CN112795886A - 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法 - Google Patents

一种用于金属双极板成形的导电耐蚀预涂层及其制备方法 Download PDF

Info

Publication number
CN112795886A
CN112795886A CN202011572896.2A CN202011572896A CN112795886A CN 112795886 A CN112795886 A CN 112795886A CN 202011572896 A CN202011572896 A CN 202011572896A CN 112795886 A CN112795886 A CN 112795886A
Authority
CN
China
Prior art keywords
layer
corrosion
metal
ion
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011572896.2A
Other languages
English (en)
Other versions
CN112795886B (zh
Inventor
黎焕明
毕飞飞
姜天豪
胡鹏
蓝树槐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhizhen New Energy Equipment Co ltd
Original Assignee
Shanghai Zhizhen New Energy Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhizhen New Energy Equipment Co ltd filed Critical Shanghai Zhizhen New Energy Equipment Co ltd
Priority to CN202011572896.2A priority Critical patent/CN112795886B/zh
Publication of CN112795886A publication Critical patent/CN112795886A/zh
Application granted granted Critical
Publication of CN112795886B publication Critical patent/CN112795886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/586Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明涉及一种用于金属双极板成形的导电耐蚀预涂层及其制备方法,从金属基材向上,依次包括:覆盖在所述金属基材表面上的离子注入层,覆盖在所述离子注入层表面的界面扩散层,以及沉积在所述界面扩散层表面导电层;离子注入层的离子包括贵金属、过渡金属或非金属中的一种或多种;界面扩散层的材质为过渡金属的碳化物或氮化物或非金属;表面导电层的材质为贵金属或导电碳材料。本发明的离子注入层有效地提升了涂层基材之间的结合性能,扩散处理层消除了涂层缺陷并提高了均匀性,表面导电层具有优异导电耐蚀延展性能,避免了在薄板冲压成形过程中产生的涂层开裂以及剥离问题。

Description

一种用于金属双极板成形的导电耐蚀预涂层及其制备方法
技术领域
本发明属于燃料电池技术领域,具体涉及一种用于金属双极板成形的导电耐蚀预涂层及其制备方法。
背景技术
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)以氢气为燃料进行发电,并且产物为水无污染,对环境十分友好,其应用范围已经包括汽车,无人机、固定电站等。而在质子交换膜燃料电池电堆中双极板发挥着重要作用,其占据了电堆重量的80%以及电堆成本的45%,主要承担着气体分配、热量传导以及一定的支撑作用。而在众多的质子交换膜燃料电池双极板材料当中,包括金属、石墨以及复合材料等。金属双极板具有优异的导电导热性以及良好的机械性能已作为燃料电池极板材料的首选,但是未经表面改性的金属双极板易发生严重腐蚀造成大量离子析出污染催化剂,表面生成的氧化保护膜造成其导电性的急剧下降,因此仍需对金属极板进行表面改性以提高其导电性和耐蚀性。
金属双极板从原材料到加工成产品需要经历很多道工艺,主要包括金属薄板的冲压成型、阴极板和阳极板的焊接、金属双极板的表面改性处理以及密封。采用间歇式的加工方法会因为加工工序的繁琐而造成金属双极板生产效率的下降以及良品率的降低,因此为了提高其生产效率,直接制备出具有优异导电耐蚀性能的金属薄板用于后续的冲压焊接具有重要意义。专利文献CN110129727A公开了一种采用卷对卷物理气相沉积方法制备金属带预涂层的方法,可以极大地降低金属双极板的生产成本,虽然其金属过渡层加上石墨化镀层的结构具有良好的导电耐蚀性能,但是其结合性能和延展性能不足。专利文献CN1875128A公开了一种涂覆金属涂层的不锈钢带的制备方法,并在抗拉测试中钢带被单轴拉断而不会出现涂层的剥落和开裂现象,但其腐蚀性能还有待改善。
为了提高金属双极板的导电性和耐蚀性,研究人员已经开发出了多种类型涂层,包括贵金属涂层、金属碳化物涂层、金属氮化物涂层以及碳基涂层,同时为了提高这些导电耐蚀涂层和金属基材的结合性能并降低基材中的离子析出,通常需要在两者之间沉积一层或者多层金属过渡层。但是在金属薄板的冲压过程中,薄板上的应变超过20%,甚至达到30%。在如此大的应变条件下,涂覆有上述金属过渡层的导电耐蚀涂层会发生开裂现象,甚至会从基材上剥离,造成腐蚀溶液渗入基材加速腐蚀。因此,开发一种沉积在金属薄板上具有优异导电耐蚀性能、结合性能以及延展性能的预涂层,用于金属双极板加工成形对提高金属双极板的生产效率,降低金属制造成本实现商业化具有重要意义。
发明内容
本发明的目的是提供一种用于金属双极板成形的导电耐蚀预涂层及其制备方法,以避免预涂层在冲压成型过程中发生开裂以及剥落现象。
本发明的技术方案如下:
本发明的一种用于金属双极板成形的导电耐蚀预涂层,其特征在于,从金属基材向上,依次包括:覆盖在所述金属基材表面上的离子注入层,覆盖在所述离子注入层表面的界面扩散层,以及沉积在所述界面扩散层表面导电层;所述离子注入层的离子种类为贵金属Au、Ag、Pt,过渡金属Ti、Cr、Nb、Ta、W、Mo或非金属C、N、Si对应离子中的一种或多种;所述界面扩散层的材质为过渡金属Ti、Cr、Nb、Ta、W、Mo的碳化物或氮化物,或非金属C、Si;所述表面导电层的材质为贵金属Au、Ag、Pt,或导电碳材料(如:类金刚石碳、类石墨碳、类聚合物碳),优选导电碳材料为类石墨碳;所述离子注入层用于改善涂层的腐蚀性能和成形性能,所述界面扩散层用于消除离子注入产生的缺陷,并提高涂层和基材之间的结合力,所述表面导电层进一步优化涂层的导电性能。
进一步地,所述离子注入层覆盖在所述金属基材表面,有部分以柱型、锯齿型或者混合型结构嵌入到所述金属基材的内部,增加了离子注入层和金属基材之间的结合性能;所述离子注入层厚度为10~1000nm,优选10~500nm。
所述界面扩散层的制备方法包括热辅助扩散、电辅助扩散、激光辅助扩散、等离子体辅助扩散中的一种;包括两方面功能:第一是通过在所述离子注入层和所述金属基材之间的界面扩散来改善离子注入层均匀性,提高所述离子注入层结合性能;第二,如图2所示,离子注入过程中由于离子能量的随即分散性会产生过高能量的离子,对基材表面轰击过于猛烈而产生高能离子缺陷,缺陷形成的通路会导致腐蚀溶液渗入基材造成损伤,过低能量的离子则会附着在基材表面形成低能离子缺陷,造成结合性能下降,所述界面扩散层可以填充与扩散消除上述离子注入层中的两种缺陷。
进一步地,所述界面扩散层的制备方法,还包括采用稀有气体元素(例如:He、Ne、Ar、Kr、Xe等)进行等离子体辉光放电处理,或者通过表面离子渗碳、离子渗氮/碳氮共渗处理。
进一步地,所述表面导电层通过物理气相沉积、化学气相沉积或者离子镀的方法,将所述贵金属或者导电碳材料沉积附着在所述界面扩散层的表面,进一步提高涂层的导电性能,可为单层或者多层结构,总厚度低于5μm,优选低于1μm。
进一步地,在本发明的所述导电耐蚀预涂层中,当所述离子注入层的材质为贵金属Au、Ag、Pt或者非金属C时,所述表面导电层可以省略,贵金属及C离子注入层自身就能作为一种表面导电层;而当所述离子注入层的材质为其它元素时,则所述表面导电层必须存在。
本发明所述的一种用于金属双极板成形的导电耐蚀预涂层的制备方法,其特征在于,包括以下步骤:
(1)在真空环境中对所述金属基材进行清洗,除去其表面的杂质和氧化膜;
(2)将金属离子或者非金属离子注入所述金属基材的表面或内部,形成与所述金属基材紧密结合的所述离子注入层;
(3)在Ar、He、N2或H2的气氛中,对所述金属基材进行界面扩散处理,在所述离子注入层的外表面形成所述扩散处理层;
(4)在所述扩散处理层的外表面上,沉积一层或多层所述表面导电层;即可得到带有本发明所述的导电耐蚀预涂层的金属双极板板材;
在所述步骤(1)中,所述清洗为离子源清洗、射频清洗、自偏压清洗中的一种;处理温度为25~500℃,优选100~300℃;预处理时间2~60min,优选5~20min。
在所述步骤(2)中,所述离子注入的能量为0.01~10MeV,优选0.1~1MeV;所述温度为25~1000℃,优选400~800℃;所述气压为0.1~100Pa,优选1~10Pa;注入为时间0.1~10h,优选0.1~3h。
优选地,在所述步骤(3)中,如果所述界面扩散处理采用热辅助方法,则处理温度为600~800℃;如果所述界面扩散处理采用其它扩散方法,则处理温度为200~500℃;处理气压在0.1~1000Pa,优选10~100Pa,处理时间1~100min,优选5~50min。
在所述步骤(4)中,所述表面导电层的制备方法包括磁控溅射沉积、化学气相沉积、脉冲激光沉积、离子镀等沉积方法,沉积温度200~800℃,优选500~600℃,沉积气压0.01~10Pa,优选0.4~10Pa,沉积时间0.1~5h,优选0.1~1h。
本发明所述导电耐蚀预涂层的制备方法,在单个真空腔室内完成,或者在多个腔体的连续设备上连续完成。
所述导电耐蚀涂层具有优异的结合性能和延展性能,在涂覆涂层的薄板冲压成形成金属双极板之后,涂层形貌完整,表面未出现涂层的开裂和剥离现象。
与现有技术相比,本发明通过离子注入和辅助扩散的有效结合提高了涂层和基材之间的结合性能,扩散处理层消除了涂层缺陷并提高了均匀性,并结合传统沉积方法进行涂层的表面改性,表面导电层具有优异导电耐蚀延展性能,所得到的预涂层不仅具备良好的导电性能和耐蚀性能,同时涂层本身具有优异的延展性能,并和基材之间结合牢靠,在薄板冲压成形过程中有效地避免了涂层开裂和剥离现象,对于降低金属制造成本实现商业化具有重要意义。
附图说明
图1为本发明的预涂层剖视结构示意图;
图2为本发明中界面扩散处理作用示意图;
图3为本发明实施例1中涂层后冲压成形和冲压成形后涂层的腐蚀电流密度对比;
图4为本发明实施例1中涂层后冲压成形和冲压成形后涂层的接触电阻对比;
图中标记说明:1-基材,2-离子注入层,3-界面扩散层,4-表面导电层,11-高能离子缺陷,12-低能离子缺陷。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
一种用于金属双极板成形的导电耐蚀预涂层,采用以下步骤制备:
(1)将不锈钢基材置于样品架上,将样品架送入涂层沉积设备腔体,抽真空至低于本底真空8E-3Pa,温度至200℃,通入氩气使气压维持在0.1Pa,样品架上施加-700V的偏压进行清洗,除去不锈钢基材表面的杂质、油污和氧化膜;
(2)在同一个腔体内,维持该腔体温度和气压不变,在不锈钢基材表面进行金属Ti离子的注入,注入能量为0.1MeV,注入时间1h,形成厚度为50nm的离子注入层;
(3)提高该腔体温度至600℃,充入更多氮气维持气压在0.4Pa,如图1所示,样品架在氮气氛围内静置,进行热辅助扩散,在离子注入层表面形成厚度为10nm的氮化钛界面扩散层,扩散时长30min;
(4)将腔体冷却降温至300℃,采用磁控溅射方法制备非晶碳涂层,沉积气压0.4Pa,沉积时间1h,厚度为2μm;最后在真空中冷却,即可得到本发明所述的导电耐蚀预涂层。
图3为实施例1中涂层后冲压成形和冲压成形后涂层的腐蚀电流密度对比;图4为实施例1中涂层后冲压成形和冲压成形后涂层的接触电阻对比。
实施例2
一种用于金属双极板成形的导电耐蚀预涂层,采用以下步骤制备:
(1)将不锈钢基材置于涂层沉积设备中的样品架上,腔体抽真空至低于本底真空8E-3Pa,开启温度至250℃,通入氩气使气压维持在0.1Pa,样品架上施加-700V的偏压进行清洗,除去不锈钢基材表面的杂质、油污和氧化膜;
(2)在同一个腔体内,维持腔体气压不变,温度升至400℃,在不锈钢基材表面进行金属Ti离子和Nb离子的共注入,注入能量为0.08MeV,注入时间40min,形成厚度为35nm的Ti/Nb复合离子注入层;
(3)降低腔体温度至200℃,充入更多乙炔维持气压在1Pa,样品在乙炔氛围内静置,进行等离子体辅助扩散,放电电压3000V,形成厚度为20nm的TiC和NbC的界面扩散层,扩散时长10min;如图2所示,离子注入过程中由于离子能量的随即分散性会产生过高能量的离子,对基材表面轰击过于猛烈而产生高能离子缺陷11,缺陷形成的通路会导致腐蚀溶液渗入基材造成损伤,过低能量的离子则会附着在基材表面形成低能离子缺陷12,造成结合性能下降,界面扩散层可以填充与扩散消除上述离子注入层中的两种缺陷;
(4)采用磁控溅射方法制备薄贵金属Ag涂层,维持腔体温度200℃,通入氩气气压0.5Pa,沉积时间40min,厚度为1μm;最后在真空中冷却,即可得到本发明所述的导电耐蚀预涂层。
实施例3
一种用于金属双极板成形的导电耐蚀预涂层,采用以下步骤制备:
(1)将不锈钢基材置于涂层沉积设备中的样品架上,腔体抽真空至低于本底真空8E-3Pa,开启温度至300℃,通入氩气使气压维持在0.1Pa,样品架上施加-700V的偏压进行清洗,除去不锈钢基材表面的杂质、油污和氧化膜;
(2)维持该腔体气压不变,升高温度至500℃,在不锈钢基材表面进行非金属C离子的注入,注入能量为0.2MeV,注入时间2h,形成厚度为100nm的C离子注入层;
(3)维持腔体温度在400℃,充入乙炔维持气压在4Pa,样品在乙炔氛围内静置,进行等离子体辅助扩散,放电电压3000V,形成厚度为120nm的类石墨的界面扩散层,扩散时长20min;最后在真空中冷却,即可得到本发明所述的导电耐蚀预涂层。
对比例1
传统的金属双极板涂层作为对比例,采用以下步骤制备:
(1)将不锈钢基材预先冲压成形焊接成未带有涂层的不锈钢金属双极板;
(2)将未带有涂层的金属双极板置于涂层沉积设备中的样品架上,腔体抽真空至低于本底真空8E-3Pa,开启温度至200℃,通入氩气使气压维持在0.1Pa,样品架上施加-700V的偏压进行清洗,除去不锈钢基材表面的杂质、油污和氧化膜;
(3)在同一个腔体内,维持该腔体温度和气压不变,进行金属Ti离子的注入,注入能量为0.1MeV,注入时间30min,在表面形成离子注入层;
(4)提高该腔体温度至600℃,充入更多氮气维持气压在0.4Pa,样品架在氮气氛围内静置,进行热辅助扩散,在离子注入层表面形成氮化钛扩散层,扩散时长20min;
(5)将腔体冷却降温至300℃,采用磁控溅射方法制备非晶碳涂层,沉积气压0.4Pa,沉积时间1h;最后在真空中冷却,即可得到带有本发明所述的导电耐蚀预涂层的金属双极板。
实施例1~3涂覆了本发明所述的导电耐蚀预涂层的不锈钢板,经过薄板冲压方式形成双极板。将实施例1~3和对比例1得到的金属双极板,采用光学显微镜观察涂层表面的裂纹;采用电化学方法测试腐蚀性能,测试电位1.6V,测试时间10h;采用表面接触电阻测试评价涂层导电性能,测试压力0.6MPa,测试结果列于表1中。
表1实施例1~3和对比例1的测试结果
涂层表面 腐蚀电流密度(A/cm<sup>2</sup>) 导电性能(mΩ·cm<sup>2</sup>)
实施例1 无裂纹 4.5E-5 3.8
实施例2 无裂纹 5.4E-5 5.1
实施例3 无裂纹 6.0E-5 4.0
对比例1 无裂纹 5.2E-5 4.2
从表1中可以看出,实施例1~3涂覆了本发明所述的导电耐蚀预涂层的不锈钢板,在冲压形成极板之后,表面没有观察到开裂和剥离现象;且实施例1~3的涂层经过冲压成形与对比例1的先冲压后涂层的腐蚀性能和导电性能均保持一致,证明该预涂层在冲压成形过程中保持完好,通过基材预涂层工艺对于降低金属制造成本实现商业化具有重要意义。

Claims (12)

1.一种用于金属双极板成形的导电耐蚀预涂层,其特征在于,从金属基材向上,依次包括:覆盖在所述金属基材表面上的离子注入层,覆盖在所述离子注入层表面的界面扩散层,以及沉积在所述界面扩散层表面导电层;所述离子注入层的离子为贵金属Au、Ag、Pt,过渡金属Ti、Cr、Nb、Ta、W、Mo或非金属C、N、Si对应离子中的一种或多种;所述界面扩散层的材质为过渡金属Ti、Cr、Nb、Ta、W、Mo的碳化物或氮化物,或非金属C、Si;所述表面导电层的材质为贵金属Au、Ag、Pt,或导电碳材料。
2.根据权利要求1所述的导电耐蚀预涂层,其特征在于,所述离子注入层覆盖在所述金属基材表面,有部分以柱型、锯齿型或者混合型结构嵌入到所述金属基材的内部;所述离子注入层厚度为10~1000nm。
3.根据权利要求1所述的导电耐蚀预涂层,其特征在于,所述界面扩散层的制备方法包括热辅助扩散、电辅助扩散、激光辅助扩散、等离子体辅助扩散中的一种。
4.根据权利要求3所述的导电耐蚀预涂层,其特征在于,所述界面扩散层的制备方法,还包括采用稀有气体元素进行等离子体辉光放电处理,或者通过表面离子渗碳、离子渗氮/碳氮共渗处理。
5.根据权利要求1所述的导电耐蚀预涂层,其特征在于,所述表面导电层通过物理气相沉积、化学气相沉积或者离子镀的方法。
6.根据权利要求1所述的导电耐蚀预涂层,其特征在于,当所述离子注入层的材质为贵金属Au、Ag、Pt或者非金属C时,所述表面导电层可以省略。
7.根据权利要求1~6任意一项所述的导电耐蚀预涂层的制备方法,其特征在于,包括以下步骤:
(1)在真空环境中对所述金属基材进行清洗,除去其表面的杂质和氧化膜;
(2)将金属离子或者非金属离子注入所述金属基材的表面或内部,形成与所述金属基材紧密结合的所述离子注入层;
(3)在Ar、He、N2或H2的气氛中,对所述金属基材进行界面扩散处理,在所述离子注入层的外表面形成所述扩散处理层;
(4)在所述扩散处理层的外表面上,沉积一层或多层所述表面导电层;即可得到带有本发明所述的导电耐蚀预涂层的金属双极板板材。
8.根据权利要求7所述的导电耐蚀预涂层的制备方法,其特征在于,在所述步骤(1)中,所述清洗为离子源清洗、射频清洗、自偏压清洗中的一种;处理温度为25~500℃,预处理时间2~60min。
9.根据权利要求7所述的导电耐蚀预涂层的制备方法,其特征在于,在所述步骤(2)中,所述离子注入的能量为0.01~10MeV;所述温度为25~1000℃;所述气压为0.1~100Pa;注入为时间0.1~10h。
10.根据权利要求7所述的导电耐蚀预涂层的制备方法,其特征在于,在所述步骤(3)中,如果所述界面扩散处理采用热辅助方法,则处理温度为600~800℃;如果所述界面扩散处理采用其它扩散方法,则处理温度为200~500℃;处理气压在0.1~1000Pa,处理时间1~100min。
11.根据权利要求7所述的导电耐蚀预涂层的制备方法,其特征在于,在所述步骤(4)中,所述表面导电层的制备方法包括磁控溅射沉积、化学气相沉积、脉冲激光沉积、离子镀等沉积方法,沉积温度200~800℃,沉积气压0.01~10Pa,沉积时间0.1~5h。
12.根据权利要求7所述的导电耐蚀预涂层的制备方法,其特征在于,所述制备方法在单个真空腔室内完成,或者在多个腔体的连续设备上完成。
CN202011572896.2A 2020-12-24 2020-12-24 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法 Active CN112795886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011572896.2A CN112795886B (zh) 2020-12-24 2020-12-24 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011572896.2A CN112795886B (zh) 2020-12-24 2020-12-24 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN112795886A true CN112795886A (zh) 2021-05-14
CN112795886B CN112795886B (zh) 2022-10-21

Family

ID=75805106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011572896.2A Active CN112795886B (zh) 2020-12-24 2020-12-24 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN112795886B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015987A (zh) * 2021-10-08 2022-02-08 上海治臻新能源股份有限公司 一种降低基材离子污染的高延展性金属极板预涂层
CN114927713A (zh) * 2022-06-14 2022-08-19 上海电气集团股份有限公司 一种流场板及其制备方法和应用
CN114976089A (zh) * 2022-05-27 2022-08-30 上海电气集团股份有限公司 一种含涂层的金属双极板及其制备方法
CN115332552A (zh) * 2022-10-14 2022-11-11 上海治臻新能源股份有限公司 一种用于燃料电池钛极板的导电预涂层及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183843B1 (en) * 1991-12-06 2001-02-06 Raytheon Company Method for producing low reflectance diamond and products therefor
CN102087962A (zh) * 2009-12-04 2011-06-08 中芯国际集成电路制造(上海)有限公司 离子扩散及半导体器件形成的方法
CN103805996A (zh) * 2014-01-16 2014-05-21 中国科学院金属研究所 一种金属材料表面先镀膜再渗氮的复合处理方法
CN107978770A (zh) * 2016-10-24 2018-05-01 现代自动车株式会社 燃料电池隔板以及燃料电池隔板的涂覆方法
CN109037723A (zh) * 2018-07-23 2018-12-18 上海交通大学 一种用于燃料电池金属双极板的石墨微晶碳涂层及应用
WO2019082536A1 (ja) * 2017-10-26 2019-05-02 信越半導体株式会社 基板の熱処理方法
CN109728307A (zh) * 2017-10-27 2019-05-07 中国科学院大连化学物理研究所 一种基于碳膜修饰的金属双极板的制备及双极板和应用
CN111218656A (zh) * 2019-11-25 2020-06-02 江苏氢电新能源有限公司 一种高耐腐蚀高电导率的燃料电池金属双极板保护膜及制备方法
CN111575669A (zh) * 2019-05-22 2020-08-25 北京师范大学 一种防高速冲击涂层方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183843B1 (en) * 1991-12-06 2001-02-06 Raytheon Company Method for producing low reflectance diamond and products therefor
CN102087962A (zh) * 2009-12-04 2011-06-08 中芯国际集成电路制造(上海)有限公司 离子扩散及半导体器件形成的方法
CN103805996A (zh) * 2014-01-16 2014-05-21 中国科学院金属研究所 一种金属材料表面先镀膜再渗氮的复合处理方法
CN107978770A (zh) * 2016-10-24 2018-05-01 现代自动车株式会社 燃料电池隔板以及燃料电池隔板的涂覆方法
WO2019082536A1 (ja) * 2017-10-26 2019-05-02 信越半導体株式会社 基板の熱処理方法
CN109728307A (zh) * 2017-10-27 2019-05-07 中国科学院大连化学物理研究所 一种基于碳膜修饰的金属双极板的制备及双极板和应用
CN109037723A (zh) * 2018-07-23 2018-12-18 上海交通大学 一种用于燃料电池金属双极板的石墨微晶碳涂层及应用
CN111575669A (zh) * 2019-05-22 2020-08-25 北京师范大学 一种防高速冲击涂层方法
CN111218656A (zh) * 2019-11-25 2020-06-02 江苏氢电新能源有限公司 一种高耐腐蚀高电导率的燃料电池金属双极板保护膜及制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015987A (zh) * 2021-10-08 2022-02-08 上海治臻新能源股份有限公司 一种降低基材离子污染的高延展性金属极板预涂层
CN114015987B (zh) * 2021-10-08 2022-11-29 上海治臻新能源股份有限公司 一种降低基材离子污染的高延展性金属极板预涂层
CN114976089A (zh) * 2022-05-27 2022-08-30 上海电气集团股份有限公司 一种含涂层的金属双极板及其制备方法
CN114976089B (zh) * 2022-05-27 2024-04-12 上海电气集团股份有限公司 一种含涂层的金属双极板及其制备方法
CN114927713A (zh) * 2022-06-14 2022-08-19 上海电气集团股份有限公司 一种流场板及其制备方法和应用
CN115332552A (zh) * 2022-10-14 2022-11-11 上海治臻新能源股份有限公司 一种用于燃料电池钛极板的导电预涂层及其制备方法
CN115332552B (zh) * 2022-10-14 2022-12-20 上海治臻新能源股份有限公司 一种用于燃料电池钛极板的导电预涂层及其制备方法

Also Published As

Publication number Publication date
CN112795886B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN112795886B (zh) 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法
US11799094B2 (en) Graphite micro-crystalline carbon coating for metal bipolar plates of fuel cells and application thereof
CN109346743B (zh) 一种燃料电池金属双极板用导电耐蚀涂层
US11634808B2 (en) Anti-corrosion conductive film and pulse bias alternation-based magnetron sputtering deposition method and application thereof
CN110983283B (zh) 氢燃料电池金属双极板用Ti/TiCN纳米涂层的制备方法及设备
CN113584441B (zh) 一种金属双极板涂层及其制备方法
CN110808384B (zh) 一种金属双极板及其制备方法以及燃料电池
CN112111716B (zh) 一种用于氢燃料电池金属双极板的超低电阻耐腐蚀涂层的制备工艺
KR101172163B1 (ko) 연료전지용 분리판 및 그 제조 방법
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
CN113249683A (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
WO2023197469A1 (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN114976089A (zh) 一种含涂层的金属双极板及其制备方法
CN102088097A (zh) 用于燃料电池的金属隔板和处理该金属隔板的表面的方法
CN111092242A (zh) 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法
CN113206267A (zh) 一种燃料电池金属极板涂层制备方法
CN112820890B (zh) 一种防腐导电涂层制备方法、结构以及燃料电池极板
KR102298876B1 (ko) 연료전지용 분리판 및 연료전지용 분리판의 코팅 방법
CN114015987B (zh) 一种降低基材离子污染的高延展性金属极板预涂层
CN117144296A (zh) 一种氢燃料电池极板涂层的制备方法
CN114822919B (zh) 一种石墨烯-金属复合膜的制造方法
CN115207388A (zh) 燃料电池金属极板用高延展预涂层纳米晶梯度薄板及制备
KR102496792B1 (ko) 연료전지용 분리판 및 연료전지용 분리판의 코팅 방법
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201306 factory building 1, No. 1500, cenglin Road, Lingang New District, pilot Free Trade Zone, Pudong New Area, Shanghai

Applicant after: Shanghai Zhizhen new energy Co.,Ltd.

Address before: 201306 factory building 1, no.1500, cenglin Road, Nicheng Town, Pudong New Area, Shanghai

Applicant before: SHANGHAI ZHIZHEN NEW ENERGY EQUIPMENT CO.,LTD.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant