CN115207388A - 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备 - Google Patents

燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备 Download PDF

Info

Publication number
CN115207388A
CN115207388A CN202210836652.3A CN202210836652A CN115207388A CN 115207388 A CN115207388 A CN 115207388A CN 202210836652 A CN202210836652 A CN 202210836652A CN 115207388 A CN115207388 A CN 115207388A
Authority
CN
China
Prior art keywords
coating
nanocrystalline
sheet
fuel cell
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210836652.3A
Other languages
English (en)
Inventor
李传政
徐竹田
彭林法
易培云
来新民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202210836652.3A priority Critical patent/CN115207388A/zh
Publication of CN115207388A publication Critical patent/CN115207388A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备,金属薄板作为极板的基体材料,其两侧的表面为晶粒尺寸梯度层,由内部的微米晶晶粒逐渐过渡到表面的纳米晶晶粒,金属薄板两侧的表面纳米晶上沉积一层高延展纳米晶耐蚀涂层,最外侧涂覆一层表面导电涂层。与现有技术相比,本发明利用基体晶粒尺寸梯度层和纳米晶高延展耐蚀涂层之间力学性能的过渡和匹配,通过减弱涂层和基体之间力学性能的差异,减小二者之间界面在变形时的粗糙化程度,降低涂层在变形过程中的应变集中,实现涂层的均匀变形,避免预涂层基材在冲压成形过程中产生的涂层开裂剥离问题,可以大批量、高效率、低成本、连续性地制备可变形的预涂层薄板,且导电耐蚀性能好。

Description

燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备
技术领域
本发明属于燃料电池技术领域,具体涉及一种用于燃料电池金属极板的高延展预涂层纳米晶梯度薄板及其制备方法。
背景技术
质子交换膜燃料电池(PEMFC)是一种氢能转换装置,具有低噪音、低工作温度、高功率密度等优点,具有广阔的发展前景。双极板是PEMFC的关键部件之一,需要承担集流导电、水热管理、分隔水气等多种作用,必须满足耐蚀、导电、易加工等多种性能需求。目前,使用的双极板主要包括金属和石墨基等材料。其中金属薄板具有重量轻、导电导热性好、适于大批量制造、成本低等一系列优点,是燃料电池极板材料的首选。然而,未经表面处理的金属极板腐蚀问题严重:一方面,金属离子的析出会污染燃料电池催化剂,另一方面,腐蚀导致的表面氧化膜造成表面导电性的劣化。因此,金属极板必须采用表面处理工艺提高耐蚀导电性。
传统的燃料电池金属极板制备工艺包含多步工序,依次需要完成金属薄板的冲压成形、单极板焊接、双极板表面处理以及密封。间歇式的工艺工序繁琐,对单个极板表面处理效率较低,限制了生产效率和良品率的进一步提升,因此燃料电池金属极板的生产成本居高不下。采用“卷对卷”的大批量薄板处理工艺,大批量制备具有较好导电、耐蚀、成形性能的金属薄板,可以直接进行冲压成形,能够大幅提升燃料电池金属极板的制造效率,简化制造流程,从而大幅降低生产成本,是燃料电池金属极板的重要发展方向之一。
经检索发现,中国专利公开号为:CN1875128A,名称为:涂覆金属涂层的不锈钢带,该技术包括:在不锈钢带表面制备致密且均匀分布的金属涂层,所述的涂层基本由金属或合金组成,在抗拉测试中钢带被单轴拉断而不会出现涂层的剥落和开裂现象。但是,该技术未考虑到涂层的耐蚀、导电性能,不适用于燃料电池金属极板的使用环境。
又经检索发现,中国专利公开号为:CN110129727A,名称为:用于燃料电池金属双极板的预涂镀金属卷带的制备方法,该技术包括:纯水刷洗、超声波清洗、等离子清洗或辉光放电处理等方法预处理金属卷带;“卷对卷”物理气相沉积双面预涂镀镍、钛等过渡涂层和石墨化涂层。但是,该技术未考虑到极板成形时涂层的开裂问题,冲压成形后极板表面的涂层易失去连续性,导致未涂层金属卷带裸露,极板耐蚀性大幅下降。
再经文献检索发现,中国专利公开号为:CN113564546A,名称为:一种用于金属双极板的预涂层金属带材的制备方法及系统,该技术包括通过磁控溅射在表面沉积防腐涂层,随后在惰性气体环境中进行700-1000℃高温烧结处理,其制备系统包括进样室、处理室(离子清洗室、磁控溅射室、烧结室、退火室)、过渡室、出样室。但是,该技术所需的高温烧结处理生产效率较低,所需成本较高。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可以大批量、高效率、低成本、连续性制备的燃料电池金属极板用高延展预涂层纳米晶梯度薄板。
本发明的目的可以通过以下技术方案来实现:一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,金属薄板作为极板的基体材料,其两侧的表面为晶粒尺寸梯度层,由内部的微米晶晶粒逐渐过渡到表面的纳米晶晶粒,金属薄板两侧的表面纳米晶上沉积一层高延展纳米晶耐蚀涂层,最外侧涂覆一层表面导电涂层。
进一步地,所述的金属薄板为厚度为0.05-0.2mm,宽度200-2000mm的不锈钢卷带、钛合金卷带或铝合金卷带。
进一步地,所述的金属薄板的晶粒尺寸梯度层厚度为10-20μm,梯度层表面的纳米晶晶粒尺寸为10-500nm,内部的微米晶晶粒尺寸为5-10μm。
进一步地,所述的高延展纳米晶耐蚀涂层的厚度为50-1000nm,晶粒尺寸为10-500nm,材料包括贵金属,如Au、Ag、Pt,还包括过渡金属,如Ti、Cr、Nb、Ta、W、或Mo中的中的一种或多种。
进一步地,所述表面导电涂层的厚度为10nm-10μm,材料包括Au、Ag、Pt或导电碳材料。
进一步地,当所述的高延展纳米晶耐蚀涂层材料为Au、Ag、或Pt时,所述的表面导电涂层省略。
本发明还提供一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板的制备方法,包括以下步骤:
S1、将待处理金属薄板卷带置于“卷对卷”连续处理线;
S2、将待处理金属薄板表面进行清洗,除去其表面的杂质和氧化膜;
S3、采用表面强塑性变形处理使得金属薄板两侧的表面形成晶粒尺寸梯度层;
S4、在金属薄板两侧晶粒尺寸梯度层上各沉积一层高延展高耐蚀纳米晶涂层;
S5、在两侧高延展纳米晶耐蚀涂层上各涂覆一层表面导电涂层,即可得到所述的用于燃料电池金属极板的高延展耐蚀导电预涂层薄板。
进一步地,步骤S2中,所述清洗为离子源清洗、射频清洗、自偏压清洗中的任意一种,处理时间5-30min。
进一步地,步骤S3中,所述表面强塑性变形处理包括高速喷丸轰击处理、表面机械滚压处理、表面机械碾磨处理;
步骤S4中,所述的高延展纳米晶耐蚀涂层沉积方法包括物理气相沉积、化学气相沉积、脉冲激光沉积、或者离子镀中的任意一种,沉积时间10-60min;
步骤S5中,所述的表面导电层涂覆方法包括电镀、化学镀、喷涂、粘涂的任意一种,涂覆时间5-60min。
更进一步地,步骤S3中,所述表面强塑性变形处理采用高速喷丸轰击处理,钢球直径为0.05-1mm,速度为1-50m/s,轰击频率10Hz-10kHz,处理时长为60s-30min。
与现有的技术相比,具有明显的优点:
1.本发明利用基体晶粒尺寸梯度层和纳米晶高延展耐蚀涂层实现涂层和基体之间力学性能的过渡和匹配,基体表面纳米晶化可以大幅减小涂层和基体之间的界面在变形时的粗糙化程度、减弱二者之间的力学性能差异,从而降低耐蚀涂层在变形过程中的应变集中,实现涂层的均匀变形,避免了预涂层基材在冲压成形过程中产生的涂层开裂以及剥离问题,使得涂层在成形后仍然保持完整性和优异耐蚀性。
2.本发明通过选用可以应用于“卷对卷”连续生产线的表面强塑性处理工艺、耐蚀涂层沉积工艺、导电涂层涂覆工艺,可以大批量、高效率、低连续性地制备可变形的预涂层薄板,成形后满足燃料电池金属极板的导电耐蚀性能要求。
3.本发明的预涂层薄板及制备工艺可以大幅提高燃料电池金属双极板的制造效率,简化金属双极板的制造流程,降低金属双极板的生产成本,对燃料电池金属双极板的大规模商业应用具有重要意义。
附图说明
图1为本发明预涂层剖视结构示意图;
图2为本发明晶粒尺寸梯度过渡层示意图;
图3为本发明预涂层金属薄板的制备工艺流程图;
图4为本发明实施例1中预涂层薄板冲压成形和冲压成形后涂层的1.6V(相对于标准氢电极)10小时恒电位极化腐蚀电流密度对比;
图中:1-金属薄板基材;2-晶粒梯度过渡层;3-纳米晶高延展耐蚀涂层;4-表面导电层。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明采用的“卷对卷”连续生产线为现有已公开技术,如采用已公开报道的燃料电池双极板“卷对卷”连续生产线(例如,美国J.M.Huya-Kouadio等学者提出燃料电池双极板采用“卷对卷”连续生产线,对金属双极板先进行表面涂层处理,然后直接冲压成形,“卷对卷”涂层连续线可以达到10m/min的快速生产效率:Huya-Kouadio JM,James BD,Houchins C.Meeting Cost and Manufacturing Expectations for Automotive FuelCell Bipolar Plates.ECS Transactions.2018;83:93-109.)
实施例1
一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板及其制备方法,如图3所示,采用以下步骤制备:
S1:将0.1mm厚、400mm宽度的不锈钢基材卷带置于“卷对卷”连续生产线上,以1m/min的速度向前移动;
S2:不锈钢基材卷带进入清洗腔体进行自偏压清洗:抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.2Pa,施加-650V的偏压进行清洗,处理时间15min,除去不锈钢基材表面的杂质、油污和氧化膜。
S3:不锈钢基材卷带进入表面强塑性变形处理腔体,采用高速喷丸轰击处理使得不锈钢基材卷带两侧的表面形成晶粒尺寸梯度层,钢球直径为0.5mm,速度为5m/s,轰击频率1kHz,处理时长为10min。形成的晶粒尺寸梯度层厚度为20μm,梯度层表面的纳米晶晶粒尺寸为200nm,内部的微米晶晶粒尺寸为10μm。如图2所示,金属薄板基材1表面形成晶粒梯度过渡层2,由表面到内部晶粒尺寸逐渐增大,表面纳米晶粒尺寸为10-500nm,在本实施例中为200nm,内部及基体晶粒尺寸为5-10μm,本实施例中内部的微米晶晶粒尺寸为10μm。
S4、表面形成晶粒尺寸梯度层的不锈钢基材卷带进入磁控溅射室,在金属薄板两侧的晶粒尺寸梯度层上采用磁控溅射方法制备一层Ti涂层,抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.2Pa,施加-80V的偏压,温度200℃,沉积时间30min,厚度为750nm,形成致密的纳米晶Ti涂层,晶粒尺寸200nm,与处理后不锈钢卷带表面的纳米晶晶粒尺寸一致。
S5、沉积纳米晶Ti涂层的不锈钢基材卷带进入涂覆室,在纳米晶Ti涂层上采用喷涂的方法制备一层导电厚度为1μm的疏松炭黑涂层,即可得到所述的用于燃料电池金属极板的高延展耐蚀导电预涂层薄板,结构如图1所示,金属薄板基材1(不锈钢基材)表面依次形成晶粒梯度过渡层2、纳米晶高延展耐蚀涂层3(纳米晶Ti涂层)和表面导电层4(疏松炭黑涂层)。
实施例2
一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板及其制备方法,采用以下步骤制备:
S1:将0.1mm厚、400mm宽度的不锈钢基材卷带置于“卷对卷”连续生产线上,以1m/min的速度向前移动;
S2:不锈钢基材卷带进入清洗腔体进行自偏压清洗。抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.1Pa,施加-650V的偏压进行清洗,处理时间15min,除去不锈钢基材表面的杂质、油污和氧化膜。
S3:不锈钢基材卷带进入表面强塑性变形处理腔体,采用高速喷丸轰击处理使得不锈钢基材卷带两侧的表面形成晶粒尺寸梯度层,钢球直径为0.1mm,速度为10m/s,轰击频率5kHz,处理时长为10min。形成的晶粒尺寸梯度层厚度为10μm,梯度层表面的纳米晶晶粒尺寸为100nm,内部的微米晶晶粒尺寸为10μm。
S4、表面形成晶粒尺寸梯度层的不锈钢基材卷带进入磁控溅射室,在金属薄板两侧的晶粒尺寸梯度层上采用磁控溅射方法制备一层Nb涂层。抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.1Pa,施加-50V的偏压,温度200℃,沉积时间30min,厚度为500nm,形成致密的纳米晶Ti涂层,晶粒尺寸100nm,与处理后不锈钢卷带表面的纳米晶晶粒尺寸一致。
S5、沉积纳米晶Ti涂层的不锈钢基材卷带进入涂覆室,在纳米晶Nb涂层上采用涂布的方法制备一层厚度为lμm的导电碳涂层,导电碳涂层是由颗粒状导电碳黑和片状导电石墨按质量比为2:1混合而成,即可得到所述的用于燃料电池金属极板的高延展耐蚀导电预涂层薄板。
实施例3
一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板及其制备方法,采用以下步骤制备:
S1:将0.1mm厚、400mm宽度的纯钛TA2基材卷带置于“卷对卷”连续生产线上,以1m/min的速度向前移动;
S2:TA2基材卷带进入清洗腔体进行自偏压清洗。抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.1Pa,施加-650V的偏压进行清洗,处理时间30min,除去TA2基材表面的杂质、油污和氧化膜。
S3:TA2基材卷带进入表面强塑性变形处理腔体,采用高速喷丸轰击处理使得TA2基材卷带两侧的表面形成晶粒尺寸梯度层,钢球直径为0.5mm,速度为10m/s,轰击频率10kHz,处理时长为10min。形成的晶粒尺寸梯度层厚度为20μm,梯度层表面的纳米晶晶粒尺寸为50nm,内部的微米晶晶粒尺寸为20μm。
S4、表面形成晶粒尺寸梯度层的TA2基材卷带进入磁控溅射室,在金属薄板两侧的晶粒尺寸梯度层上采用磁控溅射方法制备一层Au涂层。抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.1Pa,施加-30V的偏压,沉积时间100s,厚度为10nm,形成致密的纳米晶Au涂层,晶粒尺寸50nm,与处理后不锈钢卷带表面的纳米晶晶粒尺寸一致,即可得到所述的用于燃料电池金属极板的高延展耐蚀导电预涂层薄板。
对比例1
传统的金属双极板涂层作为对比例,采用以下步骤制备:
S1:将不锈钢基材预先冲压成形、焊接成金属双极板;
S2:将未涂层的金属双极板置于涂层沉积设备中,抽真空至低于本底真空8E-3Pa,通入氩气使气压维持在0.2Pa,施加-650V的偏压进行清洗,处理时间15min,除去不锈钢基材表面的杂质、油污和氧化膜;
S3:在同一个腔体内,维持该腔体气压不变,施加-80V的偏压,温度300℃,采用磁控溅射方法制备一层Ti耐蚀涂层,沉积时间30min,厚度为750nm
S4:在同一个腔体内,维持该腔体气压不变,施加-80V的偏压,温度300℃,采用磁控溅射方法制备非晶碳导电涂层,沉积时间1h,厚度为500nm;最后在真空中冷却,即可得到传统的先冲压后涂层金属双极板。
将实施例1~3制备的预涂层薄板单向拉伸,在扫描电子显微镜下观察,表面涂层均无明显脱附现象。实施例1延伸率为25%时在扫描电子显微镜下观察,纳米晶高延展耐蚀Ti涂层无明显裂纹;实施例2延伸率为35%时在扫描电子显微镜下观察,纳米晶高延展耐蚀Nb涂层无明显裂纹;实施例3延伸率为50%时在扫描电子显微镜下观察,纳米晶高延展耐蚀Au涂层无明显裂纹。
采用实施例1~3和对比例1制备的预涂层薄板冲压成形周期为1.6mm,高度为0.35mm的金属双极板,成形后在扫描电子显微镜下观察,表面涂层无明显脱附现象,且纳米晶高延展耐蚀Au涂层无明显裂纹。将实施例1~3和对比例1得到的金属双极板,采用表面接触电阻测试评价涂层导电性能,测试压力0.6MPa,采用电化学方法测试腐蚀性能,测试电位1.6V,测试时间10h,测试结果列于表1中。实施例1中采用预涂层薄板冲压得到的双极板在0.6MPa下接触电阻为5.8mΩcm2,与冲压成形后涂层冲压得到的双极板在0.6MPa下接触电阻6.3mΩcm2接近,甚至更优;图4为本发明实施例1中预涂层薄板冲压成形和冲压成形后涂层的1.6V(相对于标准氢电极)10小时恒电位极化腐蚀电流密度对比,实施例1冲压得到的双极板在1.6V(相对于标准氢电极)10小时恒电位极化腐蚀电流密度为3.6E-6A/cm2,与冲压成形后涂层冲压得到的双极板在1.6V(相对于标准氢电极)10小时恒电位极化腐蚀电流密度4.2E-6A/cm2接近,甚至更优。
表1.实施例1~3和对比例1的测试结果
Figure BDA0003748680480000081
燃料电池金属双极板的接触电阻和腐蚀电流密度数值均为越小越好,说明金属双极板具有更好的表面导电性和耐蚀性。因此,基于上一段中的测试方法,从表1中的数据结果可以看出,采用本发明三种实施例制备的预涂层纳米晶梯度金属双极板在表面导电性和耐蚀性已经与传统方法制备的双极板实施例接近,甚至具有更好的性能。因此,本发明可以提高金属双极板的生产效率,在实现大规模量产的同时保证优异的使用性能,具有广泛的应用前景。
本发明的应用范围,包含上述说明书所述内容但不受上述内容的限制,以上方案仅为本发明的较佳实施方案,凡在本发明的精神和原则之内,所做的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,其特征在于,金属薄板作为极板的基体材料,其两侧的表面为晶粒尺寸梯度层,由内部的微米晶晶粒逐渐过渡到表面的纳米晶晶粒,金属薄板两侧的表面纳米晶上沉积一层高延展纳米晶耐蚀涂层,最外侧涂覆一层表面导电涂层。
2.根据权利要求1所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,其特征在于,所述的金属薄板为厚度为0.05-0.2mm,宽度200-2000mm的不锈钢卷带、钛合金卷带或铝合金卷带。
3.根据权利要求1所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,其特征在于,所述的金属薄板的晶粒尺寸梯度层厚度为10-20μm,梯度层表面的纳米晶晶粒尺寸为10-500nm,内部的微米晶晶粒尺寸为5-10μm。
4.根据权利要求1所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,其特征在于,所述的高延展纳米晶耐蚀涂层的厚度为50-1000nm,晶粒尺寸为10-500nm,材料包括Au、Ag、Pt、Ti、Cr、Nb、Ta、W、或Mo中的中的一种或多种。
5.根据权利要求1所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,其特征在于,所述表面导电涂层的厚度为10nm-10μm,材料包括Au、Ag、Pt或导电碳材料。
6.根据权利要求4所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板,其特征在于,当所述的高延展纳米晶耐蚀涂层材料为Au、Ag、或Pt时,所述的表面导电涂层省略。
7.一种如根据权利要求1所述的燃料电池金属极板用高延展预涂层纳米晶梯度薄板的制备方法,其特征在于,包括以下步骤:
S1、将待处理金属薄板卷带置于“卷对卷”连续处理线;
S2、将待处理金属薄板表面进行清洗,除去其表面的杂质和氧化膜;
S3、采用表面强塑性变形处理使得金属薄板两侧的表面形成晶粒尺寸梯度层;
S4、在金属薄板两侧晶粒尺寸梯度层上各沉积一层高延展高耐蚀纳米晶涂层;
S5、在两侧高延展纳米晶耐蚀涂层上各涂覆一层表面导电涂层,即可得到所述的用于燃料电池金属极板的高延展耐蚀导电预涂层薄板。
8.根据权利要求7所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板的制备方法,其特征在于,步骤S2中,所述清洗为离子源清洗、射频清洗、自偏压清洗中的任意一种,处理时间5-30min。
9.根据权利要求5所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板的制备方法,其特征在于,步骤S3中,所述表面强塑性变形处理包括高速喷丸轰击处理、表面机械滚压处理、表面机械碾磨处理;
步骤S4中,所述的高延展纳米晶耐蚀涂层沉积方法包括物理气相沉积、化学气相沉积、脉冲激光沉积、或者离子镀中的任意一种,沉积时间10-60min;
步骤S5中,所述的表面导电层涂覆方法包括电镀、化学镀、喷涂、粘涂的任意一种,涂覆时间5-60min。
10.根据权利要求1所述的一种燃料电池金属极板用高延展预涂层纳米晶梯度薄板的制备方法,其特征在于,步骤S3中,所述表面强塑性变形处理采用高速喷丸轰击处理,钢球直径为0.05-1mm,速度为1-50m/s,轰击频率10Hz-10kHz,处理时长为60s-30min。
CN202210836652.3A 2022-07-15 2022-07-15 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备 Pending CN115207388A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210836652.3A CN115207388A (zh) 2022-07-15 2022-07-15 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210836652.3A CN115207388A (zh) 2022-07-15 2022-07-15 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备

Publications (1)

Publication Number Publication Date
CN115207388A true CN115207388A (zh) 2022-10-18

Family

ID=83582761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210836652.3A Pending CN115207388A (zh) 2022-07-15 2022-07-15 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备

Country Status (1)

Country Link
CN (1) CN115207388A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652303A (zh) * 2022-10-26 2023-01-31 歌尔科技有限公司 镁锂合金件及其制备方法、复合增强涂层及头戴设备
CN116039179A (zh) * 2022-12-28 2023-05-02 上海交通大学 一种导电耐蚀高延展成分梯度不锈钢基材及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652303A (zh) * 2022-10-26 2023-01-31 歌尔科技有限公司 镁锂合金件及其制备方法、复合增强涂层及头戴设备
CN116039179A (zh) * 2022-12-28 2023-05-02 上海交通大学 一种导电耐蚀高延展成分梯度不锈钢基材及其制备方法

Similar Documents

Publication Publication Date Title
US11799094B2 (en) Graphite micro-crystalline carbon coating for metal bipolar plates of fuel cells and application thereof
CN115207388A (zh) 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备
US11634808B2 (en) Anti-corrosion conductive film and pulse bias alternation-based magnetron sputtering deposition method and application thereof
KR100916436B1 (ko) 리튬이온 이차전지용 음극 및 그것을 이용하는 리튬이온이차전지
CN105047958B (zh) 用于燃料电池金属极板的石墨烯复合涂层及其制备方法
CN110129727B (zh) 用于燃料电池金属双极板的预涂镀金属卷带的制备方法
TWI499116B (zh) A method for manufacturing a negative electrode for a secondary battery, a copper foil for an electrode, a secondary battery, and a negative electrode for a secondary battery
CN112795886B (zh) 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
WO2023000913A1 (zh) 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
WO2023197469A1 (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN113206267A (zh) 一种燃料电池金属极板涂层制备方法
CN114464818A (zh) 一种提高质子交换膜燃料电池极板用钛及钛合金表面性能的低成本表面处理方法
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN113937301B (zh) 金属双极板表面过渡金属氮化物与碳复合改性薄膜及其制备方法
CN115928017A (zh) 一种高导电耐蚀防护复合涂层及其制备方法与应用
CN114023986B (zh) 一种用于燃料电池钛基材双极板的复合涂层及其制备方法
CN114015987B (zh) 一种降低基材离子污染的高延展性金属极板预涂层
CN108598497A (zh) 一种用于燃料电池金属极板的纳米金属层及制备方法
CN112993293A (zh) 一种燃料电池金属双极板及其制备方法
CN116103625A (zh) 一种Cr掺杂的MAX相涂层的其制备方法及双极板和燃料电池
CN111600043A (zh) 一种燃料电池金属双极板及其表面涂层方法
CN114373937B (zh) 一种高稳定全固态薄膜锂电池集流体薄膜的制备方法
CN112952131B (zh) 一种具有纳米晶AlN改性层的Fe-Mn基合金双极板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination