CN110233240A - 一种锂离子电池负极片及其制备方法和锂离子电池 - Google Patents

一种锂离子电池负极片及其制备方法和锂离子电池 Download PDF

Info

Publication number
CN110233240A
CN110233240A CN201910496355.7A CN201910496355A CN110233240A CN 110233240 A CN110233240 A CN 110233240A CN 201910496355 A CN201910496355 A CN 201910496355A CN 110233240 A CN110233240 A CN 110233240A
Authority
CN
China
Prior art keywords
carbon materials
anode plate
ionic cell
silicon substrate
material strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910496355.7A
Other languages
English (en)
Inventor
钟国兵
李清霞
孟亚斌
王继生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN UTILITY POWER SOURCE Co Ltd
Original Assignee
SHENZHEN UTILITY POWER SOURCE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN UTILITY POWER SOURCE Co Ltd filed Critical SHENZHEN UTILITY POWER SOURCE Co Ltd
Priority to CN201910496355.7A priority Critical patent/CN110233240A/zh
Publication of CN110233240A publication Critical patent/CN110233240A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于锂离子电池技术领域,尤其涉及一种锂离子电池负极片,包括:负集流体和设置在所述负集流体上的负极材料层,所述负极材料层由从左至右依次交替分布的碳类材料条和硅基材料条组成,即碳类材料条‑硅基材料条‑碳类材料条‑硅基材料条‑碳类材料条。本发明提供的锂离子电池负极片,不仅有效提升了电池的能量密度,而且使电池在循环过程中具有优良的容量保持率和倍率性能。

Description

一种锂离子电池负极片及其制备方法和锂离子电池
技术领域
本发明属于锂离子电池技术领域,尤其涉及一种锂离子电池负极片及其制备方法和锂离子电池。
背景技术
锂离子电池由于具有电压高、能量密度大,循环寿命长,自放电小,无记忆效应,工作温度范围宽,环境友好等众多优点,是当今社会公认的理想化学能源,是现代生活中常用的能源存储与转换装置,被广泛应用于移动电话、手提电脑等便携式电子器件,规模化储能电站和电动汽车中。现有的锂离子电池为了达到高能量密度从而增大正极面密度,同时负极需要使用更高克容量的活性物质或者提高负极面密度。目前,锂离子电池负极材料主要采用石墨类碳负极材料,其导电性能优异,循环稳定性高,但其理论比容量仅为372mAh/g,无法满足未来更高比能量及高功率密度锂离子电池发展的要求。随着市场对锂离子电池能量密度需求的提高,寻找替代碳的高比容量负极材料成为一个重要的发展方向。
硅基负极材料具有较高的理论比容量,最高的理论比容量高达4200mAh/g,是替代碳类负极材料的高比容量负极材料,且资源丰富,被认为是成为最具潜力的未来锂离子电池负极材料。然而,硅负极材料由于在嵌/脱锂过程中体积膨胀,体积变化较大,这意味着电极需要承受更大的机械应力,这种机械应力一方面来自电极材料的堆叠压力,另一方面来自充放电过程中电极的膨胀和收缩产生的应力,电极的膨胀和收缩导致内部应变,最终造成活性物质与箔材和活性物质之间分离,电子传导中断,从而影响了电极的电池循环性能。
现有锂离子电池硅基负极材料在充放电过程中膨胀和收缩引起的机械应力,导致的极片内部产生裂纹,影响极片整体的电子通路和导电率的问题还有没有切实可行的方案。
发明内容
本发明的目的在于提供一种锂离子电池负极片,旨在解决现有锂离子电池硅基负极材料在充放电过程中膨胀和收缩引起的机械应力,导致的极片内部产生裂纹,影响极片整体的电子通路和导电率等技术问题。
本发明的另一目的在于提供一种锂离子电池负极片的制备方法。
本发明的再一目的在于提供一种锂离子电池。
为了实现上述发明目的,本发明采用的技术方案如下:
一种锂离子电池负极片,包括:负集流体和设置在所述负集流体上的负极材料层,所述负极材料层由从左至右依次交替分布的碳类材料条和硅基材料条组成。
优选地,所述负极材料层的厚度为50微米~110微米。
优选地,所述硅基材料条的宽度为5厘米~10厘米。
优选地,所述碳类材料条的宽度为2厘米~5厘米。
优选地,所述碳类材料条和所述硅基材料条相互导电接触,所述碳类材料条和所述硅基材料条的接触面呈平面或者曲面。
优选地,所述硅基材料条中含有硅负极活性物质,所述硅负极活性物质选自硅、硅合金、硅氧化物、硅碳复合物、硅碳氧化物中至少一种。
优选地,所述碳类材料条中含有碳负极活性物质,所述碳负极活性物质选自人造石墨、天然石墨、碳纤维、碳微球中至少一种。
优选地,所述硅基材料条和所述碳类材料条中含有:导电剂、粘结剂和增稠剂。
一种锂离子电池负极片的制备方法,包括以下步骤:
获取铜箔作为负极集流体;
获取硅基材料和碳类材料,将所述硅基材料和所述碳类材料沉积在所述铜箔上,使所述铜箔从左至右依次形成交替分布的碳类材料条和硅基材料条,所述碳类材料条和所述硅基材料条相互导电接触,得到沉积产物;将所述沉积产物经过干燥和辊压处理,得到锂离子电池负极片。
一种锂离子电池,包括:正极片、负极片、隔膜和电解液,其中所述负极片为上述锂离子电池负极片或上述的方法制备的锂离子电池负极片。
本发明提供的锂离子电池负极片包括铜箔负集流体和负极材料层,针对现有硅基负极材料在充放电过程中膨胀和收缩引起的机械应力,使极片内部产生裂纹,影响极片内电子通路和导电率的问题,本发明所述负极材料层由从左至右依次交替分布的碳类材料条和硅基材料条组成,即碳类材料条-硅基材料条-碳类材料条-硅基材料条-碳类材料条。通过采用低膨胀率的碳类材料条与高比容量高膨胀率的硅基材料条交替设置,一方面,低膨胀率的碳类材料条切断了高膨胀率硅基材料条膨胀时产生的连续应力传导,使得裂纹产生的连续性被中断,防止极片裂纹的产生和扩散,减少极片膨胀收缩过程中造成了电子通路失效,提高极片整体的电子电导率,提高极片活性物质多次循环后的容量保持率,保证了电池的倍率性能和循环性能;另一方面,硅基材料条具有较高的比容量,确保了锂离子电池具有较高的能量密度。因此,本发明提供的锂离子电池负极片,不仅有效提升了电池的能量密度,而且使电池在循环过程中具有优良的容量保持率和倍率性能。
本发明提供的锂离子电池负极片的制备方法,获取铜箔、硅基材料和碳类材料后,在铜箔从左至右依次沉积形成交替分布的碳类材料条和硅基材料条,然后通过干燥和辊压处理,即得到锂离子电池负极片,该制备方法简单,可实现产业化生产和应用。
本发明提供的锂离子电池,由于包含有上述能提高电池能量密度、容量保持率、倍率性能和循环稳定性的锂离子电池负极片,因而,本发明提供的锂离子电池,不仅具有较高的能量密度,而且在循环过程中具有优良的容量保持率和倍率性能,循环寿命长。
附图说明
图1是本发明实施例提供的锂离子电池负极片的平面示意图。
图2是本发明实施例提供的锂离子电池负极片的截面示意图。
图3是本发明实施例提供的接触面为曲面的锂离子电池负极片的平面示意图。
图4是本发明实施例提供的接触面与极片涂布方向呈一定夹角的锂离子电池负极片的平面示意图。
图5是本发明实施例提供的锂离子电池负极片与正极片和隔膜组装后的截面示意图。
图6是本发明实施例提供的锂离子电池负极片膨胀后应力扩散示意图。
其中,图中各附图标记:
1——碳类材料条 2——硅基材料条 3——负集流体 4——负极材料层 5——隔膜 6——正极材料条 7——正集流体
具体实施方式
为使本发明实施例的目的、技术方案和技术效果更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。结合本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例说明书相关组分的含量按比例放大或缩小均在本发明实施例说明书公开的范围之内。具体地,本发明实施例说明书中所述的重量可以是μg、mg、g、kg等化工领域公知的质量单位。
如附图1所示,本发明实施例提供了一种锂离子电池负极片,包括:负集流体3和设置在所述负集流体3上的负极材料层4,所述负极材料层4由从左至右依次交替分布的碳类材料条1和硅基材料条2组成,即碳类材料条1-硅基材料条2-碳类材料条1-硅基材料条2-碳类材料条1。
本发明实施例提供的锂离子电池负极片包括铜箔负集流体和负极材料层,针对现有硅基负极材料在充放电过程中膨胀和收缩引起的机械应力,使极片内部产生裂纹,影响极片内电子通路和导电率的问题,本发明所述负极材料层由从左至右依次交替分布的碳类材料条和硅基材料条组成,即碳类材料条-硅基材料条-碳类材料条-硅基材料条-碳类材料条。通过采用低膨胀率的碳类材料条与高比容量高膨胀率的硅基材料条交替设置,一方面,如附图6所示,低膨胀率的碳类材料条切断了高膨胀率硅基材料条膨胀时产生的连续应力传导,使得裂纹产生的连续性被中断,防止极片裂纹的产生和扩散,减少极片膨胀收缩过程中造成了电子通路失效,提高极片整体的电子电导率,提高极片活性物质多次循环后的容量保持率,保证了电池的倍率性能和循环性能;另一方面,硅基材料条具有较高的比容量,确保了锂离子电池具有较高的能量密度。因此,本发明实施例提供的锂离子电池负极片,不仅有效提升了电池的能量密度,而且使电池在循环过程中具有优良的容量保持率和倍率性能。
作为优选实施例,负极材料层在沿负极片的涂布方向的横向上,从左至右依次设置有交替分布的碳类材料条和硅基材料条,即碳类材料条-硅基材料条-碳类材料条-硅基材料条-碳类材料条。本发明实施例交替分布的碳类材料条和硅基材料条沿负极片的涂布方向的横向上,从左至右依次设置,更有利于涂布制作负极材料层。
如附图2所示,作为优选实施例,所述负极材料层4的厚度为50微米~110微米。本发明实施例负极材料层4的厚度为50微米~110微米,该厚度的负极材料层4最有利于同时提升电池整体的能量密度和确保电池的循环性能。若负极材料层4低于50微米,负极材料层4中活性物质含量太少,降低了电池的能量密度。若负极材料层4高于110微米,锂离子在负极片嵌入或脱出阻力增加,电池内阻增加,影响电池充放电效率。
在一些实施例中,所述负极材料层4的厚度为50微米、60微米、70微米、80微米、90微米、100微米和110微米。
作为优选实施例,所述硅基材料条2的宽度为5厘米~10厘米。本发明实施例硅基材料条2具有较高的比容量,同时也具有较高的膨胀率,在宽度为5厘米~10厘米时,既能提升电池整体的能量密度,又能通过交替设置的碳类材料条层消减硅基材料条因膨胀产生的机械应力,提高电池整体的循环寿命和倍率性能。
在一些实施例中,所述硅基材料条2的宽度为5厘米、6厘米、7厘米、8厘米、9厘米和10厘米。
作为优选实施例,所述碳类材料条1的宽度为2厘米~5厘米。本发明实施例碳类材料条1具有较低的膨胀率和相对低的比容量,为宽度为2厘米~5厘米时,既能起到切断高膨胀率硅基材料条2应力传导,防止裂纹扩散的作用,又能避免因比容量低的碳类材料条1太宽导致降低电池整体能量密度的风险。
在一些实施例中,所述碳类材料条1的宽度为2厘米、3厘米、4厘米和5厘米。
作为优选实施例,所述碳类材料条1和所述硅基材料条2相互导电接触,所述碳类材料条1和所述硅基材料条2的接触面呈平面或者曲面。本发明实施例所述碳类材料条1和所述硅基材料条2相互导电接触,接触面为曲面或平面,既有利于电池内电子和离子之间的传导,确保了电池的电化学性能,又通过交替设置的碳类材料条1切断了高膨胀硅基材料条2产生的连续应力传导,使裂纹产生的连续性被中断,提高了极片活性物质多次循环后的容量保持率。
如附图3所示,作为更有选的实施例,所述碳类材料条1和所述硅基材料条2相互导电接触,所述碳类材料条1和所述硅基材料条2的接触面呈曲面。本发明实施例碳类材料条1和硅基材料条2的接触面呈曲面,使碳类材料条1和硅基材料条2有更大的接触面积,更有利于低膨胀率的碳类材料条1切断高高膨胀硅基材料条2产生的连续应力传导,进一步提高电池的电学性能和循环寿命。
作为更有选的实施例,所述碳类材料条1和所述硅基材料条2的接触面呈平面,该平面可以是平行于涂布方向,如附图1所示,也可以是与涂布方向呈一定夹角,如附图4所示,使碳类材料条1和硅基材料条2有更大的接触面积,更有利于低膨胀率的碳类材料条1切断高高膨胀硅基材料条2产生的连续应力传导,进一步提高电池的电学性能和循环寿命。
作为优选实施例,所述硅基材料条2中含有硅负极活性物质,所述硅负极活性物质选自:硅、硅合金、硅氧化物、硅碳复合物、硅碳氧化物中至少一种。还包含有导电剂、粘结剂和增稠剂,或溶剂。在一些实施例中,溶剂为去离子水;导电剂为导电碳黑、碳纳米管、乙炔黑、石墨烯中至少一种;粘结剂为苯乙烯丁二烯人造橡胶(SBR)、丙烯腈多元共聚物的水分散液(LA133)中至少一种;增稠剂为羧甲基纤维素(CMC)等。
作为优选实施例,所述碳类材料条1中含有碳负极活性物质,且所述碳负极活性物质选自人造石墨、天然石墨、碳纤维、碳微球中至少一种。还包含有溶剂、导电剂、粘结剂和增稠剂。在一些实施例中,溶剂为去离子水;导电剂为导电碳黑、碳纳米管、乙炔黑、石墨烯中至少一种;粘结剂为苯乙烯丁二烯人造橡胶(SBR)、丙烯腈多元共聚物的水分散液(LA133)中至少一种;增稠剂为羧甲基纤维素(CMC)等。
本发明实施例提供的锂离子电池负极片可以通过下述方法制备获得。
本发明实施例还提供了一种锂离子电池负极片的制备方法,包括以下步骤:
S10.获取铜箔作为负极集流体;
S20.获取硅基材料和碳类材料,将所述硅基材料和所述碳类材料沉积在所述铜箔上,使所述铜箔上从左至右依次形成交替分布的碳类材料条1和硅基材料条2,所述碳类材料条1和所述硅基材料条2相互导电接触,得到沉积产物;
S30.将所述沉积产物经过干燥和辊压处理,得到锂离子电池负极片。
本发明实施例提供的锂离子电池负极片的制备方法,获取铜箔、硅基材料和碳类材料后,在铜箔从左至右依次沉积形成交替分布的碳类材料条和硅基材料条,然后通过干燥和辊压处理,即得到锂离子电池负极片,该制备方法简单,可实现产业化生产和应用。
具体的,上述步骤S10中,本发明实施例以铜箔作为负集流体3。
具体地,上述步骤S20中,获取硅基材料和碳类材料,将所述硅基材料和所述碳类材料沉积在所述铜箔上,使所述铜箔上从左至右依次形成交替分布的碳类材料条1和硅基材料条2,所述碳类材料条1和所述硅基材料条2相互导电接触,得到沉积产物。本发明实施例将所述硅基材料和所述碳类材料沉积在所述铜箔上,得到在铜箔上从左至右依次形成交替分布的碳类材料条1和硅基材料条2的沉积产物。其中,硅基材料包含有硅、硅合金、硅氧化物、硅碳复合物、硅碳氧化物中至少一种硅负极活性物质;所述碳类材料条1包含有人造石墨、天然石墨、碳纤维、碳微球中至少一种碳负极活性物质。另外,硅基材料和碳类材料还包含有溶剂、导电剂、粘结剂和增稠剂。在一些实施例中,溶剂为去离子水;导电剂为导电碳黑、碳纳米管、乙炔黑、石墨烯中至少一种;粘结剂为苯乙烯丁二烯人造橡胶(SBR)、丙烯腈多元共聚物的水分散液(LA133)中至少一种;增稠剂为羧甲基纤维素(CMC)等。
在一些实施例中,硅基材料和碳类材料的各原料组分通过乳化均质高速分散成均匀稳定的材料,然后采用共挤压涂布方式将所述硅基材料和所述碳类材料涂布在所述铜箔上,使所述铜箔沿涂布方向的横向上从左至右依次形成交替分布的碳类材料条1和硅基材料条2,得到沉积产物。
具体地,上述步骤S30中,将所述沉积产物经过干燥和辊压处理,得到锂离子电池负极片。本发明实施例通过将沉积产物经过干燥和辊压处理,即得到制备好的锂离子电池负极片。
相应地,如附图5所示,一种锂离子电池,包括:正极片、负极片、隔膜5和电解液,其中所述负极片为上述的锂离子电池负极片或上述方法制备的锂离子电池负极片。
本发明实施例提供的锂离子电池,由于包含有上述能提高电池能量密度、容量保持率、倍率性能和循环稳定性的锂离子电池负极片,因而,本发明实施例提供的锂离子电池,不仅具有较高的能量密度,而且在循环过程中具有优良的容量保持率和倍率性能,循环寿命长。
具体地,本发明实施例提供的锂离子电池正极片包括正集流体7和正极材料条6。
为使本发明上述实施细节和操作能清楚地被本领域技术人员理解,以及本发明实施例锂离子电池负极片及锂离子电池的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种锂离子电池,包括:
负极片:在铜箔上沿负极片的涂布方向的横向上从左至右依次交替涂布有2厘米人造石墨HSG的碳类材料条1和5厘米硅氧复合材料SO450的硅基材料条2,材料涂布厚度为80微米。碳类材料条1和硅基材料条2的接触面呈平面;
将负极片与正极片和隔膜组装制成053048型号的软包电池。
实施例2
一种锂离子电池,包括:
负极片:在铜箔上沿负极片的涂布方向的横向上从左至右依次交替涂布有5厘米人造石墨HSG的碳类材料条1和5厘米硅氧复合材料SO450的硅基材料条2,材料涂布厚度为80微米。碳类材料条1和硅基材料条2的接触面呈平面。
将负极片与实施例1相同的正极片和隔膜组装制成053048型号的软包电池。
实施例3
一种锂离子电池,包括:
负极片:在铜箔上沿负极片的涂布方向的横向上从左至右依次交替涂布有2厘米人造石墨HSG的碳类材料条和10厘米硅氧复合材料SO450的硅基材料条,材料涂布厚度为80微米。碳类材料条和硅基材料条的接触面呈平面;
将负极片与实施例1相同的正极片和隔膜组装制成053048型号的软包电池。
实施例4
一种锂离子电池,包括:
负极片:在铜箔上沿负极片的涂布方向的横向上从左至右依次交替涂布有2厘米人造石墨HSG的碳类材料条和10厘米硅氧复合材料SO450的硅基材料条,材料涂布厚度为50微米。碳类材料条和所述硅基材料条的接触面呈平面。
将负极片与实施例1相同的正极片和隔膜组装制成053048型号的软包电池。
实施例5
一种锂离子电池,包括:
负极片:在铜箔上沿负极片的涂布方向的横向上从左至右依次交替涂布有2厘米人造石墨HSG的碳类材料条和10厘米硅氧复合材料SO450的硅基材料条,材料涂布厚度为110微米。碳类材料条和所述硅基材料条的接触面呈平面。
将负极片与实施例1相同的正极片和隔膜组装制成053048型号的软包电池。
实施例6
一种锂离子电池,包括:
负极片:在铜箔上沿负极片的涂布方向的横向上从左至右依次交替涂布有2厘米人造石墨HSG的碳类材料条和10厘米硅氧复合材料SO450的硅基材料条,材料涂布厚度为80微米。碳类材料条和所述硅基材料条的接触面呈面曲面。
将负极片与实施例1相同的正极片和隔膜组装制成053048型号的软包电池。
对比例1
一种锂离子电池,包括:由硅氧复合材料SO450的硅基材料涂布的厚度为80微米的负极片,和与上述实施例1相同的正极片和隔膜,组装制成053048型号的软包电池。
进一步的,为了验证本发明实施例1~6和对比例1提供的锂离子电池的进步性,本发明实施例进行了电化学性能测试,测试结果如下表1所示:
表1
从上表1的测试结果可以看出:实施例1~6锂离子电池的循环性能都要优于对比例1,且实施例1~6锂离子电池的容量保持率基本高于对比例1,实施例1~6锂离子电池的体积能量密度略低于对比例1。其中,实施例5锂离子电池的体积能量密度最接近对比例1,但是其循环性能在实施例1~6中相对最差,主要是由于其涂布厚度较高,因此涂布厚度不应超过110μm。实施例4锂离子电池的循环性能好,主要是因为涂布厚度薄,但是影响了其体积能量密度;综合来看,实施例3的体积能量密度和循环性能以及倍率性能综合性能较好;实施例6锂离子电池的接触面为曲面主要改善了电芯的倍率性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种锂离子电池负极片,其特征在于,包括:负集流体和设置在所述负集流体上的负极材料层,所述负极材料层由从左至右依次交替分布的碳类材料条和硅基材料条组成。
2.如权利要求1所述的锂离子电池负极片,其特征在于,所述负极材料层的厚度为50微米~110微米。
3.如权利要求1或2所述的锂离子电池负极片,其特征在于,所述硅基材料条的宽度为5厘米~10厘米。
4.如权利要求3所述的锂离子电池负极片,其特征在于,所述碳类材料条的宽度为2厘米~5厘米。
5.如权利要求1或4所述的锂离子电池负极片,其特征在于,所述碳类材料条和所述硅基材料条相互导电接触,所述碳类材料条和所述硅基材料条的接触面呈平面或者曲面。
6.如权利要求5所述的锂离子电池负极片,其特征在于,所述硅基材料条中含有硅负极活性物质,所述硅负极活性物质选自硅、硅合金、硅氧化物、硅碳复合物、硅碳氧化物中至少一种。
7.如权利要求1或6所述的锂离子电池负极片,其特征在于,所述碳类材料条中含有碳负极活性物质,所述碳负极活性物质选自人造石墨、天然石墨、碳纤维、碳微球中至少一种。
8.如权利要求7所述的锂离子电池负极片,其特征在于,所述硅基材料条和所述碳类材料条中含有:导电剂、粘结剂和增稠剂。
9.一种锂离子电池负极片的制备方法,其特征在于,包括以下步骤:
获取铜箔作为负极集流体;
获取硅基材料和碳类材料,将所述硅基材料和所述碳类材料沉积在所述铜箔上,使所述铜箔从左至右依次形成交替分布的碳类材料条和硅基材料条,所述碳类材料条和所述硅基材料条相互导电接触,得到沉积产物;
将所述沉积产物经过干燥和辊压处理,得到锂离子电池负极片。
10.一种锂离子电池,其特征在于,包括:正极片、负极片、隔膜和电解液,其中,所述负极片为如权利要求1~8任意一项所述的锂离子电池负极片或如权利要求9所述的方法制备的锂离子电池负极片。
CN201910496355.7A 2019-06-10 2019-06-10 一种锂离子电池负极片及其制备方法和锂离子电池 Pending CN110233240A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910496355.7A CN110233240A (zh) 2019-06-10 2019-06-10 一种锂离子电池负极片及其制备方法和锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910496355.7A CN110233240A (zh) 2019-06-10 2019-06-10 一种锂离子电池负极片及其制备方法和锂离子电池

Publications (1)

Publication Number Publication Date
CN110233240A true CN110233240A (zh) 2019-09-13

Family

ID=67859570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910496355.7A Pending CN110233240A (zh) 2019-06-10 2019-06-10 一种锂离子电池负极片及其制备方法和锂离子电池

Country Status (1)

Country Link
CN (1) CN110233240A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943210A (zh) * 2019-11-28 2020-03-31 桂林电子科技大学 格栅堆积薄膜材料及其制备方法与应用
CN111916673A (zh) * 2020-08-04 2020-11-10 珠海冠宇电池股份有限公司 一种负极片及制备方法、电池
CN111916681A (zh) * 2020-06-23 2020-11-10 成都新柯力化工科技有限公司 一种球形石墨简易化生产动力锂电池硅碳负极极片的方法
CN114284474A (zh) * 2021-12-17 2022-04-05 浙江工业大学 锂离子电池负极高容量元素材料的激光增添方法及设备
CN116344739A (zh) * 2023-05-29 2023-06-27 江苏正力新能电池技术有限公司 一种硅基负极极片及其应用
CN116705981A (zh) * 2023-07-27 2023-09-05 宁德时代新能源科技股份有限公司 负极极片及其制备方法、电池和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202737033U (zh) * 2012-07-23 2013-02-13 深圳市海太阳实业有限公司 负极极片、锂离子电池
JP2015167127A (ja) * 2014-02-12 2015-09-24 大阪瓦斯株式会社 リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
CN106374081A (zh) * 2016-11-10 2017-02-01 厦门日臻动力电源科技有限公司 一种高容量锂离子电池负极极片及其制备方法
CN108807840A (zh) * 2018-05-28 2018-11-13 云南大学 热处理工艺制备碳硅负极材料的方法
CN109244377A (zh) * 2017-07-10 2019-01-18 力信(江苏)能源科技有限责任公司 一种锂离子电池负极硅碳复合材料的制备方法
CN210074034U (zh) * 2019-06-10 2020-02-14 深圳市优特利电源有限公司 一种锂离子电池负极片及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202737033U (zh) * 2012-07-23 2013-02-13 深圳市海太阳实业有限公司 负极极片、锂离子电池
JP2015167127A (ja) * 2014-02-12 2015-09-24 大阪瓦斯株式会社 リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
CN106374081A (zh) * 2016-11-10 2017-02-01 厦门日臻动力电源科技有限公司 一种高容量锂离子电池负极极片及其制备方法
CN109244377A (zh) * 2017-07-10 2019-01-18 力信(江苏)能源科技有限责任公司 一种锂离子电池负极硅碳复合材料的制备方法
CN108807840A (zh) * 2018-05-28 2018-11-13 云南大学 热处理工艺制备碳硅负极材料的方法
CN210074034U (zh) * 2019-06-10 2020-02-14 深圳市优特利电源有限公司 一种锂离子电池负极片及锂离子电池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943210A (zh) * 2019-11-28 2020-03-31 桂林电子科技大学 格栅堆积薄膜材料及其制备方法与应用
CN111916681A (zh) * 2020-06-23 2020-11-10 成都新柯力化工科技有限公司 一种球形石墨简易化生产动力锂电池硅碳负极极片的方法
CN111916681B (zh) * 2020-06-23 2021-07-20 成都新柯力化工科技有限公司 一种球形石墨简易化生产动力锂电池硅碳负极极片的方法
CN111916673A (zh) * 2020-08-04 2020-11-10 珠海冠宇电池股份有限公司 一种负极片及制备方法、电池
CN114284474A (zh) * 2021-12-17 2022-04-05 浙江工业大学 锂离子电池负极高容量元素材料的激光增添方法及设备
CN114284474B (zh) * 2021-12-17 2023-12-05 浙江工业大学 锂离子电池负极高容量元素材料的激光增添方法及设备
CN116344739A (zh) * 2023-05-29 2023-06-27 江苏正力新能电池技术有限公司 一种硅基负极极片及其应用
CN116344739B (zh) * 2023-05-29 2023-08-11 江苏正力新能电池技术有限公司 一种硅基负极极片及其应用
CN116705981A (zh) * 2023-07-27 2023-09-05 宁德时代新能源科技股份有限公司 负极极片及其制备方法、电池和用电设备
CN116705981B (zh) * 2023-07-27 2024-05-03 宁德时代新能源科技股份有限公司 负极极片及其制备方法、电池和用电设备

Similar Documents

Publication Publication Date Title
CN110233240A (zh) 一种锂离子电池负极片及其制备方法和锂离子电池
WO2022116588A1 (zh) 补锂负极极片及其制备方法和锂离子电池
CN111640910B (zh) 一种高比能量的快充正极片及其制备方法和用途
CN110224182B (zh) 一种锂离子电池预锂化的方法
CN104347856A (zh) 锂离子电池
CN109687014A (zh) 一种高能量密度快充型锂离子动力电池
CN104362346A (zh) 一种锂离子电池
CN109273704A (zh) 一种具有高比表面保护层的金属锂负极及其制备方法
CN112290000B (zh) 硅含量呈梭形梯度分布的负极材料及其制备方法和应用
CN109273694A (zh) 一种石墨烯/氧化亚锡二维异质结复合材料及其制备方法
CN108306006A (zh) 负极材料、负极片及其制备方法、锂离子电池及其制备方法
CN101465416A (zh) 锂离子电池用高比容量复合电极极片
Chen et al. Nanofiber Composite for Improved Water Retention and Dendrites Suppression in Flexible Zinc‐Air Batteries
CN113410425A (zh) 电芯及电池
CN111987375A (zh) 勃姆石/惰性锂粉复合浆料、补锂负极片、其制备方法和锂离子电池
CN110098380A (zh) 一种锂离子电池硅基负极材料的制备方法
CN112688022A (zh) 一种快速充放锂离子电池及其制备方法
CN106356536A (zh) 一种锂离子电池负极及其制备方法
CN110176623A (zh) 一种锂离子电池的制备方法
Saito et al. Electrochemical charge/discharge properties of Li pre-doped Si nanoparticles for use in hybrid capacitor systems
CN108878893A (zh) 一种快充锂离子电池负极用改性集流体及其制备方法
CN114709367A (zh) 负极片、锂离子电池及负极片的制备方法
CN105870401A (zh) 石墨烯作为导电剂用于锂离子电池负极浆料的方法
CN109599550A (zh) 一种全固态锂离子电池的制作工艺
CN101656332B (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518000 3rd floor, area a, building 3, Huiye Science Park, sightseeing Road, Tangjia community, Fenghuang street, Guangming District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen youteli Energy Co.,Ltd.

Address before: 3 / F, building 3a, Huiye Science Park, sightseeing Road, Guangming New District, Shenzhen, Guangdong 518000

Applicant before: SHENZHEN UTILITY POWER SOURCE Co.,Ltd.

CB02 Change of applicant information