CN110243485A - Cmos温度传感器 - Google Patents

Cmos温度传感器 Download PDF

Info

Publication number
CN110243485A
CN110243485A CN201811283439.4A CN201811283439A CN110243485A CN 110243485 A CN110243485 A CN 110243485A CN 201811283439 A CN201811283439 A CN 201811283439A CN 110243485 A CN110243485 A CN 110243485A
Authority
CN
China
Prior art keywords
voltage
temperature
bjt
level
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811283439.4A
Other languages
English (en)
Other versions
CN110243485B (zh
Inventor
李柱盛
金柱成
金光镐
金赏镐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN110243485A publication Critical patent/CN110243485A/zh
Application granted granted Critical
Publication of CN110243485B publication Critical patent/CN110243485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

提供一种CMOS温度传感器。所述CMOS温度传感器,包括:带隙基准电路,使用与温度成反比的第一电压和与温度成正比的第二电压输出与温度无关的恒定的带隙基准电压,并使用第二电压产生与温度成正比的第一电流;基准电压产生器,复制第一电流并输出使用第一电压和复制的第一电流产生的基准电压;温度信息电压产生器,复制第一电流并输出与温度成正比的温度信息电压。

Description

CMOS温度传感器
本申请要求于2018年3月8日提交的第10-2018-0027317号韩国专利申请的优先权,所述韩国专利申请的公开通过引用全部包含于此。
技术领域
本发明构思涉及高精度CMOS温度传感器以及相关的操作方法。
背景技术
各种半导体电路、组件和/或元件的性能会受到由于半导体或其组成元件的操作引起的热量的实质性影响。因此,为了确保半导体电路、组件和元件的可接受的性能,由半导体装置产生的热量的精确指示是需要的。
互补金属氧化物半导体(CMOS)温度传感器广泛用于测量半导体装置和/或其组成组件和元件的温度。然而,CMOS温度传感器的精度可根据与包括在CMOS传感器中的元件的制造相关联的工艺变化而变化。
发明内容
本发明构思的一个方面提供一种能够确保精度的高精度CMOS温度传感器。
本发明构思的另一方面提供一种操作能够确保精度的高精度CMOS温度传感器的方法。
根据本发明构思的一些方面,一种CMOS温度传感器包括:带隙基准电路,使用与温度成反比的第一电压和与温度成正比的第二电压来提供与温度无关的带隙基准电压,并且还使用第二电压来提供与温度成正比的第一电流;基准电压产生器,复制第一电流并提供使用第一电压和复制的第一电流产生的基准电压;温度信息电压产生器,复制第一电流并提供与温度成正比的温度信息电压。
带隙基准电路可包括:第一BJT和第二BJT,第一BJT和第二BJT具有共同连接的基极端。第一电压可以是第一BJT的基极-发射极电压,第二电压可以是第一电压与第二BJT的基极-发射极电压之间的差。
带隙基准电路可包括:第一电阻器,连接到第二BJT。第一电流可以是响应于第二电压而流过第一电阻器的电流。
温度信息电压产生器可包括:电流源,响应于基准电压来控制温度信息电压的电平。
电流源可控制温度信息电压的电平,使得温度信息电压的电平不高于基准电压的电平。
带隙基准电路可包括:第一晶体管和第二晶体管,第一晶体管和第二晶体管具有共同连接在节点处的栅极并将第一电流均等地分流。
基准电压产生器和温度信息电压产生器可分别接收所述节点处的电压电平,并使用所述节点处的电压电平分别复制第一电流。
基准电压产生器还可包括:电流源,接收所述节点处的电压电平并提供第一电流。
电流源可包括具有与第一晶体管的大小不同的大小的至少一个晶体管。
所述CMOS温度传感器还可包括:模数转换器ADC,接收基准电压和温度信息电压,并执行温度信息电压的模数转换以提供温度信息信号。
根据本发明构思的一些方面,一种CMOS温度传感器包括:带隙基准电路,关于与温度成反比的第一电压和与温度成正比的第二电压,提供与温度无关的带隙基准电压;基准电压产生器,提供通过将第一电压校正为第二电压而产生的基准电压;温度信息电压产生器,基于第二电压产生与温度成正比的温度信息电压。
带隙基准电路可包括:第一BJT和第二BJT,第一BJT和第二BJT具有共同连接的基极端。第一电压可以是第一BJT的基极-发射极电压,第二电压可以是第一电压与第二BJT的基极-发射极电压之间的差。
温度信息电压产生器可包括:电流源,响应于基准电压来控制温度信息电压的电平。
电流源可控制温度信息电压的电平,使得温度信息电压的电平不高于基准电压的电平。
带隙基准电路可包括:第一晶体管和第二晶体管,第一晶体管和第二晶体管具有共同连接在节点处的栅极。
基准电压产生器和温度信息电压产生器可分别接收所述节点处的电压电平,以复制第一电流。
基准电压产生器可包括:电流源,接收所述节点处的电压电平并提供第一电流。
电流源可包括具有与第一晶体管的大小不同的大小的至少一个晶体管。
根据本发明构思的一些方面,一种CMOS温度传感器包括:带隙基准电路,包括基极端彼此连接的第一BJT和第二BJT,带隙基准电路使用第一电压和第二电压产生温度比例电流,其中,第一电压是第一BJT的基极-发射极电压,第二电压基于第一电压与第二BJT的基极-发射极电压之间的差;基准电压产生器,基于温度比例电流和第一电压产生基准电压;温度信息电压产生器,基于温度比例电流产生温度信息电压,并包括基于基准电压控制温度信息电压的电平的电流源。
电流源可控制温度信息电压的电平,使得温度信息电压的电平不高于基准电压的电平。
然而,本发明构思的方面不限于上面阐述的那些方面。通过参照下文中提供的具体实施方式,本发明构思的以上和其他方面对于本发明构思所属领域的普通技术人员将变得更加清楚。
附图说明
通过参照附图详细描述本发明构思的示例性实施例,本发明构思的以上和其他方面以及特征将变得更加清楚,其中:
图1是示出根据本发明构思的实施例的CMOS温度传感器的框图;
图2是进一步示出图1的温度传感器的基准和温度电压产生器100的框图;
图3是在一个示例中进一步示出图2的基准和温度电压产生器100的电路图;
图4是在一个示例中进一步示出图3的基准和温度电压产生器100的一部分的电路图;
图5是进一步示出根据本发明构思的实施例的CMOS温度传感器的操作的电路图;
图6是在一个示例中进一步示出图3的电流源的电路图;
图7A和图7B是进一步示出根据本发明构思的实施例的CMOS温度传感器的操作的曲线图;
图8A和图8B是进一步示出通过根据本发明构思的实施例的由CMOS温度传感器执行的电压校正的曲线图;
图9是在一个示例中进一步示出图1的温度传感器的模数转换器(ADC)200的框图;
图10是用于进一步示出图9的ADC的操作的曲线图。
具体实施方式
在下文中,将参照附图来描述本发明构思的实施例。
图1是示出根据本发明构思的实施例的CMOS温度传感器1的框图。
参照图1,CMOS温度传感器1通常包括连接到模数转换器(ADC)200的基准和温度电压产生器100。这里,基准和温度电压产生器100可用于产生基准电压VREF以及温度信息电压VTEMP,并将基准电压VREF和温度信息电压VTEMP提供给ADC 200。基准电压VREF和温度信息电压VTEMP中的每个是具有可变幅度的模拟信号。
ADC 200可用于响应于基准电压VREF和温度信息电压VTEMP而产生数字温度信息DTEMP。也就是说,ADC 200可使用基准电压VREF将模拟温度信息电压VTEMP转换为数字等效物(即,数字温度信息DTEMP)。在特定实施例中,ADC 200可被实现为逐次逼近寄存器(successive approximation register)ADC(SAR ADC)。
图2是在一个实施例中进一步示出图1的基准和温度电压产生器100的框图。这里,基准和温度电压产生器100可包括带隙基准(BGR)电路110、基准电压产生器120和温度信息电压产生器130。
BGR电路110可用于提供受电源电压、温度变化和/或工艺变化的波动的影响最小的稳定的基准电压或基准电流。在特定实施例中,BGR电路110可通过依赖于负(-)温度系数和正(+)温度系数彼此抵消(offset)的输出特性来实现这种电压稳定性或电流稳定性。BGR电路110可产生带隙基准电压VBGR和/或温度比例电流IPTAT,其中,带隙基准电压VBGR对应于由带隙基准电路110提供的基准电压。带隙基准电压VBGR可基于包括在带隙基准电路110中的双极结型晶体管(BJT)的基极-发射极电压来产生。不管半导体装置的选择的温度的变化如何,带隙基准电压VBGR应具有稳定的输出。
基准电压产生器120可用于响应于由带隙基准电路110提供的基准电压来产生基准电压VREF。例如,基准电压产生器120可响应于由包括在带隙基准电路110中的BJT提供的基极-发射极电压来产生基准电压VREF。
类似地,温度信息电压产生器130可响应于由带隙基准电路110提供的基准电压来产生温度信息电压VTEMP。例如,温度信息电压产生器130可响应于包括在带隙基准电路110中的BJT的基极-发射极电压来产生温度信息电压VTEMP。
图3是在一个实施例中进一步示出图1和图2的基准和温度电压产生器100的电路图。
参照图3,带隙基准电路110可包括第一PMOS晶体管MP1和第二PMOS晶体管MP2、运算放大器(OPAMP)111、第一电阻器R1和第二电阻器R2、以及第一BJT和第N BJT(即,BJT1和BJTN)。这里,第一PMOS晶体管MP1和第二电阻器R2串联连接在第一电源电压VDD与第一节点N1之间,第二PMOS晶体管MP2和第二电阻器R2串联连接在第一电源电压VDD与第二节点N2之间。第一PMOS晶体管MP1的栅极端和第二PMOS晶体管MP2的栅极端可连接到第三节点N3。
第一PMOS晶体管MP1和第二PMOS晶体管MP2可以是相同大小的晶体管。在这种情况下,晶体管的相对大小可由晶体管的沟道区的宽度(W)与长度(L)之比来确定。因此,在本发明构思的特定实施例中,第一PMOS晶体管MP1的W/L比和第二PMOS晶体管MP2的W/L比将是相同的。因此,假设第一晶体管和第二晶体管具有相同的大小,以及相同电平的电压被施加到它们各自的栅极、源极和漏极,则完全相同的电流应流过第一晶体管和第二晶体管中的每个。在这种情况下,术语“完全相同”用于实际的或可合理地获得的意义,而不是完美理想的意义。
利用这种配置,带隙基准电路110在第二PMOS晶体管MP2与第二电阻器R2之间的节点NB处输出电压作为带隙基准电压VBGR。
OPAMP 111接收第一节点N1处的电压电平和第二节点N2处的电压电平作为各个输入信号。OPAMP 111的输出被提供给连接在第一PMOS晶体管MP1的栅极与第二PMOS晶体管MP2的栅极之间的第三节点N3。
第一电阻器R1和第N BJT(BJTN)串联连接在第一节点N1与第二电源电压(例如,地电压VSS)之间。
跨过第一电阻器R1的电压在图3中被示为ΔVBE。第一BJT(BJT1)的基级-发射极电压可被表示为VBE1,第N BJT(BJTN)的基级-发射极之间的电压可被表示为VBEN。在图3的上下文中使用这种假设的命名法,ΔVBE的值可理解为(ΔVBE=VBE1-VBEN),其中,ΔVBE具有与绝对温度(PTAT)成正比的特性。
继续参照图3中所示的实施例,第一BJT和第N BJT的各自的基极端共同连接到第二电源端。此外,例如,第N BJT(BJTN)的大小可以是第一BJT(BJT1)的大小的N倍,其中,“N”是大于1的实数。可选地,第N BJT的大小(BJTN)可以与第一BJT(BJT1)的大小相同。
图4是在一个示例中进一步示出图3的基准和温度电压产生器100的一个方面的电路图,其中,并联布置的多个BJT(例如,BJTN1至BJTNN)被设置在第一电阻器R1与第二电源电压之间。
返回参照图3,基准电压产生器120可操作地连接到带隙基准电路110。具体地讲,第三PMOS晶体管MP3的栅极连接到第一PMOS晶体管MP1的栅极与第二PMOS晶体管MP2的栅极之间的第三节点N3。第三PMOS晶体管MP3的源极连接到第一电源电压VDD,第三PMOS晶体管MP3的漏极连接到第二电阻器R2,使得第三PMOS晶体管MP3的漏极处的电压电平被设置为基准电压VREF。
基准电压产生器120的第二电阻器R2连接在第三PMOS晶体管MP3的漏极与第四节点N4之间,并且具有与连接在第一晶体管MP1的漏极与第一节点N1之间的第二电阻器R2相同的电阻值。第二BJT(BJT2)连接在第四节点N4与第二电源电压之间,使得第二BJT(BJT2)的基极和集电极二者都连接到第二电源电压。
利用这个配置,连接到第四节点N4的第一电流源I1提供通过第二BJT(BJT2)的受控电流。
继续参照图3,温度信息电压产生器130可操作地连接到带隙基准电路110和基准电压产生器120。也就是说,温度信息电压产生器130的第四PMOS晶体管MP4的栅极也连接到第三节点N3。
第四PMOS晶体管MP4的源极连接到第一电源电压VDD,第四PMOS晶体管MP3的漏极连接到第三电阻器R3,使得第四PMOS晶体管MP4的漏极处的电压电平被提供为温度信息电压VTEMP。这里,第三电阻器R3连接在第五节点N5(即,第四PMOS晶体管MP4的漏极)与第二电源电压之间。第二电流源I2可连接在第五节点N5与第二电源电压之间。以这种方式,第二电流源I2可控制从第三电阻器R3流过第四PMOS晶体管MP4的电流的分流。也就是说,第二电流源I2可用于控制与预定电流电平相关的温度信息电压VTEMP的电平。
图5是在一个示例中进一步示出图1、图2和图3的CMOS温度传感器100的操作的电路图。
参照图5,温度比例电流IPTAT被进一步示为流过分别与第一PMOS晶体管MP1和第二PMOS晶体管MP2的组合、第三PMOS晶体管MP3和第四PMOS晶体管MP4相关联的电流分支。
因此,在带隙基准电路110中,温度比例电流IPTAT从第一PMOS晶体管MP1和第二PMOS晶体管MP2的源极流到漏极。假设如前所述第一PMOS晶体管MP1的大小与第二PMOS晶体管MP2的大小相同,则温度比例电流IPTAT均等地流过第一PMOS晶体管MP1和第二PMOS晶体管MP2。
此外,由于温度比例电流IPTAT的电平等于流过第一电阻器R1的电流的电平,因此可根据ΔVBE确定温度比例电流IPTAT的电平。因此,温度比例电流IPTAT与ΔVBE之间的关系可被表示为:
IPTAT=ΔVBE/R1
如前所述,温度比例电流IPTAT具有与绝对温度成正比的PTAT特性。也就是说,当第一PMOS晶体管MP1或第二PMOS晶体管MP2的温度增加时,温度比例电流IPTAT的电平也增加。与温度比例电流IPTAT类似,ΔVBE也具有与绝对温度成正比的PTAT特性。
在基准电压产生器120中,温度比例电流IPTAT从第三PMOS晶体管MP3的源极流到漏极。温度比例电流IPTAT可以与由第一电流源I1提供给第二BJT(BJT2)的电流进行组合。
图6中示出针对图3和图5的第一电流源I1的一个示例性配置。这里,PMOS晶体管MPK1至MPK6的每个栅极连接到第三节点N3,每个源极连接到第一电源电压VDD,每个漏极分别连接到开关SW1至开关SW6的相应的第一端。开关SW1至开关SW6的第二端共同连接到第K节点(Nk)。
利用这种配置,第一电流源I1可通过控制针对多个PMOS晶体管MPK1至MPK6的交换式连接来控制输出电流的电平(或强度)。
多个PMOS晶体管MPK1至MPK6可具有各种大小。例如,MPK1可具有与第一PMOS晶体管MP1、第二PMOS晶体管MP2和第三PMOS晶体管MP3中的一个或多个相同的大小(例如,X)。MPK2可具有X/2大小;MPK3可具有2X大小;MPK4可具有X/4大小;MPK5可具有4X大小;MPK6可具有X/8大小。
继续使用这些假设,进一步假设第一开关SW1和第二开关SW2被接通,同时第三开关SW3至第六开关SW6被断开。在这些条件下,MPK1和MPK2将并联连接,以有效地提供具有3/2X大小的连接到第三节点N3的晶体管。因此,温度比例电流IPTAT的3/2倍的电流可通过第一电流源I1提供给第四节点N4。
作为另一示例,假设第二开关SW2和第四开关SW4被接通,同时剩余的开关SW1、SW3、SW5和SW6被断开,具有3/4X大小的晶体管可有效地连接到第三节点N3。因此,温度比例电流IPTAT的3/4倍的电流可通过第一电流源I1提供给第四节点N4。
上述针对第一电流源I1的电路配置是说明性的。本领域技术人员将认识到,可在第一电流源I1中包括任何合理数量的晶体管,可实现可变的晶体管大小,因此,可相对于温度比例电流IPTAT获得可变的电流电平。
返回参照图5,在温度信息电压产生器130中,温度比例电流IPTAT从第四PMOS晶体管MP4的源极流到漏极。温度比例电流IPTAT的从第四PMOS晶体管MP4提供给第五节点N5的部分可流到第二电流源I2,并且剩余的部分提供给第三电阻器R3。
在根据本发明构思的实施例的CMOS温度传感器中,温度比例电流IPTAT和选择的BJT的基极-发射极电压可用于提供稳定的基准电压VREF。
图7A和图7B是进一步示出根据本发明构思的实施例的图1、图2、图3和图5的CMOS温度传感器100的操作的曲线图。
图7A示出基极-发射极电压与绝对温度之间的关系。这里,BJT中的基极-发射极电压VBE是器件固有特性,并且在0K的绝对温度(T)下约为1.25V。随着绝对温度增加,基极-发射极电压VBE可具有与绝对温度互补(CTAT)的特性。也就是说,反比关系在基极-发射极电压VBE与绝对温度之间建立。已知,当绝对温度增加1K时,基极-发射极电压VBE减小约1.6mV。
然而,根据BJT的器件特有的特性,基极-发射极电压VBE在多个器件之间变化的现象(即,变化)被发现。也就是说,根据由于BJT的放大性能的劣化引起的温度改变,基极-发射极电压VBE可能不是恒定的。
当基极-发射极电压VBE变化时,观察到基极-发射极电压VBE在绝对温度0K下(即,在图7A的曲线图的原点处)为1.25V。然而,在室温下(例如,在300K温度下),基极-发射极电压VBE可由于变化而与电压曲线不一致。为了防止基极-发射极电压VBE的变化,可使用由其他电路组件表示的特性值来校正基极-发射极电压VBE。校正的基极-发射极电压VBE可用于产生基准电压VREF。
图7B示出ΔVBE与绝对温度之间的关系。如上所述,由于ΔVBE具有PTAT特性,因此,当绝对温度增加时,ΔVBE也会增加。已知,当绝对温度增加1K时,ΔVBE增加约22μV。
此外,无论影响BJT的性能的工艺变化如何,ΔVBE都具有与绝对温度成正比的特性。在任何情况下,当绝对温度增加1K时,ΔVBE以22μV/K的速率增加。
根据本发明构思的实施例的CMOS温度传感器可通过使用具有PTAT特性的ΔVBE校正具有CTAT特性的VBE来产生基准电压VREF。
图8A和图8B是进一步示出由根据本发明构思的实施例的CMOS温度传感器执行的电压校正的曲线图。
首先,参照图8A,由于变化而具有不同形状的三个基极-发射极电压VBE、VBE1和VBE2被示出。在这些基极-发射极电压之中,基极-发射极电压VBE对应于理想情况,剩余的VBE1和VBE2示出基极-发射极电压VBE包括一些变化的情况。
如图中所示,三个基极-发射极电压曲线图VBE、VBE1和VBE2在绝对温度0K下会聚到一个电压(1.25V),并且随着绝对温度升高,该变化增大。
由于使用基极-发射极电压VBE产生基准电压VREF,因此,为了减小基准电压VREF的变化,减小基极-发射极电压VBE的变化的处理是必要的。
作为减小图8A中所示的三个基极-发射极电压曲线图VBE、VBE1和VBE2的变化的方法,提出一种控制第二BJT中的流动的电流的电平的方法。
如图8A中所示,三个基极-发射极电压曲线图VBE、VBE1和VBE2之中的基极-发射极电压曲线图VBE1和VBE2被校正。
具体地讲,第二BJT BJT2的基极-发射极电压VBE可通过由第一电流源I1控制流到第二BJT BJT2的电流的电平来校正。例如,第一电流源I1可通过减小提供给第二BJT BJT2的电流的电平来将VBE1校正为VBE1T。相反,第一电流源I1可通过增大提供给第二BJT BJT2的电流的电平将VBE2校正为VBE2T。
由上述的第一电流源I1输出到第四节点N4的电流的电平可通过已经参照图6描述的第一电流源I1的操作来控制。
校正的曲线图VBE1T和VBE2T被调节为在一个温度点(0K的绝对温度)处满足理想的基极-发射极电压VBE。
此外,在图8B中,由于变化而具有不同形状的三个基准电压VREF、VREF1和VREF2被示出。在这些基准电压之中,基准电压VREF对应于理想情况,VREF1是当基极-发射极电压为VBE1时的基准电压值,VREF2是当基极-发射极电压为VBE2时的基准电压值。
使用基极-发射极电压VBE与ΔVBE之间的关系通过下面的等式来计算基准电压VREF。
VREF=VBE+ΔVBE/R1×R2
因此,基准电压VREF的曲线图的校正也可通过上面参照图8A描述的第二BJT BJT2的基极-发射极电压VBE的校正来执行。也就是说,可通过控制由第一电流源I1提供给第二BJT BJT2的电流的电平来校正具有变化的基准电压VREF1和VREF2的曲线图。
具体地讲,第一电流源I1可通过减小提供给第二BJT BJT2的电流的电平来将VREF1校正为VREF1T。相反,第一电流源I1可通过增大提供给第二BJT BJT2的电流电平来将VREF2校正为VREF2T。
校正的曲线图VREF1T和VREF2T被调节为在一个温度点(0K的绝对温度)处满足理想基准电压VREF。
图9是在一个示例中进一步示出图1的ADC 200的框图。参照图9,ADC 200包括转换控制器210、逐次逼近寄存器(SAR)220、数模转换器(DAC)230、比较器240以及采样和保持电路250。
转换控制器210接收外部提供的控制模数转换操作的开始的命令信号。也就是说,转换控制器210可产生控制信号并将控制信号提供给SAR 220。
响应于来自转换控制器210的控制信号和接收到的时钟信号,SAR 220开始模数转换操作。在特定实施例中,SAR 220向DAC 230提供根据计数的时钟信号的数量而增加的N位计数信号D0至Dn-1
DAC 230接收基准电压VREF以及N位计数信号D0至Dn-1,并将N位计数信号D0至Dn-1提供给与基准电压VREF相关的比较器240。
比较器240接收由温度信息电压产生器130经由采样和保持电路250提供的温度信息电压VTEMP以及DAC 230的数字输出信号二者作为输入,并将温度信息电压VTEMP与数字输出信号进行比较以产生反馈到SAR 220的使能信号(EN)。
以这种方式,ADC 200可在转换温度信息电压VTEMP的处理中使用温度信息电压VTEMP和基准电压VREF。然而,在通过ADC 200进行模数转换期间,如果温度信息电压VTEMP的电平变得等于基准电压VREF的电平,则转换的结果值将饱和到最高值。如果温度信息电压VTEMP的电平高于基准电压VREF的电平,则包括在高于基准电压VREF的温度信息电压VTEMP中的所有温度信息会消失。
因此,根据本发明构思的实施例的CMOS温度传感器应控制第二电流源I2提供预定电平的电流,使得温度信息电压VTEMP不超过基准电压VREF的电平。
图10是在一个示例中进一步示出图1和图9的ADC 200的操作的曲线图。参照图5和图10,假设第二电流源I2提供等于VREF/R4的电流I2。也就是说,第二电流源I2被配置为提供与基准电压VREF除以第四电阻器R4的电阻值相等的电平的电流,其中,第四电阻器可以是(例如)具有可变电阻值的电阻器。
当第二电流源I2连接到温度信息电压VTEMP的输出端时,温度信息电压VTEMP可被如下调节。
VTEMP=(IPTAT–VREF/R4)×R3
=(ΔVBE/R1–VREF/R4)×R3
也就是说,温度信息电压产生器130可包括允许流过第四PMOS晶体管MP4的温度比例电流IPTAT的一部分流动的第二电流源I2。因此,温度信息电压产生器130可控制温度信息电压VTEMP的大小,使得高于基准电压VREF的电压VTR不高于基准电压VREF。
尽管已经参照图9和图10描述了根据本发明构思的实施例的CMOS温度传感器包括ADC,但是这是说明性的,本发明构思不限于此。如果CMOS温度传感器包括能够接收基准电压VREF和温度信息电压VTEMP并将温度信息电压VTEMP的强度信息转换成数字信息的ADC,则CMOS温度传感器是足够的。
尽管出于说明性目的已经公开了本发明构思的优选实施例,但是本领域的技术人员将理解,在不脱离所附权利要求中公开的本发明的范围和精神的情况下,各种修改、添加和替换是可行的。

Claims (20)

1.一种CMOS温度传感器,包括:
带隙基准电路,使用与温度成反比的第一电压和与温度成正比的第二电压来提供与温度无关的带隙基准电压,并且还使用第二电压来提供与温度成正比的第一电流;
基准电压产生器,复制第一电流并提供使用第一电压和复制的第一电流产生的基准电压;
温度信息电压产生器,复制第一电流并提供与温度成正比的温度信息电压。
2.根据权利要求1所述的CMOS温度传感器,其中,带隙基准电路包括:第一BJT和第二BJT,第一BJT和第二BJT具有共同连接的基极端,
第一电压是第一BJT的基极-发射极电压,第二电压是第一电压与第二BJT的基极-发射极电压之间的差。
3.根据权利要求2所述的CMOS温度传感器,其中,带隙基准电路还包括:第一电阻器,连接到第二BJT,第一电流是响应于第二电压而流过第一电阻器的电流。
4.根据权利要求1所述的CMOS温度传感器,其中,温度信息电压产生器包括:电流源,响应于基准电压来控制温度信息电压的电平。
5.根据权利要求4所述的CMOS温度传感器,其中,电流源控制温度信息电压的电平,使得温度信息电压的电平不高于基准电压的电平。
6.根据权利要求1所述的CMOS温度传感器,其中,带隙基准电路包括:第一晶体管和第二晶体管,第一晶体管和第二晶体管具有共同连接在节点处的栅极并将第一电流均等地分流。
7.根据权利要求6所述的CMOS温度传感器,其中,基准电压产生器和温度信息电压产生器分别接收所述节点处的电压电平,并使用所述节点处的电压电平分别复制第一电流。
8.根据权利要求6所述的CMOS温度传感器,其中,基准电压产生器还包括:电流源,接收所述节点处的电压电平并提供第一电流。
9.根据权利要求8所述的CMOS温度传感器,其中,电流源包括具有与第一晶体管的大小不同的大小的至少一个晶体管。
10.根据权利要求1所述的CMOS温度传感器,还包括:
模数转换器ADC,接收基准电压和温度信息电压,并执行温度信息电压的模数转换以提供温度信息信号。
11.一种CMOS温度传感器,包括:
带隙基准电路,使用与温度成反比的第一电压和与温度成正比的第二电压,提供与温度无关的带隙基准电压;
基准电压产生器,提供通过使用第二电压校正第一电压而产生的基准电压;
温度信息电压产生器,基于第二电压产生与温度成正比的温度信息电压。
12.根据权利要求11所述的CMOS温度传感器,其中,带隙基准电路包括:第一BJT和第二BJT,第一BJT和第二BJT具有共同连接的基极端,第一电压是第一BJT的基极-发射极电压,第二电压是第一电压与第二BJT的基极-发射极电压之间的差。
13.根据权利要求11所述的CMOS温度传感器,其中,温度信息电压产生器包括:电流源,响应于基准电压来控制温度信息电压的电平。
14.根据权利要求13所述的CMOS温度传感器,其中,电流源控制温度信息电压的电平,使得温度信息电压的电平不高于基准电压的电平。
15.根据权利要求11所述的CMOS温度传感器,其中,带隙基准电路包括:第一晶体管和第二晶体管,第一晶体管和第二晶体管具有共同连接在节点处的栅极。
16.根据权利要求15所述的CMOS温度传感器,其中,基准电压产生器和温度信息电压产生器分别接收所述节点处的电压电平,以复制第一电流。
17.根据权利要求15所述的CMOS温度传感器,其中,基准电压产生器还包括:电流源,接收所述节点处的电压电平并提供第一电流。
18.根据权利要求17所述的CMOS温度传感器,其中,电流源包括具有与第一晶体管的大小不同的大小的至少一个晶体管。
19.一种CMOS温度传感器,包括:
带隙基准电路,包括基极端彼此连接的第一BJT和第二BJT,带隙基准电路使用第一电压和第二电压产生温度比例电流,其中,第一电压是第一BJT的基极-发射极电压,第二电压基于第一电压与第二BJT的基极-发射极电压之间的差;
基准电压产生器,基于温度比例电流和第一电压产生基准电压;
温度信息电压产生器,基于温度比例电流产生温度信息电压,并且温度信息电压产生器包括基于基准电压控制温度信息电压的电平的电流源。
20.根据权利要求19所述的CMOS温度传感器,其中,电流源控制温度信息电压的电平,使得温度信息电压的电平不高于基准电压的电平。
CN201811283439.4A 2018-03-08 2018-10-31 Cmos温度传感器 Active CN110243485B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180027317A KR102546530B1 (ko) 2018-03-08 2018-03-08 고정밀도 cmos 온도 센서 및 그 동작 방법
KR10-2018-0027317 2018-03-08

Publications (2)

Publication Number Publication Date
CN110243485A true CN110243485A (zh) 2019-09-17
CN110243485B CN110243485B (zh) 2023-07-11

Family

ID=67842616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811283439.4A Active CN110243485B (zh) 2018-03-08 2018-10-31 Cmos温度传感器

Country Status (3)

Country Link
US (1) US10642305B2 (zh)
KR (1) KR102546530B1 (zh)
CN (1) CN110243485B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781743A (zh) * 2021-01-12 2021-05-11 中国电子科技集团公司第五十八研究所 一种应用于SoC的CMOS温度传感器电路及其工作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082094A (ja) * 2019-11-21 2021-05-27 ウィンボンド エレクトロニクス コーポレーション 電圧生成回路およびこれを用いた半導体装置
CN111609943B (zh) * 2020-05-11 2022-04-12 Oppo广东移动通信有限公司 一种温度检测电路
KR20210151273A (ko) 2020-06-04 2021-12-14 삼성전자주식회사 이종 전원이 인가된 밴드갭 레퍼런스 회로 및 이를 포함하는 전자 장치
TWI731708B (zh) * 2020-06-08 2021-06-21 創意電子股份有限公司 溫度感測裝置以及溫度感測方法
US11656646B2 (en) * 2020-07-20 2023-05-23 Macronix International Co., Ltd. Managing reference voltages in memory systems
KR102553091B1 (ko) * 2020-11-20 2023-07-07 주식회사 솔리드뷰 Cmos 온도 센서 및 이의 동작 방법
TWI807429B (zh) * 2021-09-23 2023-07-01 華邦電子股份有限公司 溫度感測電路及其操作方法
CN113885643B (zh) * 2021-10-28 2022-10-11 中国电子科技集团公司第二十四研究所 一种针对基准电压的修调电路及修调方法
CN114489219A (zh) * 2021-12-30 2022-05-13 上海灵昉科技有限公司 一种参考电压生成模块、供电装置和激光测距芯片
CN115357086B (zh) * 2022-08-29 2024-03-08 上海壁仞智能科技有限公司 带隙基准电路及其操作方法、电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660953A (zh) * 2008-08-29 2010-03-03 硕颉科技股份有限公司 温度检测电路
US20100164608A1 (en) * 2008-12-26 2010-07-01 Yoon-Jae Shin Bandgap circuit and temperature sensing circuit including the same
US20120249114A1 (en) * 2011-03-31 2012-10-04 Renesas Electronics Corporation Constant current generation circuit and microprocessor including the same
CN103163935A (zh) * 2011-12-19 2013-06-19 中国科学院微电子研究所 一种cmos集成电路中基准电流源产生电路
CN103823499A (zh) * 2014-03-03 2014-05-28 西安华芯半导体有限公司 一种随温度自动调节线性稳压器输出电压的装置
CN104238618A (zh) * 2014-09-26 2014-12-24 深圳市芯海科技有限公司 一种电压调整电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309157B1 (en) 2004-09-28 2007-12-18 National Semiconductor Corporation Apparatus and method for calibration of a temperature sensor
US7565258B2 (en) 2006-03-06 2009-07-21 Intel Corporation Thermal sensor and method
KR100790476B1 (ko) * 2006-12-07 2008-01-03 한국전자통신연구원 저전압 밴드갭 기준전압 발생기
US7821320B2 (en) 2007-02-07 2010-10-26 Denso Corporation Temperature detection circuit
US8092083B2 (en) 2007-04-17 2012-01-10 Cypress Semiconductor Corporation Temperature sensor with digital bandgap
KR100930275B1 (ko) * 2007-08-06 2009-12-09 (주)태진기술 씨모스를 이용한 밴드갭 레퍼런스 발생기
KR100901769B1 (ko) * 2007-11-15 2009-06-11 한국전자통신연구원 저전압 고정밀도 밴드갭 기준전압 발생기
US8915646B2 (en) 2012-03-30 2014-12-23 Integrated Device Technology, Inc. High accuracy temperature sensor
US9213353B2 (en) * 2013-03-13 2015-12-15 Taiwan Semiconductor Manufacturing Company Limited Band gap reference circuit
KR101551705B1 (ko) * 2013-10-29 2015-09-09 현대오트론 주식회사 기준 전압 발생 회로
KR20150122911A (ko) * 2014-04-23 2015-11-03 (주)싸이닉솔루션 Cmos 온도 센서 및 이를 이용한 온도 측정 방법
JP2016046617A (ja) 2014-08-21 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置
US9703306B2 (en) 2014-09-10 2017-07-11 Analog Devices, Inc. Self-heating trim techniques for improved LDO accuracy over load and temperature
KR20160062491A (ko) 2014-11-25 2016-06-02 에스케이하이닉스 주식회사 온도 센서

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660953A (zh) * 2008-08-29 2010-03-03 硕颉科技股份有限公司 温度检测电路
US20100164608A1 (en) * 2008-12-26 2010-07-01 Yoon-Jae Shin Bandgap circuit and temperature sensing circuit including the same
US20120249114A1 (en) * 2011-03-31 2012-10-04 Renesas Electronics Corporation Constant current generation circuit and microprocessor including the same
CN103163935A (zh) * 2011-12-19 2013-06-19 中国科学院微电子研究所 一种cmos集成电路中基准电流源产生电路
CN103823499A (zh) * 2014-03-03 2014-05-28 西安华芯半导体有限公司 一种随温度自动调节线性稳压器输出电压的装置
CN104238618A (zh) * 2014-09-26 2014-12-24 深圳市芯海科技有限公司 一种电压调整电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781743A (zh) * 2021-01-12 2021-05-11 中国电子科技集团公司第五十八研究所 一种应用于SoC的CMOS温度传感器电路及其工作方法
CN112781743B (zh) * 2021-01-12 2021-11-02 中国电子科技集团公司第五十八研究所 一种应用于SoC的CMOS温度传感器电路及其工作方法

Also Published As

Publication number Publication date
KR102546530B1 (ko) 2023-06-21
KR20190106190A (ko) 2019-09-18
US10642305B2 (en) 2020-05-05
CN110243485B (zh) 2023-07-11
US20190278316A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
CN110243485A (zh) Cmos温度传感器
KR100647510B1 (ko) 기준 전압 발생 회로와 그 제조 방법 및 그것을 이용한전원 장치
US6836160B2 (en) Modified Brokaw cell-based circuit for generating output current that varies linearly with temperature
KR101888724B1 (ko) 단일 온도에서 트림가능한 곡률 보상된 밴드-갭 설계
US20070296392A1 (en) Bandgap reference circuits
KR20120080567A (ko) 보상된 밴드갭
US8089260B2 (en) Low voltage bandgap reference circuit
US20120262146A1 (en) Reference-voltage generation circuit
US20180074532A1 (en) Reference voltage generator
EP3553625A1 (en) Zener diode voltage reference circuit
US20050093530A1 (en) Reference voltage generator
US20240162912A1 (en) Piecewise Compensation for Voltage Reference Temperature Drift
US6486646B2 (en) Apparatus for generating constant reference voltage signal regardless of temperature change
US20150309525A1 (en) Voltage Reference
JP2011186744A (ja) バンドギャップ回路、低電圧検出回路及びレギュレータ回路
JP4517062B2 (ja) 定電圧発生回路
JPH0962389A (ja) 定電圧源回路
CN107728690B (zh) 能隙参考电路
KR20120116708A (ko) 기준전류 발생기
JPH10105262A (ja) 温度変動に対する減少された感度を有する電圧制御手段
KR100599974B1 (ko) 기준 전압 발생기
US20200162071A1 (en) Switching Circuit
CN112015226B (zh) 一种宽电源电压范围的高精度电压基准源
US11929755B2 (en) Piecewise compensation for voltage reference temperature drift
CN115220519B (zh) 基于齐纳二极管的温度补偿电路及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant