WO2023000913A1 - 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用 - Google Patents

高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用 Download PDF

Info

Publication number
WO2023000913A1
WO2023000913A1 PCT/CN2022/100767 CN2022100767W WO2023000913A1 WO 2023000913 A1 WO2023000913 A1 WO 2023000913A1 CN 2022100767 W CN2022100767 W CN 2022100767W WO 2023000913 A1 WO2023000913 A1 WO 2023000913A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
iridium
chromium
graphite
composite coating
Prior art date
Application number
PCT/CN2022/100767
Other languages
English (en)
French (fr)
Inventor
汪爱英
李�昊
张栋
马冠水
陈仁德
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2023000913A1 publication Critical patent/WO2023000913A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the application belongs to the technical field of surface engineering protection, and in particular relates to a highly conductive and corrosion-resistant graphite carbon protective multilayer composite coating and its preparation method and application.
  • Proton exchange membrane fuel cells are a new type of energy source that can directly convert hydrogen energy into electricity. Because of its advantages such as fast start-up, relatively low operating temperature, rapid response to various environments, no pollution, and high energy efficiency, it has a good application prospect in new energy vehicles, fixed and portable power supplies.
  • a cell unit of a proton exchange membrane fuel cell usually consists of a bipolar plate (BPP), a membrane electrode (MEA), a gasket, and an end plate.
  • BPP bipolar plate
  • MEA membrane electrode
  • gasket a gasket
  • end plate the bipolar plate occupies 80% of the total mass of the fuel cell, almost the entire volume, and about 18%-28% of the manufacturing cost.
  • the bipolar plate is a key functional component in a proton exchange membrane fuel cell stack.
  • Acidic corrosion medium at high temperature will, on the one hand, generate a passivation layer on the surface of the metal bipolar plate, thereby increasing the interfacial contact resistance (ICR) between the metal bipolar plate and gas diffusion layers (GDLs); on the other hand, the metal bipolar plate Bipolar plates are prone to severe corrosion, and both of the above consequences will affect the output power of the battery, resulting in a rapid decline in battery performance.
  • Depositing a protective coating on the surface of a metal bipolar plate is an effective means to improve its surface conductivity and corrosion resistance.
  • Amorphous carbon coating is a mixed structure coating formed by the hybridization of diamond phase sp 3 and graphite phase sp 2. Due to the excellent chemical inertness of carbon elements and the special mechanism of amorphous carbon, it has many excellent properties. In recent years The application of amorphous carbon coating on the surface protective coating of metal bipolar plates has attracted widespread attention. However, after a long time of operation, the increase of contact resistance leads to serious degradation of the performance of the plate.
  • the main purpose of this application is to provide a highly conductive and corrosion-resistant graphitic carbon-like protective multilayer composite coating and its preparation method and application, so as to overcome the deficiencies of the prior art.
  • the embodiment of the present application provides a highly conductive and corrosion-resistant graphite-like carbon protective multilayer composite coating, which includes a chromium-iridium transition layer and a graphite-like amorphous carbon layer sequentially formed on the surface of the substrate; wherein the chromium-iridium The content of iridium element in the transition layer is 2-10wt%; and the corrosion current density of the highly conductive and corrosion-resistant graphitic carbon protective multilayer composite coating is less than 5 ⁇ 10 -8 A/cm at a standard working voltage of 0.6V 2.
  • the contact resistance in the as-deposited state is less than 7m ⁇ cm 2 , the contact resistance after 24 hours of corrosion is less than 10m ⁇ cm 2 , and the increase in contact resistance after 48 hours of corrosion is within 5%.
  • the embodiment of the present application also provides a method for preparing the aforementioned highly conductive and corrosion-resistant graphite carbon protective multilayer composite coating, which includes:
  • a chromium-iridium transition layer (also referred to as a conductive buffer layer) is deposited on the surface of the substrate, wherein the chromium-iridium composite
  • the content of iridium element in the target is 2-10wt%
  • the embodiment of the present application also provides the use of the aforementioned highly conductive and corrosion-resistant graphite-like carbon protective multilayer composite coating in the preparation of bipolar plates for proton exchange membrane fuel cells or proton exchange membrane fuel cells.
  • the embodiment of the present application also provides a bipolar plate for a proton exchange membrane fuel cell, including a metal bipolar plate, and the metal bipolar plate is covered with the aforementioned highly conductive and corrosion-resistant graphite-like carbon protective multilayer composite coating.
  • the embodiment of the present application also provides a proton exchange membrane fuel cell, which includes the bipolar plate for the proton exchange membrane fuel cell.
  • the highly conductive and corrosion-resistant graphitic carbon protective multilayer composite coating provided by the application contains a chromium-iridium transition layer, so that the prepared protective multilayer composite coating has excellent electrical conductivity and corrosion resistance, while making the The protective multi-layer composite coating has stable performance in acidic high-temperature environment and maintains low contact resistance for a long time;
  • the high conductivity and corrosion-resistant graphitic carbon protective multilayer composite coating provided by the application contains a chromium-iridium transition layer, which effectively provides a corrosion buffer layer by doping the iridium element, and the transition layer (buffer layer ) After corrosion, an iridium oxide conductive path will be formed, which can avoid the continuous generation of chromium oxide layer, and further avoid a large increase in contact resistance, thereby achieving long-term protection for the metal bipolar plate;
  • This application adopts high-power pulsed magnetron sputtering technology to obtain a chromium-iridium transition layer with a smooth surface and a compact internal structure, which can effectively improve the bonding strength of the film base and make the surface of the graphite-like amorphous carbon layer grown on its surface Smooth, dense structure.
  • Fig. 1 is the corrosion schematic diagram of the highly conductive and corrosion-resistant graphite carbon protective multilayer composite coating in a typical embodiment of the present application
  • Fig. 2 is the corrosion performance test result figure of the coating prepared in the embodiment 1 of the present application and comparative example 1-comparative example 2;
  • Fig. 3 is the contact resistance performance test result figure of the coating prepared in the embodiment 1 of the present application and comparative example 1-comparative example 2;
  • Fig. 4a-Fig. 4b are the surface topography diagrams of the coatings prepared in Example 1 and Comparative Example 3 of the present application respectively;
  • Fig. 5a-Fig. 5b are the topography diagrams of the bonding force scratches of the coatings prepared in Example 1 and Comparative Example 3 of the present application, respectively.
  • the inventor of this case was able to propose the technical solution of the present application after long-term research and a lot of practice, which is mainly aimed at the lack of comprehensive performance existing in the application of the above-mentioned current protective coating on the surface of the metal bipolar plate, and provides a A method for preparing a buffer transition layer on the surface of a metal bipolar plate.
  • One aspect of the embodiments of the present application provides a highly conductive and corrosion-resistant graphite-like carbon protective multilayer composite coating, which includes a chromium-iridium transition layer and a graphite-like amorphous carbon layer sequentially formed on the surface of the substrate; wherein, the The content of iridium element in the chromium-iridium transition layer is 2-10wt%; and the corrosion current density of the highly conductive and corrosion-resistant graphitic carbon-like protective multilayer composite coating is less than 5 ⁇ 10 -8 at a standard working voltage of 0.6V A/cm 2 , the contact resistance in the deposited state is less than 7m ⁇ cm 2 , the contact resistance after 24 hours of corrosion is less than 10m ⁇ cm 2 , and the increase in contact resistance after 48 hours of corrosion is within 5%.
  • the corrosion diagram of the highly conductive and corrosion-resistant graphitic carbon protective multilayer composite coating in the present application is shown in Figure 1, which includes a chromium-iridium transition layer, which effectively provides a corrosion buffer layer through the doping of iridium elements. After the transition layer (buffer layer) is corroded, an iridium oxide conductive path will be formed. This conductive path can avoid the continuous formation of the chromium oxide layer, and further avoid a large increase in contact resistance, thereby achieving long-term protection for the metal bipolar plate.
  • the thickness of the chromium-iridium transition layer is 100-200 nm.
  • the thickness of the graphite-like amorphous carbon layer is 500-800 nm.
  • the highly conductive and corrosion-resistant graphitic carbon protective multilayer composite coating provided by this application has a corrosion current density of less than 5 ⁇ 10 -8 A/cm 2 at a standard working voltage of 0.6V, and a contact resistance of as deposited is less than 7m ⁇ cm 2 , corroded for 24 hours
  • the post-contact resistance is less than 10m ⁇ cm 2 , and the increase in contact resistance after 48 hours of corrosion does not exceed 5%.
  • Another aspect of the embodiments of the present application also provides a method for preparing the aforementioned highly conductive and corrosion-resistant graphitic carbon protective multilayer composite coating, which includes:
  • chromium-iridium composite target as the target material, depositing a chromium-iridium transition layer on the surface of the substrate, wherein the content of iridium element in the chromium-iridium composite target is 2 ⁇ 10wt%;
  • the preparation method includes: using high-power pulsed magnetron sputtering technology, placing the substrate in a reaction chamber, using a chromium-iridium composite target as the target material, and using an inert gas as the The working gas is deposited on the surface of the substrate to form a chromium-iridium transition layer, wherein the high-power pulse magnetron sputtering technology adopts a pulse frequency of 400-800 Hz, a pulse width of 50-200 ⁇ s, and a pulse voltage of 800-1000 V,
  • the power is 2.0-3.5KW
  • the air pressure in the reaction chamber is 1.4-2.1mTorr
  • the substrate bias is -50V--150V
  • the amount of inert gas is 30-70sccm
  • the deposition temperature is 40-80°C
  • the deposition time is 5 ⁇ 15min.
  • the inert gas includes argon, but is not limited thereto.
  • the preparation method includes: using DC magnetron sputtering technology, using a graphite target as a target, and using an inert gas as a working gas, depositing graphite-like particles on the surface of the chromium-iridium transition layer Amorphous carbon layer, wherein the sputtering source power used in the DC magnetron sputtering technology is 0.9-1.2kW, the reaction chamber pressure is 1.4-2.1mTorr, the substrate bias is -50V--250V, and the inert gas The amount of feed is 30-70 sccm, the deposition temperature is 40-80° C., and the deposition time is 30-90 min.
  • the inert gas includes argon, but is not limited thereto.
  • the preparation method includes: further comprising: before depositing and forming the chromium-iridium transition layer, etching the surface of the substrate.
  • the etching treatment includes: using Ar ion etching method to etch the substrate at room temperature for 30-60 minutes; the process conditions used in the etching treatment include: the pressure of the reaction chamber is 2.0 ⁇ 10 Below -5 Torr, the argon gas flow rate is 40-100 sccm, the bias voltage is -150--450V, and the Ar ion etching method includes glow etching and/or ion beam etching.
  • the preparation method includes: the metal bipolar plate includes a stainless steel bipolar plate or a titanium alloy bipolar plate, but is not limited thereto.
  • This application adopts high-power pulse magnetron sputtering technology, and its technical characteristics are to increase the ionization rate, refine the crystal grains, and make the prepared protective coating have a smooth surface and a dense internal structure.
  • Another aspect of the embodiments of the present application also provides the use of the aforementioned highly conductive and corrosion-resistant graphitic carbon protective multilayer composite coating in the preparation of bipolar plates for proton exchange membrane fuel cells or proton exchange membrane fuel cells.
  • Another aspect of the embodiment of the present application also provides a bipolar plate for a proton exchange membrane fuel cell, including a metal bipolar plate, and the metal bipolar plate is covered with the aforementioned high-conductivity and corrosion-resistant graphite carbon protective multilayer Composite coating.
  • Another aspect of the embodiments of the present application also provides a proton exchange membrane fuel cell, which includes the bipolar plate for the proton exchange membrane fuel cell.
  • Another aspect of the embodiments of the present application also provides a material, including a substrate, and the substrate is further provided with the aforementioned highly conductive and corrosion-resistant graphite-like carbon protective multilayer composite coating.
  • the preparation method of the highly conductive corrosion-resistant protective coating on the metal bipolar plate is as follows:
  • the substrate is made of 316L stainless steel.
  • the stainless steel bipolar plate is ultrasonically cleaned. After drying, it is placed in a vacuum chamber, fixed on the workpiece bracket, and vacuumed to below 2.0 ⁇ 10 -5 Torr. Under the condition of -450V, turn on the ion source, adjust the output voltage to 1200V, and use argon plasma to etch the surface of the stainless steel bipolar plate for 60 minutes;
  • feed Ar gas into the chamber (the feed rate of Ar gas is 30sccm), adopt high-power pulse magnetron sputtering technology, maintain the chamber air pressure to be 1.4mTorr, open the chromium-iridium composite sputtering target (iridium content 2%wt) connected high-power pulse power supply, set the power supply frequency to 400Hz, pulse width to 50 ⁇ s, pulse voltage to 1000V, power to 3.0KW, substrate bias to -50V, deposition temperature to 50°C, deposit chromium-iridium A transition layer with a thickness of 150nm;
  • the corrosion current density is 1.2 ⁇ 10 -8 A/cm 2
  • the contact resistance in the deposited state is 5.8m ⁇ cm 2
  • the contact resistance after 24h of corrosion is 8.5m ⁇ cm 2
  • the corrosion is 48h
  • the rear contact resistance was 9.5 m ⁇ cm 2 .
  • the preparation method of the highly conductive corrosion-resistant protective coating on the metal bipolar plate is as follows:
  • the substrate is made of 316L stainless steel.
  • the stainless steel bipolar plate is ultrasonically cleaned. After drying, it is placed in a vacuum chamber, fixed on the workpiece bracket, and vacuumed to below 2.0 ⁇ 10 -5 Torr. Under the condition of -150V, turn on the ion source, adjust the output voltage to 1200V, and use argon plasma to etch the surface of the stainless steel bipolar plate for 30 minutes;
  • feed Ar gas into the chamber (the feed rate of Ar gas is 60sccm), adopt high-power pulse magnetron sputtering technology, maintain the chamber air pressure to be 2.0mTorr, open the chromium-iridium composite sputtering target (iridium content 10%wt) connected high-power pulse power supply, set the power supply frequency to 800Hz, pulse width to 100 ⁇ s, pulse voltage to 800V, power to 3.5KW, substrate bias to -80V, deposition temperature to 40°C, deposit chromium-iridium A transition layer with a thickness of 200nm;
  • the corrosion current density is 1.3 ⁇ 10 -8 A/cm 2
  • the contact resistance in the deposited state is 5.9m ⁇ cm 2
  • the contact resistance after 24h corrosion is 8.2m ⁇ cm 2
  • the corrosion is 48h
  • the rear contact resistance was 9.1 m ⁇ cm 2 .
  • the preparation method of the highly conductive corrosion-resistant protective coating on the metal bipolar plate is as follows:
  • Titanium alloy is used as the substrate, and the titanium alloy bipolar plate is cleaned ultrasonically. After drying, it is placed in a vacuum chamber, fixed on the workpiece bracket, and vacuumed to below 2.0 ⁇ 10 -5 Torr. Under the condition of -250V, turn on the ion source, adjust the output voltage to 1200V, and use argon plasma to etch the surface of the stainless steel bipolar plate for 60min;
  • feed Ar gas into the chamber (the feed rate of Ar gas is 70sccm), adopt high-power pulse magnetron sputtering technology, maintain the chamber air pressure to be 2.1mTorr, open the chromium-iridium composite sputtering target (iridium content 5%wt) connected high-power pulse power supply, set the power supply frequency to 500Hz, pulse width to 200 ⁇ s, pulse voltage to 1000V, power to 2.0KW, substrate bias to -150V, deposition temperature to 80°C, deposit chromium-iridium A transition layer with a thickness of 100nm;
  • the corrosion current density is 1.1 ⁇ 10 -8 A/cm 2
  • the contact resistance in the deposited state is 5.7m ⁇ cm 2
  • the contact resistance after 24h corrosion is 8.9m ⁇ cm 2
  • the corrosion is 48h
  • the rear contact resistance was 9.8 m ⁇ cm 2 .
  • the preparation method of the highly conductive corrosion-resistant protective coating on the metal bipolar plate is as follows:
  • Titanium alloy is used as the substrate, and the titanium alloy bipolar plate is cleaned ultrasonically. After drying, it is placed in a vacuum chamber, fixed on the workpiece bracket, and vacuumed to below 2.0 ⁇ 10 -5 Torr. Under the condition of -300V, turn on the ion source, adjust the output voltage to 1200V, and use argon plasma to etch the surface of the stainless steel bipolar plate for 45min;
  • feed Ar gas into the chamber (the feed rate of Ar gas is 50sccm), adopt high-power pulse magnetron sputtering technology, maintain the chamber air pressure to be 1.7mTorr, open the chromium-iridium composite sputtering target (iridium content 6%wt) connected high-power pulse power supply, set the power supply frequency to 600Hz, pulse width to 100 ⁇ s, pulse voltage to 900V, power to 3.0KW, substrate bias to -60V, deposition temperature to 60°C, deposit chromium-iridium A transition layer with a thickness of 150nm;
  • the corrosion current density is 1.2 ⁇ 10 -8 A/cm 2
  • the contact resistance in the deposited state is 5.7m ⁇ cm 2
  • the contact resistance after 24h of corrosion is 8.3m ⁇ cm 2
  • the corrosion is 48h
  • the rear contact resistance was 9.6 m ⁇ cm 2 .
  • the preparation method of the highly conductive corrosion-resistant protective coating on the metal bipolar plate is as follows:
  • Titanium alloy is used as the substrate, and the titanium alloy bipolar plate is cleaned ultrasonically. After drying, it is placed in a vacuum chamber, fixed on the workpiece bracket, and vacuumed to below 2.0 ⁇ 10 -5 Torr. Under the condition of -200V, turn on the ion source, adjust the output voltage to 1200V, and use argon plasma to etch the surface of the stainless steel bipolar plate for 45min;
  • feed Ar gas into the chamber (the feed rate of Ar gas is 70sccm), adopt high-power pulse magnetron sputtering technology, maintain the chamber air pressure to be 2.1mTorr, open the chromium-iridium composite sputtering target (iridium content 3%wt) connected high-power pulse power supply, set the power supply frequency to 700Hz, pulse width to 150 ⁇ s, pulse voltage to 900V, power to 3.0KW, substrate bias to -100V, deposition temperature to 70°C, deposit chromium-iridium A transition layer with a thickness of 150nm;
  • the corrosion current density is 1.1 ⁇ 10 -8 A/cm 2
  • the contact resistance in the deposited state is 5.6m ⁇ cm 2
  • the contact resistance after 24h corrosion is 8.6m ⁇ cm 2
  • the corrosion is 48h
  • the rear contact resistance was 9.7 m ⁇ cm 2 .
  • Step S1 and S3 are completely the same as Example 1.
  • Step S2 a chromium sputtering target is used as the sputtering target, and other parameters are the same as those of Example 1.
  • Step S1 and S3 are exactly the same as in embodiment 1.
  • the sputtering target is a chromium-iridium composite sputtering target (20% iridium content), and other parameters are the same as those in the embodiment. 1 is the same.
  • the corrosion current density of the sample in Comparative Example 1 was 2.9 ⁇ 10 -7 A/cm 2 at the standard working voltage of 0.6V, and the corrosion current of the sample in Comparative Example 2 was at the standard working voltage of 0.6V
  • the density is 6.9 ⁇ 10 -6 A/cm 2
  • the corrosion current density of the example is significantly lower than that of the two comparative examples, indicating that the coating prepared in the example of the present application has better corrosion resistance.
  • the deposit state (being high conductivity corrosion-resistant class graphitic carbon protective multilayer composite coating) in embodiment 1 The contact resistance is 5.4m ⁇ cm 2 , which slightly increases to 8.3m ⁇ cm 2 after 24 hours of corrosion, and slightly increases to 9.2m ⁇ cm 2 after 48 hours of corrosion, which meets the requirements of the US Department of Energy and is less than 10m ⁇ cm 2
  • the contact resistance of the deposition state (that is, the coating) in Comparative Example 1 was 8.7m ⁇ cm 2 , the contact resistance increased to 11.3m ⁇ cm 2 after 24 hours of corrosion, and the contact resistance increased to 33.4m ⁇ cm 2 after 48 hours of corrosion.
  • the contact resistance of the deposited state (that is, the coating) in ratio 2 is 7.9m ⁇ cm 2 , the contact resistance increases to 11.8m ⁇ cm 2 after 24 hours of corrosion, and the contact resistance increases to 26.7m ⁇ cm 2 after 48 hours of corrosion, Example 1
  • the contact resistance of the high-conductivity corrosion-resistant graphite carbon protective multilayer composite coating and the contact resistance after 24 hours of corrosion are all lower than those of the two comparative examples. Simultaneously, with the increase of the corrosion time, only the contact resistance of the embodiment increases. The minimum, and only the embodiment can meet the standard of DOE2020, which proves that the initial conductivity of the embodiment is better, and the long-term corrosion has less influence on its performance.
  • Step S1 and S3 are completely the same as Embodiment 1.
  • Step S2 the sputtering source is changed to DC magnetron sputtering, and other parameters are the same as Embodiment 1.
  • Fig. 4a-Fig. 4b are the surface topography of embodiment 1, comparative example 3 respectively, adopt scanning electron microscope to analyze and can draw: the surface structure of the protective multilayer composite coating prepared in embodiment 1 is smooth and dense, the coating prepared in comparative example 3 The surface of the layer is rough and has cracks. This result shows that the coating surface prepared by high-power pulse magnetron sputtering in Example 1 of the present application is smoother and denser, which further shows that the coating in Example 1 has better protective performance.
  • Fig. 5a-Fig. 5b are the topography diagrams of the bonding force scratches of the coatings prepared in Example 1 and Comparative Example 3 of the present application respectively, and it can be seen that the coating prepared in Example 1 has stronger bonding force.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Fuel Cell (AREA)

Abstract

提供了一种高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用。多层复合涂层包括依次形成于基体表面的铬-铱过渡层和类石墨非晶碳层,其中铬-铱过渡层中铱元素的含量为2~10wt%,基体包括金属双极板。多层复合涂层中包含有铬-铱过渡层,通过铱元素的掺入有效地提供了腐蚀缓冲层,过渡层在腐蚀之后会形成氧化铱导电通路,这种导电通路可以避免氧化铬层的连续生成,避免了接触电阻大幅上升,从而实现对金属双极板的长效防护。

Description

高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
本申请基于并要求于2021年7月20日递交的申请号为202110821664.4、发明名称为“高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用”的中国专利申请的优先权。
技术领域
本申请属于表面工程防护技术领域,具体涉及一种高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用。
背景技术
质子交换膜燃料电池(PEMFCs)是一种新型能源,它可以将氢能直接转化为电能。由于其具有启动快、工作温度相对较低、对各种环境反应迅速、无污染、能效高等优点,在新能源汽车、固定以及便携式电源方面有着很好的应用前景。质子交换膜燃料电池的一个电池单元通常由双极板(BPP)、膜电极(MEA)、密封垫和端板组成。在众多组件中,双极板占据着燃料电池80%的总质量,几乎全部的体积,以及约18%-28%的制造成本。双极板是质子交换膜燃料电池堆中的关键功能部件,他的主要功能有传导电子、分配化学燃料、分离单个电池、支撑膜电极以及促进电池内的水管理等。因此它必须满足易加工成型、耐电化学腐蚀、低界面电阻和低成本等要求。目前传统燃料电池广泛使用的是石墨双极板,但是其体积大、强度低,从而制约了大规模使用。具有高电导率、高热导率、高机械强度、低冲压成本和低气体渗透性等优异性能的金属板有望取代石墨成为双极板的主要材料。
质子交换膜燃料电池的运行环境通常为酸性(pH=2-3)、温湿(65-90℃)环境。酸性腐蚀介质在高温下,一方面会使金属双极板表面生成钝化层,从而增大金属双极板与气体扩散层(GDLs)之间的界面接触电阻(ICR);另一方面,金属双极板容易产生严重腐蚀,上述两种后果均会影响电池的输出功率,导致电池性能快速下降。在金属双极板表面沉积防护涂层,是提高其表面导电性以及耐腐蚀性的有效手段。常用的防护涂层有贵金属涂层、金属氮化物或碳化物涂层、导电聚合物涂层等。非晶碳涂层是一种由金刚石相sp 3以及石墨相sp 2杂化形成的混合结构涂层,由于碳元素优异的化学惰性以及非晶碳特殊的机构,其具有很多优异性能,近年来针对非晶碳涂层在金属双极板表面防护涂层的应用引起广泛关注。但是,经长时间运行,接触电阻增大导致极板性能退化尤为严重。
发明内容
本申请的主要目的在于提供一种高导电耐蚀类石墨碳防护多层复合涂层及其制备方法与应用,以克服现有技术的不足。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种高导电耐蚀类石墨碳防护多层复合涂层,其包括依次形成于基体表面的铬-铱过渡层和类石墨非晶碳层;其中,所述铬-铱过渡层中铱元素的含量为2~10wt%;并且,所述高导电耐蚀类石墨碳防护多层复合涂层在0.6V的标准工作电压下腐蚀电流密度小于5×10 -8A/cm 2,沉积态接触电阻小于7mΩ·cm 2,腐蚀24h后接触电阻小于10mΩ·cm 2,腐蚀48h后接触电阻增大量在5%以内。
本申请实施例还提供了前述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其包括:
提供作为基体的金属双极板;
采用高功率脉冲磁控溅射技术,以铬-铱复合靶为靶材,在所述基体的表面沉积形成铬-铱过渡层(同时也记为导电缓冲层),其中所述铬-铱复合靶中铱元素的含量为2~10wt%;
以及,采用直流磁控溅射技术,以石墨靶为靶材,在所述铬-铱过渡层表面沉积形成类石墨非晶碳层,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
本申请实施例还提供了前述的高导电耐蚀类石墨碳防护多层复合涂层制备质子交换膜燃料电池用双极板或质子交换膜燃料电池中的用途。
本申请实施例还提供了一种质子交换膜燃料电池用双极板,包括金属双极板,所述金属双极板覆设有前述的高导电耐蚀类石墨碳防护多层复合涂层。
本申请实施例还提供了一种质子交换膜燃料电池,其包含有所述的质子交换膜燃料电池用双极板。
与现有技术相比,本申请的有益效果在于:
(1)本申请提供的高导电耐蚀类石墨碳防护多层复合涂层中包含有铬-铱过渡层,使得所制备的防护多层复合涂层具有优异的导电耐蚀性能,同时使得该防护多层复合涂层在酸性高温环境下具有稳定的性能,长时间保持较低接触电阻;
(2)本申请提供的高导电耐蚀类石墨碳防护多层复合涂层中包含有铬-铱过渡层,其通过铱元素的掺入有效地提供了腐蚀缓冲层,该过渡层(缓冲层)在腐蚀之后会形成氧化铱导电通路,这种导电通路可以避免氧化铬层的连续生成,进一步的避免接触电阻大幅上升,从而实现对金属双极板的长效防护;
(3)本申请采用高功率脉冲磁控溅射技术可获得表面光滑内部结构致密的铬-铱过渡层,可以有效提高膜基结合强度,并使在其表面生长的类石墨非晶碳层表面光滑,结构致密。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一典型实施方案中高导电耐蚀类石墨碳防护多层复合涂层的腐蚀示意图;
图2是本申请实施例1及对比例1-对比例2中制备的涂层的腐蚀性能测试结果图;
图3是本申请实施例1及对比例1-对比例2中制备的涂层的接触电阻性能测试结果图;
图4a-图4b分别是本申请实施例1及对比例3中制备的涂层的表面形貌图;
图5a-图5b分别是本申请实施例1及对比例3中制备的涂层的结合力划痕形貌图。
具体实施方式
鉴于现有技术的缺陷,本案发明人经长期研究和大量实践,得以提出本申请的技术方案,其主要是针对上述目前防护涂层在金属双极板表面应用是存在的综合性能不足,提供一种金属双极板表面缓冲过渡层的制备方法。
下面将对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的一个方面提供了一种高导电耐蚀类石墨碳防护多层复合涂层,其包括依次形成于基体表面的铬-铱过渡层和类石墨非晶碳层;其中,所述铬-铱过渡层中铱元素的含量为2~10wt%;并且,所述高导电耐蚀类石墨碳防护多层复合涂层在0.6V的标准工作电压下腐蚀电流密度小于5×10 -8A/cm 2,沉积态接触电阻小于7mΩ·cm 2,腐蚀24h后接触电阻小于10mΩ·cm 2,腐蚀48h后接触电阻增大量在5%以内。
本申请中的高导电耐蚀类石墨碳防护多层复合涂层的腐蚀示意图如图1所示,包含有铬-铱过渡层,其通过铱元素的掺入有效地提供了腐蚀缓冲层,该过渡层(缓冲层)在腐蚀之后会形成氧化铱导电通路,这种导电通路可以避免氧化铬层的连续生成,进一步的避免接触电阻大幅上升,从而实现对金属双极板的长效防护。
在一些较为具体的实施方案中,所述铬-铱过渡层的厚度为100~200nm。
进一步的,所述类石墨非晶碳层的厚度为500~800nm。
本申请提供的高导电耐蚀类石墨碳防护多层复合涂层在0.6V的标准工作电压下腐蚀电流密度小于5×10 -8A/cm 2沉积态接触电阻小于7mΩ·cm 2,腐蚀24h后接触电阻小于10mΩ·cm 2, 腐蚀48h后接触电阻增大量不超过5%。
本申请实施例的另一个方面还提供了前述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其包括:
提供作为基体的金属双极板;
采用高功率脉冲磁控溅射技术,以铬-铱复合靶为靶材,在所述基体的表面沉积形成铬-铱过渡层,其中所述铬-铱复合靶中铱元素的含量为2~10wt%;
以及,采用直流磁控溅射技术,以石墨靶为靶材,在所述铬-铱过渡层表面沉积形成类石墨非晶碳层,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
在一些较为具体的实施方案中,所述制备方法包括:采用高功率脉冲磁控溅射技术,将所述基体置于反应腔体中,以铬-铱复合靶为靶材,以惰性气体为工作气体,在所述基体表面沉积形成铬-铱过渡层,其中所述高功率脉冲磁控溅射技术采用的脉冲频率为400~800Hz,脉宽为50~200μs,脉冲电压为800~1000V,功率为2.0~3.5KW,反应腔体的气压为1.4~2.1mTorr,基体偏压为-50V~-150V,惰性气体的通入量为30~70sccm,沉积温度为40~80℃,沉积时间为5~15min。
进一步的,所述惰性气体包括氩气,且不限于此。
在一些较为具体的实施方案中,所述制备方法包括:采用直流磁控溅射技术,以石墨靶为靶材,以惰性气体为工作气体,在所述铬-铱过渡层表面沉积形成类石墨非晶碳层,其中所述直流磁控溅射技术中采用的溅射源电源功率为0.9~1.2kW,反应腔体气压为1.4~2.1mTorr,基体偏压为-50V~-250V,惰性气体的通入量为30~70sccm,沉积温度为40~80℃,沉积时间为30~90min。
进一步的,所述惰性气体包括氩气,且不限于此。
在一些较为具体的实施方案中,所述制备方法包括:还包括:在沉积形成所述铬-铱过渡层前,先对基体表面进行刻蚀处理。
进一步的,所述刻蚀处理包括:采用Ar离子刻蚀法于室温下对所述基体进行刻蚀处理30~60min;所述刻蚀处理采用的工艺条件包括:反应腔体气压在2.0×10 -5Torr以下,氩气流量为40~100sccm,偏压为-150~-450V,所述Ar离子刻蚀法包括辉光刻蚀和/或离子束刻蚀。
在一些较为具体的实施方案中,所述制备方法包括:所述金属双极板包括不锈钢双极板或钛合金双极板,且不限于此。
本申请采用高功率脉冲磁控溅射技术,其技术特点是提高离化率,细化晶粒,使制备的防护涂层表面光滑,内部结构致密。
本申请实施例的另一个方面还提供了前述的高导电耐蚀类石墨碳防护多层复合涂层制备 质子交换膜燃料电池用双极板或质子交换膜燃料电池中的用途。
本申请实施例的另一个方面还提供了一种质子交换膜燃料电池用双极板,包括金属双极板,所述金属双极板覆设有前述的高导电耐蚀类石墨碳防护多层复合涂层。
本申请实施例的另一个方面还提供了一种质子交换膜燃料电池,其包含有所述的质子交换膜燃料电池用双极板。
本申请实施例的另一个方面还提供了一种材料,包括基体,所述基体上还设置有前述的高导电耐蚀类石墨碳防护多层复合涂层。
下面结合若干优选实施例及附图对本申请的技术方案做进一步详细说明,本实施例在以发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本申请的保护范围不限于下述的实施例。
下面所用的实施例中所采用的实验材料,如无特殊说明,均可由常规的生化试剂公司购买得到。
实施例1
本实施例中,金属双极板高导电耐蚀防护涂层的制备方法如下:
S1.基体选用316L不锈钢,对不锈钢双极板超声清洗,干燥后放入真空腔室内,固定于工件托架上,抽真空至2.0×10 -5Torr以下,然后在氩气流量100sccm、偏压为-450V的条件下,打开离子源,调整输出电压为1200V,利用氩等离子体对不锈钢双极板表面刻蚀60min;
S2.向腔体中通入Ar气(Ar气的通入量为30sccm),采用高功率脉冲磁控溅射技术,维持腔体气压为1.4mTorr,打开铬-铱复合溅射靶(铱含量2%wt)连接的高功率脉冲电源,设定电源频率为400Hz,脉宽为50μs,脉冲电压为1000V,功率为3.0KW,基体偏压为-50V,沉积温度为50℃,沉积铬-铱过渡层,厚度为150nm;
S3.继续向腔体中通入Ar气(Ar气的通入量为70sccm),采用直流磁控溅射技术,维持腔体气压为2.1mTorr,打开石墨溅射靶连接的直流电源,设定功率为0.9KW,偏压为-100V,沉积温度为50℃,沉积类石墨非晶碳层,厚度为500nm,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
经测试,在0.6V的标准工作电压下腐蚀电流密度为1.2×10 -8A/cm 2,沉积态接触电阻为5.8mΩ·cm 2,腐蚀24h后接触电阻为8.5mΩ·cm 2,腐蚀48h后接触电阻为9.5mΩ·cm 2
实施例2
本实施例中,金属双极板高导电耐蚀防护涂层的制备方法如下:
S1.基体选用316L不锈钢,对不锈钢双极板超声清洗,干燥后放入真空腔室内,固定于工件托架上,抽真空至2.0×10 -5Torr以下,然后在氩气流量40sccm、偏压为-150V的条件下, 打开离子源,调整输出电压为1200V,利用氩等离子体对不锈钢双极板表面刻蚀30min;
S2.向腔体中通入Ar气(Ar气的通入量为60sccm),采用高功率脉冲磁控溅射技术,维持腔体气压为2.0mTorr,打开铬-铱复合溅射靶(铱含量10%wt)连接的高功率脉冲电源,设定电源频率为800Hz,脉宽为100μs,脉冲电压为800V,功率为3.5KW,基体偏压为-80V,沉积温度为40℃,沉积铬-铱过渡层,厚度为200nm;
S3.继续向腔体中通入Ar气(Ar气的通入量为30sccm),采用直流磁控溅射技术,维持腔体气压为1.4mTorr,打开石墨溅射靶连接的直流电源,设定功率为1.2KW,偏压为-250V,沉积温度为40℃,沉积类石墨非晶碳层,厚度为800nm,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
经测试,在0.6V的标准工作电压下腐蚀电流密度为1.3×10 -8A/cm 2,沉积态接触电阻为5.9mΩ·cm 2,腐蚀24h后接触电阻为8.2mΩ·cm 2,腐蚀48h后接触电阻为9.1mΩ·cm 2
实施例3
本实施例中,金属双极板高导电耐蚀防护涂层的制备方法如下:
S1.基体选用钛合金,对钛合金双极板超声清洗,干燥后放入真空腔室内,固定于工件托架上,抽真空至2.0×10 -5Torr以下,然后在氩气流量65sccm、偏压为-250V的条件下,打开离子源,调整输出电压为1200V,利用氩等离子体对不锈钢双极板表面刻蚀60min;
S2.向腔体中通入Ar气(Ar气的通入量为70sccm),采用高功率脉冲磁控溅射技术,维持腔体气压为2.1mTorr,打开铬-铱复合溅射靶(铱含量5%wt)连接的高功率脉冲电源,设定电源频率为500Hz,脉宽为200μs,脉冲电压为1000V,功率为2.0KW,基体偏压为-150V,沉积温度为80℃,沉积铬-铱过渡层,厚度为100nm;
S3.继续向腔体中通入Ar气(Ar气的通入量为40sccm),采用直流磁控溅射技术,维持腔体气压为1.7mTorr,打开石墨溅射靶连接的直流电源,设定功率为0.9KW,偏压为-50V,沉积温度为80℃,沉积类石墨非晶碳层,厚度为600nm,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
经测试,在0.6V的标准工作电压下腐蚀电流密度为1.1×10 -8A/cm 2,沉积态接触电阻为5.7mΩ·cm 2,腐蚀24h后接触电阻为8.9mΩ·cm 2,腐蚀48h后接触电阻为9.8mΩ·cm 2
实施例4
本实施例中,金属双极板高导电耐蚀防护涂层的制备方法如下:
S1.基体选用钛合金,对钛合金双极板超声清洗,干燥后放入真空腔室内,固定于工件托架上,抽真空至2.0×10 -5Torr以下,然后在氩气流量70sccm、偏压为-300V的条件下,打开离子源,调整输出电压为1200V,利用氩等离子体对不锈钢双极板表面刻蚀45min;
S2.向腔体中通入Ar气(Ar气的通入量为50sccm),采用高功率脉冲磁控溅射技术,维持腔体气压为1.7mTorr,打开铬-铱复合溅射靶(铱含量6%wt)连接的高功率脉冲电源,设定电源频率为600Hz,脉宽为100μs,脉冲电压为900V,功率为3.0KW,基体偏压为-60V,沉积温度为60℃,沉积铬-铱过渡层,厚度为150nm;
S3.继续向腔体中通入Ar气(Ar气的通入量为50sccm),采用直流磁控溅射技术,维持腔体气压为1.7mTorr,打开石墨溅射靶连接的直流电源,设定功率为1.0KW,偏压为-150V,沉积温度为60℃,沉积类石墨非晶碳层,厚度为600nm,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
经测试,在0.6V的标准工作电压下腐蚀电流密度为1.2×10 -8A/cm 2,沉积态接触电阻为5.7mΩ·cm 2,腐蚀24h后接触电阻为8.3mΩ·cm 2,腐蚀48h后接触电阻为9.6mΩ·cm 2
实施例5
本实施例中,金属双极板高导电耐蚀防护涂层的制备方法如下:
S1.基体选用钛合金,对钛合金双极板超声清洗,干燥后放入真空腔室内,固定于工件托架上,抽真空至2.0×10 -5Torr以下,然后在氩气流量55sccm、偏压为-200V的条件下,打开离子源,调整输出电压为1200V,利用氩等离子体对不锈钢双极板表面刻蚀45min;
S2.向腔体中通入Ar气(Ar气的通入量为70sccm),采用高功率脉冲磁控溅射技术,维持腔体气压为2.1mTorr,打开铬-铱复合溅射靶(铱含量3%wt)连接的高功率脉冲电源,设定电源频率为700Hz,脉宽为150μs,脉冲电压为900V,功率为3.0KW,基体偏压为-100V,沉积温度为70℃,沉积铬-铱过渡层,厚度为150nm;
S3.继续向腔体中通入Ar气(Ar气的通入量为35sccm),采用直流磁控溅射技术,维持腔体气压为1.5mTorr,打开石墨溅射靶连接的直流电源,设定功率为1.0KW,偏压为-150V,沉积温度为70℃,沉积类石墨非晶碳层,厚度为700nm,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
经测试,在0.6V的标准工作电压下腐蚀电流密度为1.1×10 -8A/cm 2,沉积态接触电阻为5.6mΩ·cm 2,腐蚀24h后接触电阻为8.6mΩ·cm 2,腐蚀48h后接触电阻为9.7mΩ·cm 2
对比例1
本实施例作为实施例1的对比例,步骤S1、S3与实施例1完全相同,步骤S2中,溅射靶材选用铬溅射靶,其它参数与实施例1相同。
对比例2
本实施例作为实施例1的对比例,步骤S1、S3与实施例1完全相同,步骤S2中,溅射靶材选用铬-铱复合溅射靶(铱含量20%),其它参数与实施例1相同。
性能测试比较:
采用三电极电化学测试系统测量样品的耐腐蚀性能,溶液为0.5M H 2SO 4+5ppm HF溶液,溶液温度为80℃,测量结果如图2所示。从图2中可以看出:实施例1样品在0.6V的标准工作电压下腐蚀电流密度为1.9×10 -8A/cm 2,相比于美国能源部标准(DOE2020)1×10 -6A/cm 2下降了约2个数量级,对比例1样品在0.6V的标准工作电压下腐蚀电流密度为2.9×10 -7A/cm 2,对比例2样品在0.6V的标准工作电压下腐蚀电流密度为6.9×10 -6A/cm 2,实施例腐蚀电流密度相比于两个对比例有明显降低,表明本申请实施例制备的涂层具有更好耐腐蚀性能。
在样品表面施加1.5MPa的组装预紧力,对其进行接触电阻测试,结果如图3所示,实施例1中的沉积态(即高导电耐蚀类石墨碳防护多层复合涂层)的接触电阻为5.4mΩ·cm 2,腐蚀24h后接触电阻略微增加至8.3mΩ·cm 2,腐蚀48h后接触电阻略微增加至9.2mΩ·cm 2,满足美国能源部标准要求的低于10mΩ·cm 2,对比例1中的沉积态(即涂层)的接触电阻为8.7mΩ·cm 2,腐蚀24h后接触电阻增加至11.3mΩ·cm 2,腐蚀48h后接触电阻增加至33.4mΩ·cm 2,对比例2中的沉积态(即涂层)的接触电阻为7.9mΩ·cm 2,腐蚀24h后接触电阻增加至11.8mΩ·cm 2,腐蚀48h后接触电阻增加至26.7mΩ·cm 2,实施例1中的高导电耐蚀类石墨碳防护多层复合涂层的接触电阻以及腐蚀24小时后的接触电阻都要比两个对比例低,同时随着腐蚀时间的增长只有实施例接触电阻上升的幅度最小,且只有实施例可以满足DOE2020的标准,证明实施例初始导电性更好,且长时间腐蚀对其性能影响更小。
对比例3
本实施例作为实施例1的对比例,步骤S1、S3与实施例1完全相同,步骤S2中,溅射源改为直流磁控溅射,其它参数与实施例1相同。
性能测试比较:
图4a-图4b分别是实施例1、对比例3的表面形貌,采用扫描电子显微镜分析可以得出:实施例1制备的防护多层复合涂层表面平滑结构致密,对比例3制备的涂层表面粗糙有裂纹,该结果说明本申请实施例1通过高功率脉冲磁控溅射制备的涂层表面更为平滑致密,进一步说明实施例1中涂层有更好的防护性能。
图5a-图5b分别是本申请实施例1及对比例3中制备的涂层的结合力划痕形貌图,可以看出实施例1制备的涂层结合力更强。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,并均获得了较为理想的结果。
应当理解,本申请的技术方案不限于上述具体实施案例的限制,凡是在不脱离本申请宗旨和权利要求所保护的范围情况下,根据本申请的技术方案做出的技术变形,均落于本申请 的保护范围之内。

Claims (10)

  1. 一种高导电耐蚀类石墨碳防护多层复合涂层,其特征在于,包括依次形成于基体表面的铬-铱过渡层和类石墨非晶碳层;其中,所述铬-铱过渡层中铱元素的含量为2~10wt%;并且,所述高导电耐蚀类石墨碳防护多层复合涂层在0.6V的标准工作电压下腐蚀电流密度小于5×10 -8A/cm 2,沉积态接触电阻小于7mΩ·cm 2,腐蚀24h后接触电阻小于10mΩ·cm 2,腐蚀48h后接触电阻增大量在5%以内。
  2. 根据权利要求1所述的高导电耐蚀类石墨碳防护多层复合涂层,其特征在于:所述铬-铱过渡层的厚度为100~200nm;所述类石墨非晶碳层的厚度为500~800nm。
  3. 根据权利要求1所述的高导电耐蚀类石墨碳防护多层复合涂层,其特征在于:所述基体包括金属双极板。
  4. 权利要求1-3中任一项所述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其特征在于,包括:
    提供作为基体的金属双极板;
    采用高功率脉冲磁控溅射技术,以铬-铱复合靶为靶材,在所述基体的表面沉积形成铬-铱过渡层,其中所述铬-铱复合靶中铱元素的含量为2~10wt%;
    以及,采用直流磁控溅射技术,以石墨靶为靶材,在所述铬-铱过渡层表面沉积形成类石墨非晶碳层,从而获得高导电耐蚀类石墨碳防护多层复合涂层。
  5. 根据权利要求4所述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其特征在于包括:采用高功率脉冲磁控溅射技术,将所述基体置于反应腔体中,以铬-铱复合靶为靶材,以惰性气体为工作气体,在所述基体表面沉积形成铬-铱过渡层,其中所述高功率脉冲磁控溅射技术采用的脉冲频率为400~800Hz,脉宽为50~200μs,脉冲电压为800~1000V,功率为2.0~3.5KW,反应腔体的气压为1.4~2.1mTorr,基体偏压为-50V~-150V,惰性气体的通入量为30~70sccm,沉积温度为40~80℃,沉积时间为5~15min。
  6. 根据权利要求4所述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其特征在于包括:采用直流磁控溅射技术,以石墨靶为靶材,以惰性气体为工作气体,在所述铬-铱过渡层表面沉积形成类石墨非晶碳层,其中采用的溅射源电源功率为0.9~1.2kW,反应腔体气压为1.4~2.1mTorr,基体偏压为-50V~-250V,惰性气体的通入量为30~70sccm,沉积温度为40~80℃,沉积时间为30~90min。
  7. 根据权利要求4所述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其特征在于还包括:在形成所述铬-铱过渡层前,先对基体表面进行刻蚀处理。
  8. 根据权利要求7所述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其特征在于, 所述刻蚀处理包括:采用Ar离子刻蚀法于室温下对所述基体进行刻蚀处理30~60min;所述刻蚀处理采用的工艺条件包括:反应腔体气压在2.0×10 -5Torr以下,氩气流量为40~100sccm,偏压为-150~-450V,所述Ar离子刻蚀法包括辉光刻蚀和/或离子束刻蚀。
  9. 根据权利要求4所述的高导电耐蚀类石墨碳防护多层复合涂层的制法,其特征在于:所述金属双极板包括不锈钢双极板或钛合金双极板。
  10. 一种质子交换膜燃料电池用双极板,包括金属双极板,其特征在于,所述金属双极板覆设有权利要求1-3中任一项所述的高导电耐蚀类石墨碳防护多层复合涂层。
PCT/CN2022/100767 2021-07-20 2022-06-23 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用 WO2023000913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110821664.4 2021-07-20
CN202110821664.4A CN113265638B (zh) 2021-07-20 2021-07-20 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用

Publications (1)

Publication Number Publication Date
WO2023000913A1 true WO2023000913A1 (zh) 2023-01-26

Family

ID=77236934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100767 WO2023000913A1 (zh) 2021-07-20 2022-06-23 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用

Country Status (2)

Country Link
CN (1) CN113265638B (zh)
WO (1) WO2023000913A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265638B (zh) * 2021-07-20 2021-09-14 中国科学院宁波材料技术与工程研究所 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
CN114597436B (zh) * 2022-03-28 2023-06-16 中国科学院兰州化学物理研究所 一种用于金属双极板的防护涂层及其制备方法
CN114824339A (zh) * 2022-04-06 2022-07-29 中汽创智科技有限公司 一种金属双极板涂层及其制备方法和用途
CN114665114A (zh) * 2022-04-11 2022-06-24 上海电气集团股份有限公司 一种多层复合碳涂层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388902A (zh) * 2014-12-03 2015-03-04 中国科学院宁波材料技术与工程研究所 一种基体表面高导电性的碳基涂层及其制备方法
JP2018006300A (ja) * 2016-07-08 2018-01-11 日産自動車株式会社 燃料電池用金属セパレータ及びこれを用いた燃料電池
CN107740039A (zh) * 2017-11-06 2018-02-27 中国人民解放军国防科技大学 一种基于表面合金化改性的Ir‑X涂层及其制备方法
CN109346743A (zh) * 2018-08-31 2019-02-15 上海交通大学 一种燃料电池金属双极板用导电耐蚀涂层
CN110684946A (zh) * 2019-11-07 2020-01-14 中国科学院宁波材料技术与工程研究所 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用
CN113265638A (zh) * 2021-07-20 2021-08-17 中国科学院宁波材料技术与工程研究所 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123782A (ja) * 2001-10-17 2003-04-25 Showa Denko Kk 燃料電池用セパレータおよびその製造方法、ならびに燃料電池
CN1314153C (zh) * 2002-03-15 2007-05-02 株式会社理研 固体高分子电解质型燃料电池的电池组件
JP2003272671A (ja) * 2002-03-15 2003-09-26 Riken Corp 固体高分子電解質型燃料電池のセルユニット
CN102468490B (zh) * 2010-11-19 2014-04-16 中国科学院金属研究所 全钒液流电池不锈钢双极板表面碳化铬/石墨复合涂层
CN210628419U (zh) * 2019-05-17 2020-05-26 北京中氢绿能科技有限公司 一种燃料电池金属双极板涂层
CN110137525A (zh) * 2019-05-17 2019-08-16 北京中氢绿能科技有限公司 一种燃料电池金属双极板涂层及制备技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388902A (zh) * 2014-12-03 2015-03-04 中国科学院宁波材料技术与工程研究所 一种基体表面高导电性的碳基涂层及其制备方法
JP2018006300A (ja) * 2016-07-08 2018-01-11 日産自動車株式会社 燃料電池用金属セパレータ及びこれを用いた燃料電池
CN107740039A (zh) * 2017-11-06 2018-02-27 中国人民解放军国防科技大学 一种基于表面合金化改性的Ir‑X涂层及其制备方法
CN109346743A (zh) * 2018-08-31 2019-02-15 上海交通大学 一种燃料电池金属双极板用导电耐蚀涂层
CN110684946A (zh) * 2019-11-07 2020-01-14 中国科学院宁波材料技术与工程研究所 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用
CN113265638A (zh) * 2021-07-20 2021-08-17 中国科学院宁波材料技术与工程研究所 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用

Also Published As

Publication number Publication date
CN113265638A (zh) 2021-08-17
CN113265638B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2023000913A1 (zh) 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
CN110684946B (zh) 一种金属双极板高导电耐蚀防护涂层及其制备方法与应用
US11799094B2 (en) Graphite micro-crystalline carbon coating for metal bipolar plates of fuel cells and application thereof
CN109346743B (zh) 一种燃料电池金属双极板用导电耐蚀涂层
CN110284102A (zh) 一种金属碳化物晶体复合涂层及其制备方法
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN110137525A (zh) 一种燃料电池金属双极板涂层及制备技术
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
CN210628419U (zh) 一种燃料电池金属双极板涂层
CN101604756B (zh) 双极板与燃料电池
CN104577144A (zh) 一种氮化增强表面的燃料电池用双极板及其制备方法
CN112803033A (zh) 一种用于燃料电池金属双极板的薄膜及其制备方法
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
CN111092242B (zh) 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法
CN114481048B (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN112820890B (zh) 一种防腐导电涂层制备方法、结构以及燃料电池极板
CN113937301A (zh) 金属双极板表面过渡金属氮化物与碳复合改性薄膜及其制备方法
CN113025980A (zh) 一种燃料电池双极板用耐腐蚀膜层及其制备方法
CN204361172U (zh) 一种氮化增强表面的燃料电池用双极板
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
CN115652255A (zh) 一种Ti基耐蚀导电非晶结构涂层及其制备方法和应用
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN201717318U (zh) 一种质子交换膜燃料电池用金属双极板
CN111600043A (zh) 一种燃料电池金属双极板及其表面涂层方法
CN102306804B (zh) 用于质子交换膜燃料电池双极板的高sp2杂化致密碳镀层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE