物中的一种。
进一步地,本发明的一种金属碳化物晶体复合涂层的制备方法,所述的步骤(1)中,控制清洗过程中的温度100~500℃和内部气压低于10pa。
进一步地,本发明的一种金属碳化物晶体复合涂层的制备方法,所述的步骤(2)中,在所述沉积的过程中,沉积温度200~800℃,沉积气压低于0.1Pa;所述金属底层的厚度1~2000nm。
进一步地,本发明的一种金属碳化物晶体复合涂层的制备方法,所述的步骤(3)中,在所述沉积的过程中,沉积温度为200~800℃,沉积气压为0.1~1 Pa;所述掺杂过渡层的厚度为1~200nm。
进一步地,本发明的一种金属碳化物晶体复合涂层的制备方法,所述的步骤(4)中,沉积最外层金属碳化物涂层,沉积气压在0.1~1Pa,沉积温度在800~1500℃,其中晶粒尺寸为100~1000nm。
本发明采用恒电位极化的快速评价方法,腐蚀溶液为模拟燃料电池酸性环境(在pH=3的H2SO4溶液中,测试温度80℃,恒电位极化1.6 VSHE 1 h),施加电位为0.84 VSHE和1.6VSHE,接触电阻测试压力为0.6 MPa。
本发明和现有技术相比,该工艺利用金属碳化物的高耐腐蚀性能和高导电性,既可以极大降低成本,又可以显著增强金属极板表面的导电性能和抗腐蚀性能,以及涂层在燃料电池酸性环境下耐久性能,满足了燃料电池环境下对于金属极板的耐久性需求。同时,本发明的目的金属碳化物晶体涂层的制备方法提高了金属极板涂层的制造效率,降低了生产成本。本发明具体应用于燃料电池领域,降低金属极板与气体扩散层间接触电阻,提高燃料电池金属极板耐久性能。
附图说明
图1为本发明的金属碳化物晶体复合涂层的三维结构示意图,其中11为金属基材,12为金属底层,13为过渡层,14为晶体涂层。
图2为本发明的金属碳化物晶体复合涂层的截面示意图。
图3为本发明的多层交替纳米金属复合涂层截面示意图,其中21金属基材,22为金属底层,23为过渡层,24为晶体涂层。
图4是本发明实例3所得金属碳化物晶体涂层表面形貌SEM图。
图5是本发明实例3产品的腐蚀前后的接触电阻图。
图6是本发明实例3产品的腐蚀前后的腐蚀曲线。
具体实施方式
下面结合具体的实施例对本发明提出详细的说明,帮助本领域的技术人员进一步理解本发明,在不脱离本发明构思的前提下,本领域技术人员做出若干变形和改进都属于本发明的保护范围。
实施例1
一种金属碳化物晶体涂层,其结构如图1和2所示,首先在极板11上沉积底层金属12,然后沉积金属与金属碳化物的掺杂过渡层13,最后在最外层沉积金属碳化物涂层14,采用以下具体工艺制备:
(1)预先将金属极板基材11依次放入去离子水和乙醇超声清洗装置中,除去产品表面灰尘、杂质、油污等污染物,提高样品表面清洁度,然后在真空烘箱中烘干等待装入炉腔中;将清洗好的金属极板基材11放入真空镀膜腔体中进行等离子体清洗,除去样品表面氧化层和吸附气体,增强涂层结合力;
(2)采用真空磁控溅射法,在清理干净的金属极板基材11表面沉积Cr金属层12,沉积温度500℃,沉积气压0.06Pa,Cr金属层的厚度为50nm;
(3)采用反应溅射镀膜方法,在Cr金属层12的上表面交替沉积,形成金属碳化物NbC与金属Cr无序混合状的掺杂过渡层13,金属Cr与金属碳化物NbC的混合比例为2:5,沉积气压0.2Pa,沉积温度500℃,沉积涂层厚度500nm;
(4)采用蒸发镀方式在过渡层表面沉积金属Ti的碳化物TiC晶体,形成晶体涂层14,沉积温度1000℃,沉积气压0.1Pa,TiC晶体的厚度为100nm。得到的金属碳化物晶体涂层的表面形貌SEM如图4所示。
实施例2
一种金属碳化物晶体涂层,其结构如图1和2所示,首先在极板11上沉积底层金属12,然后沉积金属与金属碳化物的掺杂过渡层13,最后在最外层沉积金属碳化物涂层14,采用以下具体工艺制备:
(1)预先将金属极板基材11依次放入去离子水和乙醇超声清洗装置中,除去产品表面灰尘、杂质、油污等污染物,提高样品表面清洁度,然后在真空烘箱中烘干等待装入炉腔中;将清洗好的金属极板基材11放入脉冲清洗机中进行脉冲清洗,除去样品表面氧化层和吸附气体,增强涂层结合力;
(2)采用真空蒸发镀膜法,在清理干净的金属极板基材11表面沉积W金属层12,沉积温度800℃,沉积气压0.08Pa,W金属层的厚度为100nm;
(3)采用蒸发镀膜方法,在Cr金属层12的上表面,先沉积一层金属碳化物TiC,再沉积一层金属W,形成金属W与金属碳化物TiC的层叠状的掺杂过渡层13,其中:金属W和金属碳化物TiC的原子比例为1:1,沉积气压1Pa,沉积温度1200℃,沉积涂层厚度800nm;
(4)采用反应溅射方式在过渡层表面沉积金属Ta的碳化物TaC晶体,形成晶体涂层14,沉积温度1000℃,沉积气压0.06Pa,TaC晶体的厚度为100nm。
实施例3
一种金属碳化物晶体涂层,其结构如图3所示,在极板21上沉积底层金属底层22,再沉积金属与金属碳化物交替构成的过渡层23,周期交替沉积,最后在最外层沉积金属碳化物晶体涂层24;可以采用以下具体工艺制备:
(1)预先将金属极板基材21依次放入去离子水和乙醇超声清洗装置中,除去产品表面灰尘、杂质、油污等污染物,提高样品表面清洁度,然后在真空烘箱中烘干等待装入炉腔中;将清洗好的金属极板基材21真空镀膜腔体中进行等离子体清洗,除去样品表面氧化层和吸附气体,增强涂层结合力;
(2)采用电弧离子镀法在清理干净的金属极板基材21表面沉积金属Ni层23,沉积温度300℃,沉积气压0.1Pa,Ni金属层的厚度为30nm;
(3)利用磁控溅射方法,溅射靶材为ZrC,在金属Ni层23的表面沉积一层ZrC,温度500℃,气压0.6pa,ZrC层的厚度为20nm;
(4)重复步骤(2)和(3)各2次,在ZrC层的表面继续沉积金属Ni和金属碳化物ZrC层,得到的金属Ni层和金属碳化物ZrC层各3层,二者的原子比例为3:7;
(5)采用电弧离子镀防法,沉积最外层的金属碳化物TiC层,温度1200℃,气压0.1pa,金属碳化物TiC层厚度为200nm。
将制备好的金属极板在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价,同时用传统的金属极板涂层作为对比,从测试结果来看,如图5的腐蚀前后的接触电阻图,本发明制备的金属碳化物晶体涂层初始接触电阻在0.6MPa装配压力下降低10mΩcm2以下,远低于DOE标准;同时所制备的金属碳化物晶体涂层致密,耐腐蚀性能高,模拟电堆条件下的外部电化学测试中(在pH=3的H2SO4溶液中,测试温度80℃,恒电位极化1.6 VSHE1 h),如图6的腐蚀前后的腐蚀曲线对比,电流密度比传统涂层明显降低,经过长时间加速试验之后,涂层形貌完整,未有腐蚀痕迹。测试腐蚀后的接触电阻基本保持不变。

Claims (11)

1.一种金属碳化物晶体复合涂层,其特征在于,在预处理好的金属基材上沉积有一层耐高电位腐蚀的金属底层,然后在所述的金属底层的上表面再沉积一层由金属与金属碳化物交替沉积构成的掺杂过渡层,最后在所述的掺杂过渡层的上表面再沉积一层金属碳化物的晶体涂层。
2.根据权利要求1所述的一种金属碳化物晶体复合涂层,其特征在于,所述的金属底层为金属铬(Cr)、镍(Ni)、钛(Ti)、铌(Nb)、金(Au)、铑(Rh)、钯(Pd)、钽(Ta)、钨(W)、锆(Zr)中的一种;所述的金属碳化物为金属Cr、Ni、Ti、Nb、Ta、W或Zr的碳化物中的一种。
3.根据权利要求1所述的一种金属碳化物晶体复合涂层,其特征在于,在所述的掺杂过渡层中,所述的金属和金属碳化物的掺杂状态为层叠状掺杂或者无序混合状掺杂。
4.根据权利要求3所述的一种金属碳化物晶体复合涂层,其特征在于,在所述的掺杂过渡层中,如果金属与金属碳化物为层叠状掺杂状态,则二者交替复合的次数最少为一次。
5. 根据权利要求1所述的一种金属碳化物晶体复合涂层,其特征在于,所述金属底层的厚度为1~2000 nm;所述掺杂过渡层的厚度为1~200 nm,其中金属与金属碳化物的质量比为(1~90):100。
6.根据权利要求1所述的一种金属碳化物晶体复合涂层,其特征在于,所述晶体涂层的晶粒尺寸为100~1000nm。
7.一种如权利要求1所述的金属碳化物晶体复合涂层的制备方法,其特征在于,包括如下步骤:
(1)采用等离子体清洗、离子束清洗、脉冲清洗或其它类似方法,将金属基材的表面进行清洗预处理;
(2)采用真空磁控溅射、真空蒸发镀膜、真空卷绕镀膜、等离子喷涂、电弧离子镀、化学气相沉积或其它类似方法,在金属基材的表面沉积一层金属底层;所述金属底层为金属Cr、Ni、Ti、Nb、Au、Rh、Pd、Ta、W、Zr中的一种;
(3)采用真空磁控溅射、真空蒸发镀膜、真空卷绕镀膜、等离子喷涂、电弧离子镀、化学气相沉积或其它类似方法,在金属底层的上表面再交替沉积金属与金属碳化物的掺杂过渡层;所述的金属碳化物为金属Cr、Ni、Ti、Nb、Ta、W或Zr的碳化物中的一种,金属与金属碳化物的质量比为(1~90):100;
(4)采用真空磁控溅射、真空蒸发镀膜、真空卷绕镀膜、等离子喷涂、电弧离子镀、化学气相沉积或其它类似方法,在过渡层的上表面再沉积一层金属碳化物的晶体;所述的金属碳化物为金属Cr、Ni、Ti、Nb、Ta、W或Zr的碳化物中的一种。
8.根据权利要求7所述的制备方法,其特征在于,所述的步骤(1)中,控制清洗过程中的温度100~500℃和内部气压低于10pa。
9.根据权利要求7所述的制备方法,其特征在于,所述的步骤(2)中,在所述沉积的过程中,沉积温度200~800℃,沉积气压低于0.1Pa;所述金属底层的厚度1~2000nm。
10. 根据权利要求7所述的制备方法,其特征在于,所述的步骤(3)中,在所述沉积的过程中,沉积温度为200~800℃,沉积气压为0.1~1 Pa;所述掺杂过渡层的厚度为1~200nm。
11.根据权利要求7所述的制备方法,其特征在于,所述的步骤(4)中,沉积最外层金属碳化物涂层,沉积气压在0.1~1Pa,沉积温度在800~1500℃,其中晶粒尺寸为100~1000nm。
CN201910511613.4A 2019-06-13 2019-06-13 一种金属碳化物晶体复合涂层及其制备方法 Active CN110284102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910511613.4A CN110284102B (zh) 2019-06-13 2019-06-13 一种金属碳化物晶体复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910511613.4A CN110284102B (zh) 2019-06-13 2019-06-13 一种金属碳化物晶体复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110284102A true CN110284102A (zh) 2019-09-27
CN110284102B CN110284102B (zh) 2022-08-30

Family

ID=68003934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910511613.4A Active CN110284102B (zh) 2019-06-13 2019-06-13 一种金属碳化物晶体复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110284102B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911692A (zh) * 2019-12-06 2020-03-24 武汉大学 一种耐蚀液态金属电池正极集流体
CN111029606A (zh) * 2019-12-20 2020-04-17 佛山国防科技工业技术成果产业化应用推广中心 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法
CN111647862A (zh) * 2020-06-28 2020-09-11 中国科学院宁波材料技术与工程研究所 一种钽基抗腐蚀防护复合涂层及其制备方法与应用
CN112609165A (zh) * 2020-12-15 2021-04-06 辽宁科技大学 一种不锈钢基燃料电池双极板表面复合涂层及其制备方法
CN112993299A (zh) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 一种燃料电池金属双极板硅掺杂的碳化铌涂层及其制备方法
CN114015987A (zh) * 2021-10-08 2022-02-08 上海治臻新能源股份有限公司 一种降低基材离子污染的高延展性金属极板预涂层
CN114079060A (zh) * 2020-08-18 2022-02-22 未势能源科技有限公司 用于燃料电池的极板结构及燃料电池
CN114976089A (zh) * 2022-05-27 2022-08-30 上海电气集团股份有限公司 一种含涂层的金属双极板及其制备方法
CN115000444A (zh) * 2022-06-21 2022-09-02 上海电气集团股份有限公司 多层复合碳涂层及其制备方法、应用、燃料电池双极板、燃料电池
CN115029663A (zh) * 2022-07-04 2022-09-09 中汽创智科技有限公司 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN115404452A (zh) * 2022-07-29 2022-11-29 南京航空航天大学 提高碳基电极表面性能的复合涂层、石墨电极及制备方法
CN116565245A (zh) * 2023-07-11 2023-08-08 四川中科兴业高新材料有限公司 一种基于pps的双极板的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264196A (ja) * 1995-03-22 1996-10-11 Toshiba Corp 燃料電池
CN101604756A (zh) * 2008-06-11 2009-12-16 财团法人工业技术研究院 双极板与燃料电池
CN103003465A (zh) * 2010-07-16 2013-03-27 日产自动车株式会社 导电构件、其制造方法、燃料电池用隔离体及固体高分子型燃料电池
CN105377193A (zh) * 2014-04-03 2016-03-02 爱德华兹生命科学公司 高耐久性心脏瓣膜
CN108149198A (zh) * 2017-12-26 2018-06-12 浙江大学 一种wc硬质合金薄膜及其梯度层技术室温制备方法
CN108574107A (zh) * 2018-03-16 2018-09-25 上海交通大学 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法
CN109037723A (zh) * 2018-07-23 2018-12-18 上海交通大学 一种用于燃料电池金属双极板的石墨微晶碳涂层及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264196A (ja) * 1995-03-22 1996-10-11 Toshiba Corp 燃料電池
CN101604756A (zh) * 2008-06-11 2009-12-16 财团法人工业技术研究院 双极板与燃料电池
CN103003465A (zh) * 2010-07-16 2013-03-27 日产自动车株式会社 导电构件、其制造方法、燃料电池用隔离体及固体高分子型燃料电池
CN105377193A (zh) * 2014-04-03 2016-03-02 爱德华兹生命科学公司 高耐久性心脏瓣膜
CN108149198A (zh) * 2017-12-26 2018-06-12 浙江大学 一种wc硬质合金薄膜及其梯度层技术室温制备方法
CN108574107A (zh) * 2018-03-16 2018-09-25 上海交通大学 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法
CN109037723A (zh) * 2018-07-23 2018-12-18 上海交通大学 一种用于燃料电池金属双极板的石墨微晶碳涂层及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡志海等: "《CrN基微纳米复合膜的制备与应用》", 30 April 2017, 知识产权出版社, pages: 44 - 45 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911692A (zh) * 2019-12-06 2020-03-24 武汉大学 一种耐蚀液态金属电池正极集流体
CN112993299A (zh) * 2019-12-14 2021-06-18 中国科学院大连化学物理研究所 一种燃料电池金属双极板硅掺杂的碳化铌涂层及其制备方法
CN112993299B (zh) * 2019-12-14 2022-01-28 中国科学院大连化学物理研究所 燃料电池金属双极板硅掺杂的碳化铌涂层及其制备方法
CN111029606A (zh) * 2019-12-20 2020-04-17 佛山国防科技工业技术成果产业化应用推广中心 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法
CN111647862A (zh) * 2020-06-28 2020-09-11 中国科学院宁波材料技术与工程研究所 一种钽基抗腐蚀防护复合涂层及其制备方法与应用
CN114079060A (zh) * 2020-08-18 2022-02-22 未势能源科技有限公司 用于燃料电池的极板结构及燃料电池
CN112609165A (zh) * 2020-12-15 2021-04-06 辽宁科技大学 一种不锈钢基燃料电池双极板表面复合涂层及其制备方法
CN114015987B (zh) * 2021-10-08 2022-11-29 上海治臻新能源股份有限公司 一种降低基材离子污染的高延展性金属极板预涂层
CN114015987A (zh) * 2021-10-08 2022-02-08 上海治臻新能源股份有限公司 一种降低基材离子污染的高延展性金属极板预涂层
CN114976089A (zh) * 2022-05-27 2022-08-30 上海电气集团股份有限公司 一种含涂层的金属双极板及其制备方法
CN114976089B (zh) * 2022-05-27 2024-04-12 上海电气集团股份有限公司 一种含涂层的金属双极板及其制备方法
CN115000444A (zh) * 2022-06-21 2022-09-02 上海电气集团股份有限公司 多层复合碳涂层及其制备方法、应用、燃料电池双极板、燃料电池
CN115000444B (zh) * 2022-06-21 2023-12-29 上海电气集团股份有限公司 多层复合碳涂层及其制备方法、应用、燃料电池双极板、燃料电池
CN115029663A (zh) * 2022-07-04 2022-09-09 中汽创智科技有限公司 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN115404452A (zh) * 2022-07-29 2022-11-29 南京航空航天大学 提高碳基电极表面性能的复合涂层、石墨电极及制备方法
CN116565245A (zh) * 2023-07-11 2023-08-08 四川中科兴业高新材料有限公司 一种基于pps的双极板的制备方法
CN116565245B (zh) * 2023-07-11 2023-09-12 四川中科兴业高新材料有限公司 一种基于pps的双极板的制备方法

Also Published As

Publication number Publication date
CN110284102B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN110284102A (zh) 一种金属碳化物晶体复合涂层及其制备方法
CN110684946B (zh) 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用
Luo et al. Design and fabrication of bipolar plates for PEM water electrolyser
CN106374116A (zh) 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
CN107681173A (zh) 一种用于燃料电池金属极板的点状导电复合涂层
CN113265638B (zh) 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
CN210628419U (zh) 一种燃料电池金属双极板涂层
JP2008056521A5 (zh)
CN112803033A (zh) 一种用于燃料电池金属双极板的薄膜及其制备方法
Hrbek et al. Sputter-etching treatment of proton-exchange membranes: Completely dry thin-film approach to low-loading catalyst-coated membranes for water electrolysis
CN106684394A (zh) 一种质子交换膜燃料电池不锈钢双极板表面改性方法
CN110061257A (zh) 用于pemfc的金属基双极板及其制备方法
CN114231925A (zh) 一种燃料电池金属双极板复合涂层及其制备方法
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN115928017A (zh) 一种高导电耐蚀防护复合涂层及其制备方法与应用
CN112820890B (zh) 一种防腐导电涂层制备方法、结构以及燃料电池极板
CN102306804B (zh) 用于质子交换膜燃料电池双极板的高sp2杂化致密碳镀层及其制备方法
US20100122911A1 (en) Method for coating metallic interconnect of solid oxide fuel cell
CN108598497A (zh) 一种用于燃料电池金属极板的纳米金属层及制备方法
CN113025980A (zh) 一种燃料电池双极板用耐腐蚀膜层及其制备方法
CN104611679B (zh) 一种质子交换膜燃料电池钛合金双极板纳米晶ZrC/Zr复合涂层及其制备方法
CN201717318U (zh) 一种质子交换膜燃料电池用金属双极板
CN204361172U (zh) 一种氮化增强表面的燃料电池用双极板
CN113328111B (zh) 一种具有铬基氮化物复合镀层的不锈钢双极板及其制备方法
CN104835968A (zh) 一种质子交换膜燃料电池钛合金双极板纳米晶Zr涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information

Inventor after: Bi Feifei

Inventor after: Xu Yifan

Inventor after: Jiang Tianhao

Inventor after: Lan Shuhuai

Inventor before: Bi Feifei

Inventor before: Xu Yifan

Inventor before: Jiang Tianhao

Inventor before: Peng Linfa

Inventor before: Lan Shuhuai

CB03 Change of inventor or designer information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201306 factory building 1, No. 1500, cenglin Road, Lingang New District, pilot Free Trade Zone, Pudong New Area, Shanghai

Applicant after: Shanghai Zhizhen new energy Co.,Ltd.

Address before: 201306 factory building 1, no.1500, cenglin Road, Nicheng Town, Pudong New Area, Shanghai

Applicant before: SHANGHAI ZHIZHEN NEW ENERGY EQUIPMENT CO.,LTD.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant