CN114015987A - 一种降低基材离子污染的高延展性金属极板预涂层 - Google Patents

一种降低基材离子污染的高延展性金属极板预涂层 Download PDF

Info

Publication number
CN114015987A
CN114015987A CN202111172968.9A CN202111172968A CN114015987A CN 114015987 A CN114015987 A CN 114015987A CN 202111172968 A CN202111172968 A CN 202111172968A CN 114015987 A CN114015987 A CN 114015987A
Authority
CN
China
Prior art keywords
metal
layer
coating
deposition
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111172968.9A
Other languages
English (en)
Other versions
CN114015987B (zh
Inventor
毕飞飞
黎焕明
姜天豪
胡鹏
蓝树槐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhizhen New Energy Co Ltd
Original Assignee
Shanghai Zhizhen New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhizhen New Energy Co Ltd filed Critical Shanghai Zhizhen New Energy Co Ltd
Priority to CN202111172968.9A priority Critical patent/CN114015987B/zh
Publication of CN114015987A publication Critical patent/CN114015987A/zh
Application granted granted Critical
Publication of CN114015987B publication Critical patent/CN114015987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明的一种降低基材离子污染的高延展性金属极板预涂层,以金属基材为芯材,依次包括:覆盖在所述金属基材表面的金属高能粒子堆积成的高能结合层,覆盖在所述高能结合层表面的离子阻隔层,以及覆盖在所述离子阻隔层表面的纳米导电层;所述离子阻隔层是具有单层复合金属结构或多层金属交替结构,或者两者组合的多层金属复合结构的致密纳米金属膜层。本发明实现了金属极板预涂层结合性能、延展性能、导电耐蚀性能的有机结合,提升了涂层的延展性能,避免涂层在冲压成形过程中产生贯穿至基体的裂纹,提升了涂层的耐腐蚀性能,对于提高金属极板生产效率,降低金属极板加工成本具有重要意义。

Description

一种降低基材离子污染的高延展性金属极板预涂层
技术领域
本发明属于燃料电池技术领域,具体涉及一种降低基材离子污染的高延展性金属极板预涂层及其制备方法。
背景技术
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)以氢气为燃料进行发电,并且产物为水无污染,对环境十分友好,其应用范围已经包括汽车、无人机、固定电站等。而在质子交换膜燃料电池电堆的诸多零部件当中,双极板发挥着至关重要的作用,其主要承担着气体分配、热量传导、电量传输以及一定的结构支撑作用,金属薄板也依靠着优良的导电性能、导热性能和抗震性能成为双极板加工的主流材料。但是未经表面改性的金属极板易发生严重腐蚀造成大量离子析出污染催化剂,表面生成的氧化保护膜造成其导电性的急剧下降,因此仍需对金属极板进行表面改性以提高其导电性和耐蚀性,最为常用的金属极板表面改性方法就是在其表面沉积一层或者多层涂层。
目前金属极板从原材料到加工成产品需要经历很多道工艺,主要依次包括金属薄板的冲压成型、阴极板和阳极板的焊接、金属极板的表面改性处理以及密封。这种先成形后涂层的工艺次序会导致金属极板表面涂层的不均匀,尤其体现在金属极板脊上、槽底以及侧壁处涂层的厚度差异,同时在分立的极板表面沉积涂层会容易造成原材料的浪费,导致金属极板生产效率的下降以及良品率的降低。因此,为了提高金属极板的生产效率,采用预涂层工艺——直接在金属基材表面沉积涂层后再进行冲压成形成金属极板,具有很好的应用前景。例如专利文献CN110129727A公开了一种采用物理气相沉积方法制备金属带预涂层的方法,可以大幅降低金属极板的生产成本,且金属过渡层加上石墨化镀层的结构具有良好的导电耐蚀性能。专利文献CN1875128A公开了一种涂覆金属涂层的不锈钢带的制备方法,并在抗拉测试中钢带被单轴拉断而不会出现涂层的剥落和开裂现象。
虽然预涂层工艺能够改善金属极板的生产效率和表面涂层的均匀性,但是金属基材在冲压成极板的过程中,基材上的应变超过20%,甚至达到30%。在如此大的应变条件下,极板表面尤其圆角处的改性涂层会发生严重的开裂现象,甚至会因为结合力不足从基材上剥离,造成腐蚀溶液渗入基材加速腐蚀,析出大量金属基材离子造成电池电堆性能迅速衰减。这就对涂层的延展性能提出了更高的要求。延展性是指材料在受力而产生破裂之前的塑性变形能力,涂层延展性越好,在冲压成形过程中产生的裂纹数量越少,能够有效地阻止腐蚀溶液渗入金属基材和金属基材离子的析出。在众多材料当中,贵金属Au、Ag、Pt等具有极佳的延展性能,但是由于其成本过高,不适用于批量生产。因此,设计一种降低基材离子污染的高延展性预涂层对于降低金属极板生产成本和提高金属极板生产效率具有重要意义。
发明内容
本发明的目的是提供一种降低基材离子污染的高延展性金属极板预涂层及其制备方法,以避免预涂层在冲压成型过程中发生开裂以及剥落现象。
本发明的技术方案如下:
本发明的一种降低基材离子污染的高延展性金属极板预涂层,其特征在于,以金属基材为芯材,依次包括:覆盖在所述金属基材表面的金属高能粒子堆积成的高能结合层,覆盖在所述高能结合层表面的离子阻隔层,以及覆盖在所述离子阻隔层表面的纳米导电层;
所述离子阻隔层是具有单层复合金属结构或多层金属交替结构,或者两者组合的多层金属复合结构的致密纳米金属膜层;
所述单层复合金属结构是由至少两种金属同时均匀沉积形成的致密纳米金属膜层,且两种所述金属中至少含有贵金属Au、Ag、Pt中的一种,其余所述金属为Au、Ag、Pt、Cu、Al、Nb、Mo、Ta、Ti中的一种或两种以上;所述单层复合金属结构具有良好延展性和耐蚀性,有利于协调涂层变形,并且金属成分在涂层内部均匀分布;
所述多层金属交替结构是由面心立方晶格金属与体心立方晶格金属交替沉积而成致密纳米金属膜层,或者由同一种可控形貌金属的不同晶体形貌交替沉积而成的致密纳米金属膜层;所述面心立方晶格金属为Al、Cu、Ni、Au、Ag、Pt中的一种,所述体心立方晶格金属为W、Mo、V、Nb、Ta中的一种;所述可控形貌金属为Au、Ag、Pt、Cu、Al、Nb、Mo、Ta、Ti,Sn中的一种;所述晶体形貌包括柱状晶、等轴晶或层状晶,通过沉积工艺进行控制。
进一步地,所述单层复合金属结构中,所述贵金属的原子比为1%~20%,优选为1%~10%,更优选为1%~5%,贵金属成分过高则涂层成本显著增加。当所述离子阻隔层为单层复合金属结构时,其厚度≥200nm,优选为400~3000nm,更优选为600~2000nm,厚度过低时涂层延展性较差,经过冲压成形后开裂明显,厚度过高时涂层沉积效率下降。
进一步地,所述多层交替结构含有至少两个金属子层,每一金属子层的厚度大于5nm,优选厚度为20~100nm,若每一金属子层的厚度太薄,则层与层之间界面不明显,无法起到阻挡裂纹扩展的作用;若每一层金属结构的厚度太厚则异质界面数量太少,阻挡裂纹的延伸作用十分有限。当所述离子阻隔层为多层交替结构时,其厚度≥500nm,优选为800~3000nm,更优选为1000~2000nm。
进一步地,所述高能结合层是由过渡金属Ti、Cr、Ta、Nb、Mo、Zr中的一种或几种的高能粒子堆积而成;所述金属的高能粒子通过物理咬合或者化学成键方式覆盖在金属基材表面;所述物理咬合方式主要通过轰击高能粒子注入进所述金属基材的亚表面形成交错混合层;所述化学成键方式主要通过堆积的金属高能粒子和所述金属基材的金属原子之间的金属键强结合在一起;所述高能结合层的厚度为5~100nm,优选的10~50nm。
进一步地,所述纳米导电层是由贵金属材料或者导电碳材料沉积而成的纳米涂层,其厚度为10~1000nm,优选为50~200nm;所述贵金属材料为Au、Ag、Pt中的一种;所述导电碳材料为石墨、类石墨碳、非晶碳、类金刚石碳中的一种。
本发明所述的降低基材离子污染的高延展性金属极板预涂层的制备方法,其特征在于,包括以下步骤:
(1)在真空环境中对所述金属基材进行预热处理,而后进行等离子体清洗,除去金属基材表面的杂质和氧化膜并且使金属基材表面活化;
(2)采用离子注入或高偏压溅射方法,在所述金属基材表面沉积所述高能结合层;
(3)采用磁控溅射沉积、电镀沉积、离子镀沉积或喷涂方法,在所述高能结合层的表面沉积所述离子阻隔层;
(4)采用磁控溅射沉积、化学气相沉积、脉冲激光沉积或离子镀沉积方法,在所述离子阻隔层表面沉积所述纳米导电层;即可得到带有所述的降低基材离子污染的高延展性预涂层的金属极板板材。
在所述步骤(1)中,所述等离子体清洗方式包括射频清洗,离子源清洗,自偏压清洗等;所述预热温度为50~500℃,清洗时间为2~30min。
在所述步骤(2)中,所述离子注入的能量为0.01~10MeV,所述高偏压溅射的电压大于300V;所述沉积温度为100~800℃,沉积气压0.01~10Pa,沉积时间2~60min。
在所述步骤(3)中,优选采用磁控溅射沉积方法,所述沉积温度为100~800℃,沉积气压0.01~10Pa,沉积时间0.1~10h。
在所述步骤(4)中,优选采用磁控溅射沉积方法,所述沉积温度200~800℃,沉积气压0.01~100Pa,沉积时间0.1~10h。
进一步地,所述金属极板预涂层的制备在卷对卷金属极板镀膜设备上完成。
与现有技术相比,本发明通过高能结合层、离子阻隔层以及纳米导电层的多层结构设计实现了金属极板预涂层结合性能、延展性能、导电耐蚀性能的有机结合;离子阻隔层的结构采用元素复合以及多层交替的设计,极大程度上提升了涂层的延展性能,避免涂层在冲压成形过程中产生贯穿至基体的裂纹,具有优异的离子阻隔性能,进一步提升了涂层的耐腐蚀性能,对于提高金属极板生产效率,降低金属极板加工成本具有重要意义。
附图说明
图1为实施例1的具有单层复合金属结构的离子阻隔层的高延展性预涂层示意图;
图2为实施例1的具有单层复合金属结构的离子阻隔层的高延展性预涂层冲压成形后示意图;
图3为实施例2的具有多层金属交替结构的离子阻隔层的高延展性预涂层示意图;
图4为实施例2的具有多层金属交替结构的离子阻隔层的高延展性预涂层冲压成形后示意图;
图5为对比例1的具有单一元素离子阻隔层的预涂层示意图;
图6为对比例1的具有单一元素离子阻隔层的预涂层冲压成形后示意图;
图7为对比例1涂层成形后极板圆角处涂层状态示意图;
图8为实施例2涂层成形后极板圆角处涂层状态示意图;
图9为实施例1和对比例1涂层成形后表面形貌照片;
图中标记说明:1-金属基材,2-高能结合层,3-离子阻隔层,3-1离子阻隔层第一子层,3-2离子阻隔层第二子层,4-纳米导电层,5-具有单层复合金属结构的离子阻隔层中的贵金属,6-裂纹。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
一种降低基材离子污染的高延展性金属极板预涂层,在卷对卷金属极板镀膜设备上,以长卷片状金属箔材为金属基材,采用以下步骤进行制备:
(1)将清洗室内抽真空至低于本底真空8E-3Pa,温度加热至200℃,通入氩气维持腔体气压在0.1Pa,样品上施加-800V的偏压进行高偏压等离子体清洗,除去金属基材表面的杂质和氧化膜;
(2)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,样品上施加-500V的偏压,采用高偏压溅射法在金属基材表面沉积金属Ti高能粒子,沉积时间10min,得到6nm厚的高能结合层;
(3)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,采用磁控溅射方法,沉积时间30min,在高能结合层表面沉积厚度为600nm的具有单层金属Ti/Ag复合结构的离子阻隔层,其中Ag的原子比为5%;
(4)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.2Pa,采用磁控溅射沉积方法,沉积时间60min,在离子阻隔层表面沉积厚度为200nm的导电非晶碳涂层作为纳米导电层;
(5)将金属基材在真空中冷却,即可得到所述的高延展性金属极板预涂层。
图1和图2所示为实施例1得到的具有单层复合金属结构的离子阻隔层的高延展性预涂层示意图,金属Ti和少量贵金属Ag均匀分布形成离子阻隔层。金属基材经过冲压成形成金属极板时,大量裂纹从纳米导电层扩展至离子阻隔层中,涂层中具有优异延展性能的贵金属Ag晶粒被拉长而不开裂,通过协调变形作用能够有效地抑制裂纹向基材延伸以及新裂纹的萌生。
实施例2
一种降低基材离子污染的高延展性金属极板预涂层,在卷对卷金属极板镀膜设备上,以长卷片状金属箔材为金属基材,采用以下步骤进行制备:
(1)将清洗室内抽真空至低于本底真空8E-3Pa,温度加热至250℃,通入氩气维持腔体气压在0.2Pa,样品上施加-700V的偏压进行高偏压等离子体清洗,除去金属基材表面的杂质和氧化膜;
(2)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,样品上施加-500V的偏压,采用高偏压溅射法在金属基材表面沉积金属Nb高能粒子,沉积时间20min,得到20nm厚的高能结合层;
(3)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,采用磁控溅射沉积方法,沉积时间60min,在高能结合层表面交替沉积Nb金属和Cu金属,共有4层,每层厚度均为300nm,得到总厚度为1200nm的具有多层金属交替结构的离子阻隔层;
(4)将沉积室内温度加热至500℃,通入氩气维持腔体气压在0.5Pa,采用磁控溅射沉积方法,沉积时间30min,在离子阻隔层表面沉积厚度为100nm的导电非晶碳涂层作为纳米导电层;
(5)将金属基材在真空中冷却,即可得到所述的高延展性金属极板预涂层。
图3和图4所示为实施例2制得的具有多层金属交替结构的离子阻隔层的高延展性预涂层示意图,两种金属交替沉积形成离子阻隔层。金属基材经过冲压成形成金属极板时,大量裂纹从纳米导电层扩展至离子阻隔层中,金属之间存在的异质界面会阻断裂纹向基材扩展形成贯穿涂层的细长裂纹,而在单元层内部形成不连续的短裂纹。
实施例3
一种降低基材离子污染的高延展性金属极板预涂层,在卷对卷金属极板镀膜设备上,以长卷片状金属箔材为金属基材,采用以下步骤进行制备:
(1)将清洗室内抽真空至低于本底真空8E-3Pa,温度加热至200℃,通入氩气维持腔体气压在0.1Pa,样品上施加-800V的偏压进行高偏压等离子体清洗,除去金属基材表面的杂质和氧化膜;
(2)将沉积室内温度加热至200℃,通入氩气维持腔体气压在0.2Pa,采用离子注入法,在金属基材表面注入金属Cr的高能离子,注入能量0.1MeV,注入时间60min,得到30nm厚的高能结合层;
(3)将沉积室内温度加热至300℃,通入氩气维持腔体气压在0.1Pa,采用磁控溅射方法,沉积时间60min,在高能结合层表面沉积厚度为1000nm的具有单层金属Nb/Au复合结构的离子阻隔层,其中Au的原子比为3%;
(4)将沉积室内温度加热至500℃,通入氩气维持腔体气压在0.5Pa,采用化学气相沉积方法,沉积时间60min,在离子阻隔层表面沉积厚度为180nm的导电非晶碳涂层作为纳米导电层;
(5)将金属基材在真空中冷却,即可得到所述的高延展性金属极板预涂层。
实施例4
一种降低基材离子污染的高延展性金属极板预涂层,在卷对卷金属极板镀膜设备上,以长卷片状金属箔材为金属基材,采用以下步骤进行制备:
(1)将清洗室内抽真空至低于本底真空8E-3Pa,温度加热至250℃,通入氩气维持腔体气压在0.2Pa,样品上施加-700V的偏压进行高偏压等离子体清洗,除去金属基材表面的杂质和氧化膜;
(2)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,样品上施加-400V的偏压,采用高偏压溅射法在金属基材表面沉积金属Nb高能粒子,沉积时间10min,得到10nm厚的高能结合层;
(3)将沉积室内温度加热至500℃,通入氩气维持腔体气压在0.1Pa,采用磁控溅射沉积方法,沉积时间60min,控制高低偏压(-400V/-100V)交替操作,在高能结合层表面形成不同晶体形貌的金属Nb交替沉积的多层金属交替结构,共计10层,每个子层的高低偏压Nb涂层厚度比为1:4,得到800nm厚的具有多层金属交替结构的离子阻隔层;
(4)将沉积室内温度加热至500℃,通入氩气维持腔体气压在0.5Pa,采用磁控溅射沉积方法,沉积时间6min,在离子阻隔层表面沉积厚度为20nm的纳米Au涂层作为纳米导电层;
(5)将金属基材在真空中冷却,即可得到所述的高延展性金属极板预涂层。
对比例1
具有单一元素离子阻隔层的金属极板预涂层,在卷对卷金属极板镀膜设备上,以长卷片状金属箔材为金属基材,采用以下步骤进行制备:
(1)将清洗室内抽真空至低于本底真空8E-3Pa,温度加热至200℃,通入氩气维持腔体气压在0.1Pa,样品上施加-800V的偏压进行高偏压等离子体清洗,除去金属基材表面的杂质和氧化膜;
(2)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,样品上施加-500V的偏压,采用高偏压溅射法在金属基材表面沉积Ti高能粒子,沉积时间10min,得到6nm厚的高能结合层;
(3)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,用磁控溅射沉积方法,沉积时间90min,在高能结合层表面沉积Ti元素,得到厚度为600nm的单层离子阻隔层;
(4)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.2Pa,采用磁控溅射方法,沉积时间60min,在离子阻隔层表面沉积厚度为200nm导电非晶碳涂层作为纳米导电层;
(5)将金属基材在真空中冷却,得到具有单一元素离子阻隔层的金属极板预涂层。
图5和图6所示为对比例1得到的具有单一元素离子阻隔层的金属极板预涂层示意图,经过冲压成形成金属极板后,大量裂纹从纳米导电层扩展至离子阻隔层中,并且一直延伸至基材表面使基材表面暴露出来。
对比例2
一种没有高能结合层的金属极板预涂层,采用以下步骤进行制备:
(1)将清洗室内抽真空至低于本底真空8E-3Pa,温度加热至200℃,通入氩气维持腔体气压在0.1Pa,样品上施加-800V的偏压进行高偏压等离子体清洗,除去金属基材表面的杂质和氧化膜;
(2)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.1Pa,采用磁控溅射沉积方法,沉积时间30min,在金属基材表面沉积厚度为600nm的具有单层金属Ti/Ag复合结构的离子阻隔层,其中Ag的原子比为5%;
(3)将沉积室内温度加热至400℃,通入氩气维持腔体气压在0.2Pa,采用磁控溅射沉积方法,沉积时间60min,在离子阻隔层表面沉积厚度为200nm导电非晶碳涂层作为纳米导电层;
(4)将金属基材在真空中冷却,即可得到所述的高延展性金属极板预涂层。
采用单轴拉伸试验对实施例1~4以及对比例1~2的金属基材的性能进行评价,观察拉伸过程中基材表面出现裂纹的情况,确定涂层表面裂纹最早出现时的断裂应变。采用表面接触电阻测试来评价涂层的导电性能,测试压力为0.6MPa。将实施例1~4以及对比例1~2的金属基材进行冲压成形成极板,观察涂层表面产生的裂纹数量和密度,而后采用电化学方法测试成形后极板的腐蚀性能,测试电位1.6V,测试时间10h,并收集电化学腐蚀后的溶液测量溶液中金属铁离子的浓度,对应的测试结果列于图7~9和表1中。如图7和8所示,在对比例1的预涂层极板中,在极板的圆角处出现大量延伸至基材的长裂纹,在腐蚀溶液的作用下会造成大量的金属基材离子析出,而在本发明所述的实施例1的预涂层极板中,脊槽以及侧壁上的涂层厚度均匀,并且涂层内部基本没有延伸到基材表面的裂纹,裂纹的延伸均在多层界面处终止。如图8所示,所述实施例1涂层经过拉伸成形后表面几乎无裂纹,而对比例1涂层表面则出现了大量平行交错的裂纹,说明实施例1涂层延展性能要远远优于对比例1。
表1实施例1~4和对比例1~2的测试结果
Figure BDA0003294028530000131
从表1中的测试结果可以看出,金属基材经过冲压成形后涂层表面均产生了裂纹,其中实施例1~4中所制备涂层表面裂纹数量较少,而对比例1~2中涂层表面产生大量裂纹,对比例2中涂层甚至还存在部分脱离现象。在单轴拉伸试验当中,观察裂纹出现时的拉伸应变可以看出,实施例1~4中涂层断裂应变均大于20%,而对比例1~2在应变不到10%时就已经产生了裂纹,进一步说明实施例涂层的延展性能要优于对比例涂层。对实施例1~4和对比例1~2涂层进行导电性能和腐蚀性能的评价,六种涂层的接触电阻和腐蚀电流密度基本保持一致,而实施例1~4中涂层腐蚀后溶液中的Fe离子析出量均近似低于0.5ppm,对比例中涂层的Fe离子析出量要高出约一个数量级,说明本发明所述的高延展性金属极板预涂层具有优异的离子阻隔性能。

Claims (13)

1.一种降低基材离子污染的高延展性金属极板预涂层,其特征在于,以金属基材为芯材,依次包括:覆盖在所述金属基材表面的金属高能粒子堆积成的高能结合层,覆盖在所述高能结合层表面的离子阻隔层,以及覆盖在所述离子阻隔层表面的纳米导电层;
所述离子阻隔层是具有单层复合金属结构或多层金属交替结构,或者两者组合的多层金属复合结构的致密纳米金属膜层。
2.根据权利要求1所述的高延展性金属极板预涂层,其特征在于,所述单层复合金属结构是由至少两种金属同时均匀沉积形成的致密纳米金属膜层,且两种所述金属中至少含有贵金属Au、Ag、Pt中的一种,其余所述金属为Au、Ag、Pt、Cu、Al、Nb、Mo、Ta、Ti中的一种或两种以上;所述多层金属交替结构是由面心立方晶格金属与体心立方晶格金属交替沉积而成致密纳米金属膜层,或者由同一种可控形貌金属的不同晶体形貌交替沉积而成的致密纳米金属膜层。
3.根据权利要求2所述的高延展性金属极板预涂层,其特征在于,所述面心立方晶格金属为Al、Cu、Ni、Au、Ag、Pt中的一种,所述体心立方晶格金属为W、Mo、V、Nb、Ta中的一种;所述可控形貌金属为Au、Ag、Pt、Cu、Al、Nb、Mo、Ta、Ti,Sn中的一种;所述晶体形貌包括柱状晶、等轴晶或层状晶。
4.根据权利要求2所述的高延展性金属极板预涂层,其特征在于,所述单层复合金属结构中,所述贵金属的原子比为1%~20%;所述多层交替结构含有至少两个金属子层,每一金属子层的厚度大于5nm。
5. 根据权利要求1所述的高延展性金属极板预涂层,其特征在于,当所述离子阻隔层为单层复合金属结构时,其厚度≥200 nm;当所述离子阻隔层为多层交替结构时,其厚度≥500 nm。
6. 根据权利要求1所述的高延展性金属极板预涂层,其特征在于,所述高能结合层是由过渡金属Ti、Cr、Ta、Nb、Mo、Zr中的一种或几种的高能粒子堆积而成;所述高能结合层的厚度为5~100 nm。
7.根据权利要求6所述的高延展性金属极板预涂层,其特征在于,所述金属的高能粒子通过物理咬合或者化学成键方式覆盖在金属基材表面;所述物理咬合方式主要通过轰击高能粒子注入进所述金属基材的亚表面形成交错混合层;所述化学成键方式主要通过堆积的金属高能粒子和所述金属基材的金属原子之间的金属键强结合在一起。
8. 根据权利要求1所述的高延展性金属极板预涂层,其特征在于,所述纳米导电层是由贵金属材料或者导电碳材料沉积而成的纳米涂层,其厚度为10~1000 nm;所述贵金属材料为Au、Ag、Pt中的一种;所述导电碳材料为石墨、类石墨碳、非晶碳、类金刚石碳中的一种。
9.一种如权利要求1~8任意一项所述的高延展性金属极板预涂层的制备方法,其特征在于,包括以下步骤:
(1)在真空环境中对所述金属基材进行预热处理,而后进行等离子体清洗;
(2)采用离子注入或高偏压溅射方法,在所述金属基材表面沉积所述高能结合层;
(3)采用磁控溅射沉积、电镀沉积、离子镀沉积或喷涂方法,在所述高能结合层的表面沉积所述离子阻隔层;
(4)采用磁控溅射沉积、化学气相沉积、脉冲激光沉积或离子镀沉积方法,在所述离子阻隔层表面沉积所述纳米导电层;即可得到带有所述的降低基材离子污染的高延展性预涂层的金属极板板材。
10. 根据权利要求9所述的制备方法,其特征在于,在所述步骤(1)中,所述等离子体清洗方式包括射频清洗、离子源清洗、自偏压清洗;所述预热温度为50~500℃,清洗时间为2~30 min。
11. 根据权利要求9所述的制备方法,其特征在于,在所述步骤(2)中,所述离子注入的能量为0.01~10 MeV,所述高偏压溅射的电压大于300 V;所述沉积温度为100~800℃,沉积气压0.01~10 Pa,沉积时间2~60 min。
12. 根据权利要求9所述的制备方法,其特征在于,在所述步骤(3)中,采用磁控溅射沉积方法,所述沉积温度为100~800℃,沉积气压0.01~10 Pa,沉积时间0.1~10 h;在所述步骤(4)中,采用磁控溅射沉积方法,所述沉积温度200~800℃,沉积气压0.01~100 Pa,沉积时间0.1~10 h。
13.根据权利要求9所述的制备方法,其特征在于,所述金属极板预涂层的制备在卷对卷金属极板镀膜设备上完成。
CN202111172968.9A 2021-10-08 2021-10-08 一种降低基材离子污染的高延展性金属极板预涂层 Active CN114015987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111172968.9A CN114015987B (zh) 2021-10-08 2021-10-08 一种降低基材离子污染的高延展性金属极板预涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111172968.9A CN114015987B (zh) 2021-10-08 2021-10-08 一种降低基材离子污染的高延展性金属极板预涂层

Publications (2)

Publication Number Publication Date
CN114015987A true CN114015987A (zh) 2022-02-08
CN114015987B CN114015987B (zh) 2022-11-29

Family

ID=80055867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111172968.9A Active CN114015987B (zh) 2021-10-08 2021-10-08 一种降低基材离子污染的高延展性金属极板预涂层

Country Status (1)

Country Link
CN (1) CN114015987B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354262A (zh) * 2022-09-22 2022-11-18 上海氢程科技有限公司 一种固体氧化物电池用金属连接体的制备方法和金属连接体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129303A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池
CN104204274A (zh) * 2012-02-24 2014-12-10 梯尔镀层有限公司 具有导电和耐腐蚀特性的涂层
CN106129422A (zh) * 2016-08-09 2016-11-16 上海交通大学 提高燃料电池金属双极板表面镀层致密和耐腐蚀的方法
CN106252682A (zh) * 2016-08-17 2016-12-21 上海交通大学 抑制柱状晶的燃料电池金属极板多相涂层及其制备方法
CN110284102A (zh) * 2019-06-13 2019-09-27 上海治臻新能源装备有限公司 一种金属碳化物晶体复合涂层及其制备方法
CN112582634A (zh) * 2020-11-18 2021-03-30 上海治臻新能源装备有限公司 一种高耐蚀的燃料电池双极板的多层复合碳涂层
CN112795886A (zh) * 2020-12-24 2021-05-14 上海治臻新能源装备有限公司 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129303A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池
CN104204274A (zh) * 2012-02-24 2014-12-10 梯尔镀层有限公司 具有导电和耐腐蚀特性的涂层
CN106129422A (zh) * 2016-08-09 2016-11-16 上海交通大学 提高燃料电池金属双极板表面镀层致密和耐腐蚀的方法
CN106252682A (zh) * 2016-08-17 2016-12-21 上海交通大学 抑制柱状晶的燃料电池金属极板多相涂层及其制备方法
CN110284102A (zh) * 2019-06-13 2019-09-27 上海治臻新能源装备有限公司 一种金属碳化物晶体复合涂层及其制备方法
CN112582634A (zh) * 2020-11-18 2021-03-30 上海治臻新能源装备有限公司 一种高耐蚀的燃料电池双极板的多层复合碳涂层
CN112795886A (zh) * 2020-12-24 2021-05-14 上海治臻新能源装备有限公司 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEIYUN YI 等: ""Microstructure and properties of a-C films deposited under different argon flow rate on stainless steel bipolar plates for proton exchange membrane fuel cells"", 《JOURNAL OF POWER SOURCES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115354262A (zh) * 2022-09-22 2022-11-18 上海氢程科技有限公司 一种固体氧化物电池用金属连接体的制备方法和金属连接体

Also Published As

Publication number Publication date
CN114015987B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
US11634808B2 (en) Anti-corrosion conductive film and pulse bias alternation-based magnetron sputtering deposition method and application thereof
US11799094B2 (en) Graphite micro-crystalline carbon coating for metal bipolar plates of fuel cells and application thereof
CN110284102B (zh) 一种金属碳化物晶体复合涂层及其制备方法
CN113235062B (zh) 一种max相多层复合涂层及其制备方法与应用
CN112795886B (zh) 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法
CN105047958B (zh) 用于燃料电池金属极板的石墨烯复合涂层及其制备方法
CN115312798B (zh) 金属极板表面防护涂层及其制备方法、应用、金属极板
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN113584441B (zh) 一种金属双极板涂层及其制备方法
WO2001028019A2 (en) Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same
CN107164731B (zh) 一种镁合金表面铝复合防护层的制备方法
CN111826616B (zh) 一种核燃料包壳涂层及其制备方法
CN110808384B (zh) 一种金属双极板及其制备方法以及燃料电池
EP1240678A1 (en) Corrosion resistant coated fuel cell bipolar plate with graphite protective barrier and method of making the same
WO2023197469A1 (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN114015987B (zh) 一种降低基材离子污染的高延展性金属极板预涂层
CN113206267A (zh) 一种燃料电池金属极板涂层制备方法
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
CN113737142A (zh) 一种质子交换膜燃料电池钛双极板复合梯度碳基涂层的制备方法
CN115207388A (zh) 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备
CN106435494A (zh) 一种改善锂电池正极集电极电性能的方法
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN114300733A (zh) 一种全固态薄膜锂电池及其制备方法
CN117144296A (zh) 一种氢燃料电池极板涂层的制备方法
CN112072118A (zh) 锂金属负极复合集流体及其制备方法、锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant