CN1102815C - 直接变换接收机 - Google Patents

直接变换接收机 Download PDF

Info

Publication number
CN1102815C
CN1102815C CN98109216.0A CN98109216A CN1102815C CN 1102815 C CN1102815 C CN 1102815C CN 98109216 A CN98109216 A CN 98109216A CN 1102815 C CN1102815 C CN 1102815C
Authority
CN
China
Prior art keywords
frequency
signal
local oscillator
low pass
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98109216.0A
Other languages
English (en)
Other versions
CN1202768A (zh
Inventor
片山浩
安倍克明
今川保美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1202768A publication Critical patent/CN1202768A/zh
Application granted granted Critical
Publication of CN1102815C publication Critical patent/CN1102815C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/24Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits
    • H03D3/241Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits the oscillator being part of a phase locked loop
    • H03D3/245Modifications of demodulators to reject or remove amplitude variations by means of locked-in oscillator circuits the oscillator being part of a phase locked loop using at least twophase detectors in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

本发明提供一种直接变换接收机,它包括第一本地振荡器;90度移相器以相移第一振荡器信号90度的第二振荡器信号;将接收的RF信号与第一本地振荡器信号混频的第一混频器;将接收的RF信号与第二本地振荡器信号混频的第二混频器;处理第一混频器输出信号的第一低通滤波器;处理第二混频器输出信号的第二低通滤波器;解调器;频率误差检测器;振荡器控制器;以及滤波器控制器。

Description

直接变换接收机
本发明涉及可用于诸如PHS(个人手持电话)电话机、便携式电话或寻呼机之类移动通信装置中的直接变换接收机。
日本专利特许申请6-54005揭示了一种包含FSK(移频键控)调制器的直接变换接收机。在该申请的直接变换接收机中,所接收的携带数字信息信号的射频(RF)FSK信号被送至第一和第二混频器中。第一混频器下变换RF FSK信号以响应第一本地振荡器信号。第二混频器下变换RF FSK信号以响应与第一本地振荡器信号正交的第二振荡器信号。第一本地振荡器信号从作为本地振荡器的电压控制振荡器输出。90度相移器将第一本地振荡器信号转换为第二振荡器信号。第一混频器的输出信号经第一低通滤波器处理,转换为基带I(同相)信号。第二混频器的输出信号经第二低通滤波器处理,转换为基带Q(正交)信号。调制电路从基带I信号和基带Q信号中恢复数字信息信号。调制电路输出被恢复的数字信息信号。
在日本特许申请6-54005的直接变换接收机中,基带I信号和基带Q信号中的一个由频率-电压转换器转换为信号电压。电压比较器将信号电压与基准电压比较。同相/反相鉴别电路将电压比较器输出信号的相位与调制电路输出信号的相位进行比较以决定相位为同相还是反相。当相位相同时,同相/反相鉴别电路向充电器输出降压信号。当相位相反时,同相/反相鉴别电路向充电器输出升压信号。充电器产生电压信号以响应同相/反相鉴别电路输出的升压信号和降压信号。电压信号从充电器经低通滤波器送往电压控制振荡器的控制端。因此,第一本地振荡器的频率和第二本地振荡器的频率得到控制以响应充电器产生的电压信号。这种频率控制提供了自动频率控制(AFC),能够使第一和第二振荡器信号自动跟随所接收的RF FSK信号的载波频率(中心频率)。
日本特许申请6-54005的直接变换接收机的选择性取决于第一和第二混频器后面的第一和第二低通滤波器的截止频率。第一和第二低通滤波器的截止频率是固定的。因此在日本特许申请6-54005的直接变换接收机中,难以根据信号接收条件调整选择性。
如上所述,日本特许申请6-54005的直接变换接收机具有AFC功能,能够校正第一和第二本地振荡器信号频率与接收的RF FSK信号载波频率(中心频率)之间的误差。AFC无法校正幅度超出接收机选择性提供的通频带的频率误差。由于第一和第二低通滤波器的截止频率以及接收机选择性是固定的,所以通频带也是固定的。因此在日本特许申请6-54005的直接变换接收机中,难以自动调整可由AFC校正的频率误差的上限。
本发明的一个目标是提供一种改进的直接变换接收机。
本发明的第一方面是提供一种直接变换接收机,它包括产生变频的第一本地振荡器信号的第一本地振荡器;与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第一振荡器信号转换为第二振荡器信号;与第一本地振荡器信号相连以将接收的RF信号与第一本地振荡器信号混频的第一混频器;与第二本地振荡器信号相连以将接收的RF信号与第二本地振荡器信号混频的第二混频器;与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通滤波器具有可控的截止频率;与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通滤波器具有可控的截止频率;与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢复接收到的RF信号代表的信息信号的解调器;与解调器相连以检测接收到的RF信号载波频率与第一本地振荡器信号之间误差从而响应解调器恢复的信息信号的频率误差检测器;与第一本地振荡器和频率误差检测器相连以控制第一局部振动器信号频率从而响应频率误差检测器检测到的误差的振荡器控制器;以及与第一和第二低通滤波器以及频率误差检测器相连以控制第一和第二低通滤波器截止频率从而响应频率误差检测器检测到的误差的滤波器控制器。
本发明第二方面基于第一方面,并提供一种直接变换接收机,其中频率误差检测器包含积分器,用来在长于信息信号发送数据速率周期的给定时间间隔上积分信息信号的电压。
本发明第三方面基于第一方面,并提供一种直接变换接收机,其中频率误差检测器包含:峰值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现的信息信号峰值电压;谷值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现的信息信号谷底电压;以及加法器,用来将峰值检测器检测到的峰值电压与谷值检测器检测到的谷底电压相加。
本发明第四方面基于第一方面,并提供一种直接变换接收机,其中滤波器控制器包含在至少在两个不同数值之间改变第一和第二低通滤波器每一个的截止频率以响应频率误差检测器检测到的误差的装置。
本发明第五方面基于第一方面,并提供一种直接变换接收机,其中滤波器控制器包括根据频率误差检测器检测到的误差连续改变第一和第二低通滤波器截止频率的装置。
本发明的第六方面是提供一种直接变换接收机,它包括产生变频的第一本地振荡器信号的本地振荡器;与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第一振荡器信号转换为第二振荡器信号;与第一本地振荡器信号相连以将接收的RF信号与第一本地振荡器信号混频的第一混频器;与第二本地振荡器信号相连以将接收的RF信号与第二本地振荡器信号混频的第二混频器;与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通滤波器具有可控的截止频率;与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通滤波器具有可控的截止频率;与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢复接收到的RF信号代表的信息信号的解调器;与解调器相连以检测接收到的RF信号载波频率与第一本地振荡器信号之间误差从而响应解调器恢复的信息信号的频率误差检测器;与第一本地振荡器和频率误差检测器相连以控制第一局部振动器信号频率从而响应频率误差检测器检测到的误差的振荡器控制器;以及与第一和第二低通滤波器以及解调器相连以判断解调器恢复的信息信号中是否存在给定信号模式并根据判断结果控制第一和第二低通滤波器截止频率的信号处理器。
本发明的第七方面是提供一种直接变换接收机,它包括产生本地振荡器信号的本地振荡器;与本地振荡器相连以将接收的RF FSK信号与本地振荡器信号混频的混频器;与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的截止频率;用来检测接收到的RF FSK信号载波频率与本地振荡器信号之间误差的第一装置;以及与低通滤波器相连以根据第一装置检测到的误差改变低通滤波器截止频率的第二装置。
本发明第八方面基于第七方面,并且提供一种直接变换接收机,它进一步包括与本地振荡器和第一装置相连以根据第一装置检测到的误差控制本地振荡器信号频率的第三装置。
本发明的第九方面是提供一种直接变换接收机,它包括产生本地振荡器信号的本地振荡器;与本地振荡器相连以将接收的RF FSK信号与本地振荡器信号混频的混频器;与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的截止频率;与低通滤波器相连以从低通滤波器输出信号中恢复接收到的RF FSK信号代表的信息信号的解调器;以及与低通滤波器和解调器相连以判断解调器恢复的信息信号中是否存在给定信号模式并根据判断结果控制低通滤波器截止频率的信号处理器。
本发明的第十方面基于第九方面并提供一种直接变换接收机,它进一步包括用来检测接收到的RF FSK信号载波频率与本地振荡器信号之间误差的第一装置;以及与本地振荡器和第一装置相连以根据第一装置检测到的误差改变控制本地振荡器信号频率的第二装置。
图1为现有技术的直接变换接收机的框图。
图2为按照本发明第一实施例的直接变换接收机的框图。
图3为图2中解调器实例的框图。
图4为图2中频率误差检测器第一实例的示意图。
图5为图4中频率误差检测器的频率误差与输出信号电压之间的关系图。
图6为图2中频率误差检测器第二实例的框图。
图7为图2中滤波器控制器第一实例的框图。
图8为图2中滤波器控制器第二实例的框图。
图9为图2中低通滤波器第一实例的框图。
图10为图2中低通滤波器第二实例的框图。
图11为按照本发明第二实施例的直接变换接收机的框图。
图12为图11中信号处理器控制程序的流程图。
为了更好地理解本发明,以下将描述现有技术的直接变换接收机。
图1为日本特许申请6-65005中揭示的现有技术直接变换接收机。图1的直接变换接收机包括通过输入端113接收RF FSK信号的第一和第二混频器114和115。RF FSK信号载带数字信息信号。
第一混频器114响应第一本地振荡器信号下转换接收的RF FSK信号。第二混频器115下转换RF FSK信号以响应与第一本地振荡器信号正交的第二振荡器信号。第一本地振荡器信号由作为本地振荡器的电压控制振荡器111产生。第一振荡器信号从电压控制振荡器111送至第一混频器114。90度相移器112从电压控制振荡器111接收第一本地振荡器信号。90度相移器112将第一本地振荡器信号转换为第二振荡器信号。90度相移器112将第二本地振荡信号送至第二混频器115。
第一混频器114的输出信号经第一低通滤波器116处理,转换为基带I(同相)信号。第二混频器115的输出信号经第二低通滤波器117处理,转换为基带Q(正交)信号。调制电路118从低通滤波器116和117接收基带I信号和基带Q信号。解调电路118从基带I信号和基带Q信号中恢复数字信息信号。被恢复的数字信息信号从解调电路118经输出端118A送至外部设备(未画出)。
在图1的现有技术的直接变换接收机中,频率-电压转换器102从低通滤波器116接收基带I信号。频率-电压转换器102将基带I信号转换为相应的信号电压。频率-电压转换器102将信号电压施加在电压比较器104的第一输入端上。基准电压经输入端103施加在电压比较器104的第二输入端。装置104将信号电压与基准电压进行比较,将信号电压转换为双电平电压(二进制信号)。电压比较器104向限幅放大器105输出双电平信号。限幅放大器105对电压比较器104的输出信号进行限幅处理。限幅放大器105向与门电路108a的第一输入端和与门108b的第一输入端输出所得的二进制信号。
解调电路118向延时电路106输出恢复的数字信息信号。延时电路106使数字信息信号延迟一预先确定的时间。延时电路106向与门电路108a的第二输入端输出最终的数字信号。延时电路106经非门电路或者反相器(没有标号)将最终的数字信号送至与门电路108b的第二输入端。同相/反相鉴别电路107将限幅放大器105输出信号的相位与延时电路106输出信号的相位进行比较以判断相位是相等还是反相。当相位相同时,同相/反相鉴别电路107向充电器109输出降压信号。具体而言,与门电路108b向充电器109输出降压信号。当相位相反时,同相/反相鉴别电路107向充电器109输出升压信号。具体而言,与门电路108a向充电器109输出升压信号。充电器109产生电压信号以响应同相/反相鉴别电路107输出的升压信号和降压信号。充电器109产生的信号电压由降压信号和升压信号决定降压和升压。电压信号从充电器109经低通滤波器110送往电压控制振荡器111的控制端。因此,第一本地振荡器的频率和第二本地振荡器的频率得到控制以响应充电器109产生的电压信号。这种频率控制提供了自动频率控制(AFC),能够使第一和第二振荡器信号自动跟随所接收的RF FSK信号的载波频率(中心频率)。
图1的现有技术直接变换接收机的选择性取决于第一和第二混频器114和115后面的第一和第二低通滤波器116和117的截止频率。第一和第二低通滤波器116和117的截止频率是固定的。因此,在现有技术的直接变换接收机中,难以根据信号接收条件自动调整选择性。
如上所述,现有技术的直接变换接收机具有AFC功能,能够校正第一和第二本地振荡器信号频率与接收的RF FSK信号载波频率(中心频率)之间的误差。AFC无法校正幅度超出接收机选择性提供的通频带的频率误差。由于第一和第二低通滤波器的截止频率以及接收机选择性是固定的,所以导带也是固定的。因此在现有技术的直接变换接收机中,难以自动调整频率误差的上限供AFC校正用。
第一实施例
图2示出了按照本发明第一实施例的直接变换接收机。图2的直接变换接收机包括接收载带数字信息信号的RF FSK信号的天线1。接收的RF FSK信号从天线1经天线放大器2送至混频器5和6。
包括有变频振荡器的本地振荡器3输出一信号,其频率被自动控制在接收的RF FSK信号的载波频率(中心频率)上,下面将清楚说明。本地振荡器3的输出信号施加到混频器5上作为第一本地振荡器信号。本地振荡器3的输出信号还施加到90度相移器4上,转换为90度相移信号。这样,本地振荡器3的输出信号与90度相移器4的输出信号正交。90度相移器4的输出信号施加到混频器6上作为与第一振荡器信号正交的第二振荡器信号。
混频器5下转换接收的RF FSK信号以响应第一本地振荡器信号,即本地振荡器3的输出信号。混频器5的输出信号由低通滤波器7处理,转换为基带I(同相)信号。低通滤波器7具有可变的截止频率。
混频器6下转换接收的RF FSK信号以响应第二本地振荡器信号,即90度相移器4的输出信号。混频器6的输出信号由低通滤波器8处理,转换为基带Q(正交)信号。低通滤波器8具有可变的截止频率。
解调器9从低通滤波器7和8接收基带I信号和基带Q信号。解调器9实现解调以响应基带I信号和基带Q信号。因此解调器9从基带I信号和基带Q信号中产生解调所得的信号。一般情况下,解调所得的信号与接收的RF FSK信号代表的数字信息信号一致。解调所得的信号从解调器9经输出端9A发送到外部设备(未画出)。而且解调器9向频率误差检测器11发送解调所得的信号。
装置11检测接收的RF FSK信号的载波频率(中心频率)与施加在混频器5和6上的第一和第二本地振荡器信号频率之间的误差。频率误差检测器11产生代表检测到的频率误差的信号。频率误差检测器11向振荡器控制器10和滤波器控制器12输出频率误差信号。
振荡器控制器10产生振荡器控制信号以响应频率误差信号。振荡器控制信号取决于频率误差检测器11检测得到的频率误差信号。振荡器控制器10向本地振荡器3输出振荡器控制信号。本地振荡器3的输出信号频率,即第一本地振荡器信号频率得到控制以响应振荡器控制信号。这种频率控制使得频率误差趋于零。因此第一本地振荡器信号频率得到自动控制以跟随接收的RF FSK信号的载波频率(中心频率)。此外,第二本地振荡器信号频率,即90度相移器4的输出信号频率得到自动控制以跟随接收的RF FSK信号的载波频率(中心频率)。
具体而言,本地振荡器3包括产生第一本地振荡器信号的电压控制振荡器。振荡器控制器10产生的振荡器控制信号的电压大小取决于频率检测器11检测到的频率误差。振荡器控制器10将振荡器控制信号施加到本地振荡器3内电压控制振荡器的控制端。因此,第一本地振荡器信号的频率得到控制以响应振荡器控制信号。
滤波器控制器12产生滤波器控制信号以响应频率误差信号。滤波器控制信号取决于频率误差检测器11检测的频率误差。滤波器控制器12向低通滤波器7和8输出滤波器控制信号。低通滤波器7和8的截止频率得到控制以响应滤波器控制信号。这种截止频率控制使得频率误差增加时截止频率也增加。因此,即使当接收的RF FSK信号载波频率与第一和第二本地振荡器信号频率之间的频率误差较大时,低通滤波器7和8也不会阻断代表数字信息信号的信号成分。此外,低通滤波器7和8也不会使本地振荡器3、振荡器控制器10和频率误差检测器11组合实现的自动频率控制功能失效。
图3示出了解调器9结构的实例。图3的解调器9包括本地振荡器21、90度相移器22、混频器23和24、加法器5、带通滤波器26以及频率检测器27。
混频器23从低通滤波器7接收基带I信号(参见图2)。本地振荡器21输出具有预先确定频率的信号,其频率远低于施加在混频器5和6上的第一和第二本地振荡器信号的频率。本地振荡器21的输出信号还施加在90度相移器22上,转换为90度相移信号。因此本地振荡器21的输出信号与90度相移器22的输出信号互相正交。90度相移器22的输出信号被施加到混频器23上作为与第三本地振荡器信号正交的第四本地振荡器信号。
装置23将基带I信号与第四本地振荡器信号(90度相移器22的输出信号)混频。混频器23向加法器25输出混频所得的信号。装置24将基带Q信号与第三本地振荡器信号(本地振荡器21的输出信号)混频。混频器24向加法器25输出混频所得的信号。加法器25将混频器23和24的输出信号组合为FSK信号。加法器25产生的FSK信号的中心频率一般等于施加在混频器23和24上的第三和第四本地振荡器信号的频率。FSK信号从加法器25经带通滤波器26向频率检测器27发送。带通滤波器26的通带设计得与代表数字信息信号的FSK信号成分的频率匹配。频率检测器27对FSK信号进行诸如脉冲计数检测过程或正交检测过程之类的频率检测过程。这样装置27就检测出FSK信号的频率。频率检测器27将FSK信号转换为通常与数字信息信号一致的双电平信号(二进制信号)。频率检测器27将双电平信号送往输出端9A和频率误差检测器11(参见图2)作为解调所得的信号。
图4示出了频率误差检测器11的第一种结构实例。图4的频率误差检测器11包括电阻31和电容32。电阻31的一端与解调器9的输出端相连(参见图2)。电阻31的另一端与电容32的一端相连。电容32的另一端接地。电阻31与电容32之间的节点与振荡器控制器10和滤波器控制器12的输入端相连(参见图2)。电阻31和电容32组合形成对解调所得的信号,即解调器9的输出信号进行运算的积分器(参见图2)。积分器具有预先确定的时间常数,它远远大于对应调制所得信号的发射数据率的数值。解调所得信号,即解调器9的输出信号(参见图2)在时间域上的平均值取决于接收的RF FSK信号的载波频率与施加在混频器5和6上的第一和第二本地振荡器信号之间的误差(参见图2)。图4中频率误差检测器11积分或平滑解调所得的信号,即解调器9的输出信号(参见图2),并产生电压大小取决于上述频率误差的信号。这种电压信号出现在电阻31与电容32之间的节点上。电压信号被送往振荡器控制器10和滤波器控制器12(参见图2)作为频率误差信号。
参见图5,图4中频率误差检测器11的输出信号电压正比于给定范围内的频率误差。
图6示出了频率误差检测器11第二结构实例。图6中的频率误差检测器11包括峰值检测器41、谷值检测器42和加法器43。峰值检测器41和谷值检测器42接收调制所得信号,即解调器9的输出信号(参见图2)。装置41在远远长于对应调制所得信号发射率的每个给定时间间隔内检测解调所得信号。峰值检测器41向加法器43输出峰值电压。装置42在每个给定时间间隔内检测解调所得的信号的谷值电压。谷值检测器42向加法器43输出检测的谷值电压。加法器43将峰值电压与谷值电压组合为一个信号,其电压取决于接收的RF FSK信号载波频率与施加在混频器5和6上的第一和第二本地振荡器信号之间的误差(参见图2)。加法器43向振荡器控制器10和滤波器控制器12输出电压信号(参见图2)作为频率误差信号。
图7示出了滤波器控制器12的第一结构实例。图7中的滤波器控制器12包括从频率误差检测器11接收频率误差信号的窗口比较器61(参见图2)。装置61将频率误差信号的电压与定义预先确定窗口范围的两个基准电压比较。当频率误差信号的电压落在预先确定的窗口范围内时,即,当频率误差位于给定范围内时,窗口比较器61向低通滤波器7和8输出高电平信号(参见图2)作为滤波器控制信号。当频率误差信号的电压超出预先确定的窗口范围内时,即,当频率误差超出给定范围内时,窗口比较器61向低通滤波器7和8输出低电平信号(参见图2)作为滤波器控制信号。低通滤波器7和8(参见图2)的结构相似。低通滤波器7和8(参见图2)的截止频率在低值与高值之间变化以响应图7滤波器控制器12的滤波器控制信号。具体而言,低通滤波器7和8(参见图2)的截止频率在滤波器控制信号处于低电平状态时,即频率误差超出给定范围内时等于高值。低通滤波器7和8(参见图2)的截止频率在滤波器控制信号处于高电平状态时,即频率误差位于给定范围内时等于低值。
滤波器控制器12包括运行于频率误差信号上的不同的窗口比较器。在这种情况下,窗口比较器的输出信号由诸如包括与门和或门之类逻辑电路的合适电路组合成多比特滤波器控制信号。此外,低通滤波器7和8(参见图2)的截止频率在三个或更多的数值之间变化以响应多比特滤波器控制信号。因此,在这种情况下,低通滤波器7和8(参见图2)的截止频率在三个或更多的数值之间变化以响应频率误差信号代表的频率误差。
图8示出了滤波器控制器12的第二结构实例。图8的滤波器控制器12包括从频率误差检测器11(参见图2)接收频率误差信号的电压-电流转换器71。装置71将频率误差信号转换为正比于频率误差信号电压的信号。电压-电流转换器71向低通滤波器7和8(参见图2)输出电流信号作为滤波器控制信号。在这种情况下,低通滤波器7和8(参见图2)的截止频率连续变化以响应滤波器控制信号。因此低通滤波器7和8(参见图2)的截止频率根据频率误差信号代表的频率误差连续变化。
参见图2,低通滤波器7和8的结构类似。以下将只详细描述低通滤波器7。
图9示出了低通滤波器7的第一种结构实例。图9的低通滤波器7包括电阻81、电容82、输入端83、输出端84、电容85和开关86。电阻81的一端经滤波器输入端83与混频器5的输出端相连(参见图2)。电阻81的另一端与电容82的一端相连并且经开关86与电容85的一端相连。电容82和85的另一端接地。电阻81、电容82与开关86之间的节点与滤波器输出端84相连。滤波器输出端84与解调器9相连(参见图2)。开关86的控制端受图7中第一滤波器控制器12输出的滤波器控制信号的控制。开关86在开启和关断状态之间改变以响应滤波器控制信号。具体而言,当滤波器控制信号为高电平时开关86改变为接通状态。当滤波器控制信号为低电平时开关86改变为断开状态。当开关86变为接通状态时,电容85与电容82并联从而使图9的低通滤波器7的截止频率取低值。当开关86变为断开状态时,电容85与电容82断开从而使图9的低通滤波器7的截止频率取高值。
值得注意的是电容82与85的连接和断开可以用电阻81阻值变化来代替以响应滤波器控制信号。
图10示出了低通滤波器7的第二种结构实例。图10的低通滤波器与图8中的滤波器控制器12组合。图10中的低通滤波器7包括差分放大器91、电容92、输入端93和输出端94。差分放大器91构成“gm”放大器。差分放大器91的正相输入端经滤波器输入端93与混频器5(参见图5)的输出端相连。差分放大器91的反相输入端与输出端相连。差分放大器91的输出端与电容92的一端相连。电容92的另一端接地。差分放大器91的输出端与电容92之间的节点与滤波器输出端94相连。滤波器输出端94与解调器9(参见图2)相连。差分放大器91的控制端受到图8滤波器控制器12输出的滤波器控制信号的控制。差分放大器91构成电阻,其阻值按照滤波器控制信号而连续变化。因此图10中低通滤波器7的截止频率根据频率误差检测器11(参见图2)检测的频率误差连续变化。具体而言,流入差分放大器91的集电极电流取决于滤波器控制信号的大小。因此差分放大器91的电导“gm”取决于滤波器控制信号。
第二实施例
图11示出了按照本发明第二实施例的直接变换接收机。除了以下设计不同之外图11的直接变换接收机与图2的直接变换接收机相似。图11的直接变换接收机适于诸如4值FSK信号之类的多值FSK信号。
图11的直接变换接收机包括从解调器9接收解调所得信号的信号处理器13。信号处理器13包括编程为实现信号模式识别的微处理器。
具体而言,信号处理器13检测解调所得的信号中的给定信号模式(给定的符号模式)。信号处理器13判断解调所得的信号中是否存在给定的信号模式。信号处理器13根据判断结果产生二进制信号。信号处理器13向低通滤波器7和8输出二进制信号作为滤波器控制信号。因此,低通滤波器7和8的截止频率根据解调所得的信号中是否存在给定信号模式而变化。
图11的直接变换接收机采用图9的低通滤波器7。在图11的直接变换接收机中,低通滤波器8的结构与低通滤波器7相似。
信号处理器是13中的微处理器包括输入/输出端口组合、处理部分、ROM和RAM。微处理器根据ROM存储的程序运行。图12为在对应解调所得信号的单位时间段(一个符号)的周期内重复执行的程序部分流程图。当信号处理器13判断解调所得信号有效时开始重复执行图12的程序部分。当信号处理器13检测到解调解调所得信号无效时结束图12程序部分的重复执行。
参见图12,程序部分的第一个步骤S1从解调所得信号的当前信号模式中提取信息。当前信号模式由解调所得信号最后面和最前面的预定数量的时间段(最前面和最后面的符号)表示。步骤S1从ROM中读取给定信号模式的信息。给定信号模式的长度对应预先确定的单位信号时间段(符号)。步骤S1将当前信号模式与给定的信号模式核对。当步骤S1判断当前信号模式与给定信号模式一致时,程序从步骤S1进入步骤S2。当步骤S1判断当前信号模式与给定信号模式不一致时,程序从步骤S1跳转至S3。
步骤S2将标志FL从“0”改变为“1”。值得注意的是标志FL已经初始化为“0”。在步骤S2之后,程序进入步骤S3。
步骤S3判断标志FL是否为“1”。当判断标志FL为“1”时,程序从步骤S3进入步骤S4。否则程序从步骤S3进入步骤S5。
步骤S4向低通滤波器7和8输出高电平信号作为滤波器控制信号。在步骤S4之后,程序结束当前执行循环。
步骤S5向低通滤波器7和8输出低电平信号作为滤波器控制信号。在步骤S5之后,程序结束当前执行循环。
步骤S2和S3所用的标志FL使得以下过程发生。只要解调所得信号有效,则在检测到解调所得信号中的给定信号模式之后就继续向低通滤波器7和8输出高电平的滤波器控制信号。
例如,当滤波器控制信号变为高电平状态时低通滤波器7和8的截止频率取低值。当滤波器控制信号变为低电平状态时低通滤波器7和8的截止频率取高值。

Claims (10)

1.一种直接变换接收机,其特征在于包括:
产生变频的第一本地振荡器信号的第一本地振荡器;
与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第一振荡器信号转换为第二振荡器信号;
与第一本地振荡器信号相连以将接收的射频信号与第一本地振荡器信号混频的第一混频器;
与第二本地振荡器信号相连以将接收的射频信号与第二本地振荡器信号混频的第二混频器;
与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通滤波器具有可控的截止频率;
与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通滤波器具有可控的截止频率;
与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢复接收到的射频信号代表的信息信号的解调器;
与解调器相连以检测接收到的射频信号载波频率与第一本地振荡器信号之间误差从而响应解调器恢复的信息信号的频率误差检测器;
与第一本地振荡器和频率误差检测器相连以控制第一局部振动器信号频率从而响应频率误差检测器检测到的误差的振荡器控制器;以及
与第一和第二低通滤波器以及频率误差检测器相连以控制第一和第二低通滤波器截止频率从而响应频率误差检测器检测到的误差的滤波器控制器。
2.如权利要求1所述的直接变换接收机,其特征在于频率误差检测器包含积分器,用来在长于信息信号发送数据速率周期的给定时间间隔上积分信息信号的电压。
3.如权利要求1所述的直接变换接收机,其特征在于频率误差检测器包含:峰值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现的信息信号峰值电压;谷值检测器,用来检测在长于信息信号发送数据速率周期的给定时间间隔内出现的信息信号谷值电压;以及加法器,用来将峰值检测器检测到的峰值电压与谷值检测器检测到的谷值电压相加。
4.如权利要求1所述的直接变换接收机,其特征在于滤波器控制器包含在至少两个不同数值之间改变的第一和第二低通滤波器截止频率以响应频率误差检测器检测到的误差的装置。
5.如权利要求1所述的直接变换接收机,其特征在于滤波器控制器包括根据频率误差检测器检测到的误差连续改变第一和第二低通滤波器截止频率的装置。
6.一种直接变换接收机,其特征在于包括:
产生变频的第一本地振荡器信号的本地振荡器;
与第一本地振荡器相连的90度相移器以相移第一振荡器信号90度从而将第一振荡器信号转换为第二振荡器信号;
与第一本地振荡器信号相连以将接收的射频信号与第一本地振荡器信号混频的第一混频器;
与第二本地振荡器信号相连以将接收的射频信号与第二本地振荡器信号混频的第二混频器;
与第一混频器相连以处理第一混频器输出信号的第一低通滤波器,第一低通滤波器具有可控的截止频率;
与第二混频器相连以处理第二混频器输出信号的第二低通滤波器,第二低通滤波器具有可控的截止频率;
与第一和第二低通滤波器相连以从第一和第二低通滤波器的输出信号中恢复接收到的射频信号代表的信息信号的解调器;
与解调器相连以响应解调器恢复的信息信号而检测接收到的射频信号载波频率与第一本地振荡器信号之间误差的频率误差检测器;
与第一本地振荡器和频率误差检测器相连以响应频率误差检测器检测到的误差而控制第一局部振动器信号频率的振荡器控制器;以及
与第一和第二低通滤波器以及解调器相连以判断解调器恢复的信息信号中是否存在给定信号模式并根据判断结果控制第一和第二低通滤波器截止频率的信号处理器。
7.一种直接变换接收机,其特征在于包括:
产生本地振荡器信号的本地振荡器;
与本地振荡器相连以将接收的射频移频键控信号与本地振荡器信号混频的混频器;
与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的截止频率;
用来检测接收到的射频移频键控信号载波频率与本地振荡器信号之间误差的频率误差检测器;以及
与低通滤波器相连以根据频率误差检测器检测到的误差改变低通滤波器截止频率的滤波器控制器。
8.如权利要求7所述的直接变换接收机,其特征在于进一步包括与本地振荡器和频率误差检测器相连以根据频率误差检测器检测到的误差控制本地振荡器信号频率的振荡器控制器。
9.一种直接变换接收机,其特征在于包括:
产生本地振荡器信号的本地振荡器;
与本地振荡器相连以将接收的射频移频键控信号与本地振荡器信号混频的混频器;
与混频器相连以处理混频器输出信号的低通滤波器,低通滤波器具有可变的截止频率;
与低通滤波器相连以从低通滤波器输出信号中恢复接收到的射频移频键控信号代表的信息信号的解调器;以及
与低通滤波器和解调器相连以判断解调器恢复的信息信号中是否存在给定信号模式并根据判断结果控制低通滤波器截止频率的信号处理器。
10.如权利要求9所述的直接变换接收机,其特征在于进一步包括用来检测接收到的射频移频键控信号载波频率与本地振荡器信号之间误差的频率误差检测器;以及与本地振荡器和频率误差检测器相连以根据频率误差检测器检测到的误差改变控制本地振荡器信号频率的振荡器控制器。
CN98109216.0A 1997-05-13 1998-05-12 直接变换接收机 Expired - Fee Related CN1102815C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP122292/97 1997-05-13
JP122292/1997 1997-05-13
JP12229297A JP3413060B2 (ja) 1997-05-13 1997-05-13 直接変換受信機

Publications (2)

Publication Number Publication Date
CN1202768A CN1202768A (zh) 1998-12-23
CN1102815C true CN1102815C (zh) 2003-03-05

Family

ID=14832353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98109216.0A Expired - Fee Related CN1102815C (zh) 1997-05-13 1998-05-12 直接变换接收机

Country Status (3)

Country Link
US (2) US6275542B1 (zh)
JP (1) JP3413060B2 (zh)
CN (1) CN1102815C (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413060B2 (ja) * 1997-05-13 2003-06-03 松下電器産業株式会社 直接変換受信機
US6061551A (en) 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
US7515896B1 (en) 1998-10-21 2009-04-07 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US6542722B1 (en) * 1998-10-21 2003-04-01 Parkervision, Inc. Method and system for frequency up-conversion with variety of transmitter configurations
US7236754B2 (en) 1999-08-23 2007-06-26 Parkervision, Inc. Method and system for frequency up-conversion
US7039372B1 (en) 1998-10-21 2006-05-02 Parkervision, Inc. Method and system for frequency up-conversion with modulation embodiments
US6370371B1 (en) * 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US6879817B1 (en) 1999-04-16 2005-04-12 Parkervision, Inc. DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US6853690B1 (en) 1999-04-16 2005-02-08 Parkervision, Inc. Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments
FR2791840B1 (fr) * 1999-03-30 2001-06-22 St Microelectronics Sa Circuit d'emission et reception a modulation fsk
US7065162B1 (en) * 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US7110444B1 (en) 1999-08-04 2006-09-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
US7010286B2 (en) 2000-04-14 2006-03-07 Parkervision, Inc. Apparatus, system, and method for down-converting and up-converting electromagnetic signals
JP2003533929A (ja) * 2000-05-16 2003-11-11 インフィネオン テクノロジーズ アクチエンゲゼルシャフト 周波数復調器において許容誤差を修正するための回路構造
WO2001091439A1 (en) * 2000-05-22 2001-11-29 Infineon Technologies Ag Termination device for a telephone line
US7454453B2 (en) 2000-11-14 2008-11-18 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
CA2363927C (en) * 2000-11-28 2004-07-06 Research In Motion Limited Synchronization signal detector and method
US7076225B2 (en) * 2001-02-16 2006-07-11 Qualcomm Incorporated Variable gain selection in direct conversion receiver
US7171170B2 (en) 2001-07-23 2007-01-30 Sequoia Communications Envelope limiting for polar modulators
DE10142019A1 (de) * 2001-08-28 2003-03-20 Philips Corp Intellectual Pty Schaltungsanordnung zur Demodulation von Signalen
US6985703B2 (en) 2001-10-04 2006-01-10 Sequoia Corporation Direct synthesis transmitter
US7072427B2 (en) 2001-11-09 2006-07-04 Parkervision, Inc. Method and apparatus for reducing DC offsets in a communication system
US7212586B2 (en) * 2002-01-18 2007-05-01 Broadcom Corporation Direct conversion RF transceiver for wireless communications
US6785529B2 (en) * 2002-01-24 2004-08-31 Qualcomm Incorporated System and method for I-Q mismatch compensation in a low IF or zero IF receiver
US7489916B1 (en) * 2002-06-04 2009-02-10 Sequoia Communications Direct down-conversion mixer architecture
US7379883B2 (en) 2002-07-18 2008-05-27 Parkervision, Inc. Networking methods and systems
US6745020B2 (en) * 2002-08-29 2004-06-01 Eugene Rzyski Direct downconversion receiver
GB2394847B (en) * 2002-11-02 2005-09-07 Zarlink Semiconductor Ltd Digital receiver
US7139546B1 (en) 2003-04-29 2006-11-21 Ami Semiconductor, Inc. Up-conversion of a down-converted baseband signal in a direct conversion architecture without the baseband signal passing through active elements
US7113760B1 (en) 2003-04-29 2006-09-26 Ami Semiconductor, Inc. Direct conversion receiver for amplitude modulated signals using linear/log filtering
US7006809B2 (en) * 2003-05-06 2006-02-28 Ami Semiconductor, Inc. Adaptive diversity receiver architecture
US7197091B1 (en) 2003-05-06 2007-03-27 Ami Semiconductor, Inc. Direct conversion receiver with direct current offset correction circuitry
KR100592902B1 (ko) * 2003-12-27 2006-06-23 한국전자통신연구원 적응형 주파수 제어 장치 및 그 방법
US7609118B1 (en) 2003-12-29 2009-10-27 Sequoia Communications Phase-locked loop calibration system
US7496338B1 (en) 2003-12-29 2009-02-24 Sequoia Communications Multi-segment gain control system
US7881409B2 (en) * 2004-01-22 2011-02-01 The Regents Of The University Of Michigan Demodulator, chip and method for digitally demodulating an FSK signal
US7522017B1 (en) 2004-04-21 2009-04-21 Sequoia Communications High-Q integrated RF filters
US7903764B2 (en) * 2004-05-10 2011-03-08 Broadcom Corporation Integrated burst FSK receiver
US7672648B1 (en) 2004-06-26 2010-03-02 Quintics Holdings System for linear amplitude modulation
JP4433981B2 (ja) * 2004-10-29 2010-03-17 ソニー株式会社 撮像方法および撮像装置
US7424066B2 (en) * 2005-01-21 2008-09-09 Analog Devices, Inc. Receiver structures for selectable direct conversion and low intermediate frequency operational modes
JP2006222551A (ja) * 2005-02-08 2006-08-24 Fujitsu Media Device Kk 電子回路装置
US7548122B1 (en) 2005-03-01 2009-06-16 Sequoia Communications PLL with switched parameters
US7479815B1 (en) 2005-03-01 2009-01-20 Sequoia Communications PLL with dual edge sensitivity
US7675379B1 (en) 2005-03-05 2010-03-09 Quintics Holdings Linear wideband phase modulation system
US7595626B1 (en) 2005-05-05 2009-09-29 Sequoia Communications System for matched and isolated references
US20070205200A1 (en) * 2006-03-02 2007-09-06 Brain Box Concepts Soap bar holder and method of supporting a soap bar
US7974374B2 (en) 2006-05-16 2011-07-05 Quintic Holdings Multi-mode VCO for direct FM systems
US7679468B1 (en) 2006-07-28 2010-03-16 Quintic Holdings KFM frequency tracking system using a digital correlator
US7522005B1 (en) 2006-07-28 2009-04-21 Sequoia Communications KFM frequency tracking system using an analog correlator
US7899488B2 (en) * 2006-07-31 2011-03-01 Motorola Mobility, Inc. Method and apparatus for extending network discovery range
US7894545B1 (en) 2006-08-14 2011-02-22 Quintic Holdings Time alignment of polar transmitter
DE102006045160A1 (de) * 2006-09-25 2008-04-03 Robert Bosch Gmbh Funkempfänger
US7920033B1 (en) 2006-09-28 2011-04-05 Groe John B Systems and methods for frequency modulation adjustment
JP2009105558A (ja) 2007-10-22 2009-05-14 Sony Corp 信号処理装置、信号処理装置の制御方法、デジタル放送受信装置、及び、デジタル放送受信装置の制御方法
JP2011082667A (ja) * 2009-10-05 2011-04-21 Renesas Electronics Corp 自動周波数制御回路
EP2421214B1 (fr) * 2010-08-18 2013-05-29 The Swatch Group Research and Development Ltd. Récepteur de signaux radiofréquences FSK à faible débit et à conversion directe
US8324962B2 (en) 2011-02-09 2012-12-04 Analog Devices, Inc. Apparatus and method for demodulation
CN103346812B (zh) * 2013-07-01 2015-11-25 昆腾微电子股份有限公司 音频接收芯片的调台方法和装置及音频接收机
US9042855B1 (en) * 2013-09-27 2015-05-26 Marvell International Ltd. Baseband filter calibration methods and systems
CN109917366A (zh) * 2019-04-01 2019-06-21 成都聚利中宇科技有限公司 微波运动传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012490A (en) * 1989-12-26 1991-04-30 At&T Bell Laboratories Varying bandwidth digital signal detector
JP2624086B2 (ja) 1992-06-26 1997-06-25 松下電器産業株式会社 自動周波数制御回路
GB9326464D0 (en) * 1993-12-24 1994-02-23 Philips Electronics Uk Ltd Receiver having an adjustable bandwidth filter
US5511235A (en) * 1994-05-02 1996-04-23 Motorola, Inc. Apparatus for detecting a signaling channel during scanning including a controlled frequency converter circuit and a controlled filter bandwidth, and a method therefor
US5822373A (en) * 1995-08-17 1998-10-13 Pittway Corporation Method and apparatus for optimization of wireless communications
JP3413060B2 (ja) * 1997-05-13 2003-06-03 松下電器産業株式会社 直接変換受信機
US6134282A (en) * 1997-06-18 2000-10-17 Lsi Logic Corporation Method for lowpass filter calibration in a satellite receiver

Also Published As

Publication number Publication date
JPH10313344A (ja) 1998-11-24
US6275542B1 (en) 2001-08-14
CN1202768A (zh) 1998-12-23
US6693977B2 (en) 2004-02-17
JP3413060B2 (ja) 2003-06-03
US20010021234A1 (en) 2001-09-13

Similar Documents

Publication Publication Date Title
CN1102815C (zh) 直接变换接收机
CN1146119C (zh) 用于直接转换接收器的数字补偿方法
CN101061639A (zh) 包含控制匹配级的设备
CN1090844C (zh) 具有带截止频率切换装置的滤波器的直接变换接收机
CN1082280C (zh) 通信设备
CN1171421C (zh) 直接变换接收机
CN1708912A (zh) 使用载波侦听多路访问方法的接收机及其干扰抑制方法
CN112350970B (zh) 一种多相位频移键控调制、解调方法及设备
CN1239384A (zh) 无限选呼接收机
CN1956355A (zh) 无线通信设备及用于其的方法
CN1154244C (zh) 用于直接接收调制信号的无正交射频接收机
CN1168979A (zh) 信号质量检测器及其方法
CN1625064A (zh) 带通采样接收机及其采样方法
CN1146120C (zh) 自动频率控制设备
CN1166740A (zh) 数据接收设备
CN1135803C (zh) 非相干6端口接收机
US6304136B1 (en) Reduced noise sensitivity, high performance FM demodulator circuit and method
CN101038334A (zh) 多普勒无线电测向系统
CN102047553B (zh) 同时进行多节点接收的解调器及其方法
CN1286329C (zh) 一种π/4DQPSK解调器及其解调方法
CN101034904A (zh) 一种调频收音机准确搜索电台的装置及方法
CN1157030C (zh) 具有频偏校正转动装置的解调器
CN1941642A (zh) 高频侦测的方法、自动增益控制的方法和系统
CN1144433C (zh) 载波再生电路
CN1681267A (zh) 二进制移频键控解调器

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030305

Termination date: 20120512