CN106356536A - 一种锂离子电池负极及其制备方法 - Google Patents

一种锂离子电池负极及其制备方法 Download PDF

Info

Publication number
CN106356536A
CN106356536A CN201610882892.1A CN201610882892A CN106356536A CN 106356536 A CN106356536 A CN 106356536A CN 201610882892 A CN201610882892 A CN 201610882892A CN 106356536 A CN106356536 A CN 106356536A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
negative electrode
battery negative
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610882892.1A
Other languages
English (en)
Inventor
杨国龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen OptimumNano Energy Co Ltd
Original Assignee
Shenzhen OptimumNano Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen OptimumNano Energy Co Ltd filed Critical Shenzhen OptimumNano Energy Co Ltd
Priority to CN201610882892.1A priority Critical patent/CN106356536A/zh
Publication of CN106356536A publication Critical patent/CN106356536A/zh
Priority to EP17195177.5A priority patent/EP3306710A1/en
Priority to US15/727,646 priority patent/US20180102533A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种锂离子电池负极,包括负极集流体及涂覆在所述负极集流体上的负极活性材料,所述负极活性材料包括碳纳米带、导电剂及粘结剂,所述碳纳米带、导电剂及粘结剂的质量百分比为(90‑95):(0‑4):(2‑5)。本发明提供的锂离子电池负极,减少了负极导电剂的使用量甚至不使用导电剂,增加负极活性材料的比例,增加电池能量密度,并且,具有本发明提供的锂离子电池负极的锂离子电池具备内阻小、倍率性能好及循环寿命长的优点。本发明还提供一种锂离子电池负极的制备方法,包括如下步骤:将碳纳米带、导电剂及粘结剂按(90‑95):(0‑4):(2‑5)称取物料,并均匀混合制成混合浆料;将混合浆料涂敷在负极集流体之上制成锂离子电池负极。

Description

一种锂离子电池负极及其制备方法
【技术领域】
本发明涉及锂离子电池技术领域,尤其涉及一种锂离子电池负极及其制备方法。
【背景技术】
随着新能源汽车的大力推广,动力电池的需求量日益增加。相比铅酸电池、镍氢电池及镍镉电池,锂离子电池具有工作电压高、能量密度大、循环寿命长等诸多优点,在动力电池领域占有较高的市场份额。负极材料是锂离子电池的重要组成部分,锂离子电池负极材料应具有电化学反应的氧化还原电位尽可能低、高比容量、电化学反应过程中体积效应小、导电率高、锂离子传输扩散速度快以及能与电解液形成固体电解质膜(SEI膜)等特点。
目前市场化的三类锂离子负极材料都各自存在不足,石墨类负极材料的比容量低、与溶剂相容性差、循环寿命和高温性能不理想;合金类负极材料的晶格体积膨胀率达360%;钛酸锂材料电压平台高,功率密度和能量密度不足。
鉴于此,实有必要提供一种新型的锂离子电池负极及其制备方法以克服以上缺陷。
【发明内容】
本发明的目的是提供一种锂离子电池负极及其制备方法,应用本发明的锂离子电池负极的锂离子电池内阻小、倍率性能好、循环寿命长且能量密度高。
为了实现上述目的,本发明提供一种锂离子电池负极,包括负极集流体及涂覆在所述负极集流体上的负极活性材料,所述负极活性材料包括碳纳米带、导电剂及粘结剂,所述碳纳米带、导电剂及粘结剂的质量百分比为(90-95):(0-4):(2-5)。
在一个优选实施方式中,所述碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-15):1,长度为1-15微米级。
在一个优选实施方式中,所述粘结剂为聚偏氟乙烯或羧甲基纤维素纳及丁苯树脂或丙烯腈多元共聚物。
在一个优选实施方式中,所述导电剂为乙炔黑、超导炭黑、碳纤维、超导石墨、碳纳米管及石墨烯中的任意一种或多种。
在一个优选实施方式中,所述负极集流体为铜箔。
相比于现有技术,本发明提供的锂离子电池负极,碳纳米带具有良好的导电性,减少了负极导电剂的使用量甚至不使用导电剂,增加负极活性材料的比例,增加电池能量密度,并且,具有本发明提供的锂离子电池负极的锂离子电池具备内阻小、倍率性能好及循环寿命长的优点。
本发明还提供一种锂离子电池负极的制备方法,包括如下步骤:
步骤一:将碳纳米带、导电剂及粘结剂按质量百分比为(90-95):(0-4):(2-5)称取物料,并均匀混合制成混合浆料;
步骤二:将步骤一得到的混合浆料涂敷在负极集流体之上制成锂离子电池负极。
【附图说明】
图1为本发明使用的碳纳米带的SEM图;
图2为对比例1、对比例2及本发明实施例所制备的锂离子电池容量正态分布图;
图3为对比例1、对比例2及本发明实施例所制备的锂离子电池的3C循环图。
【具体实施方式】
为了使本发明的目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
本发明提供一种锂离子电池负极,包括负极集流体及涂覆在所述负极集流体上的负极活性材料,所述负极活性材料包括碳纳米带、导电剂及粘结剂,所述碳纳米带、导电剂及粘结剂的质量百分比为(90-95):(0-4):(2-5)。
具体的,所述碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-15):1,长度为1-15微米级。
具体的,所述粘结剂为聚偏氟乙烯(PVDF)或羧甲基纤维素纳(CMC)及丁苯树脂(SBR)或丙烯腈多元共聚物。
具体的,所述导电剂为乙炔黑、超导炭黑、碳纤维、超导石墨、碳纳米管及石墨烯中的任意一种或多种。
具体的,所述负极集流体为铜箔。
本发明提供的锂离子电池负极,碳纳米带具有良好的导电性,减少了负极导电剂的使用量甚至不使用导电剂,增加负极活性材料的比例,增加电池能量密度,并且,具有本发明提供的锂离子电池负极的锂离子电池具备内阻小、倍率性能好及循环寿命长的优点。
本发明还提供一种锂离子电池负极的制备方法,包括如下步骤:
步骤一:将碳纳米带、导电剂及粘结剂按质量百分比为(90-95):(0-4):(2-5)称取物料,并均匀混合制成混合浆料;
步骤二:将步骤一得到的混合浆料涂敷在负极集流体之上制成锂离子电池负极。
具体的,所述步骤一中的碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-15):1,长度为1-15微米级。
具体的,所述步骤一中的所述粘结剂为聚偏氟乙烯(PVDF)或羧甲基纤维素纳(CMC)及丁苯树脂(SBR)或丙烯腈多元共聚物。
具体的,所述步骤一中的导电剂为乙炔黑、超导炭黑、碳纤维、超导石墨、碳纳米管及石墨烯中的任意一种或多种。
具体的,所述步骤一中的均匀混合方法为高速机械搅拌法、研磨法及超声分散法的一种或多种。
具体的,所述步骤二中的负极集流体为铜箔。
对比例1:
1、将人造石墨、导电剂、粘结剂按一定质量百分比称取物料,并均匀混合成混合浆料(其中:人造石墨、导电剂、粘结剂质量百分比为95:2:2.5;粘结剂为丙烯腈多元共聚物;导电剂为超导炭黑SP;混合浆料的均匀混合方法为高速机械搅拌);
2、将步骤1得到的混合浆料涂敷在负极集流体(铜箔)之上制成锂离子电池负极;
3、将步骤2得到的锂离子电池负极经对辊、制片,再与正极片、隔膜一起卷绕装配,经注液、封口即得到常规的石墨负极的锂离子电池。
对比例2:
1、将硅碳复合物、导电剂、粘结剂按一定质量百分比称取物料,并均匀混合成混合浆料(其中:硅碳复合物(硅碳比85:15)、导电剂、粘结剂质量百分比为95:2:2.5;粘结剂为丙烯腈多元共聚物;导电剂为超导炭黑SP;混合浆料的均匀混合方法为高速机械搅拌);
2、将步骤1得到的混合浆料涂敷在负极集流体(铜箔)之上制成锂离子电池负极;
3、将步骤2得到的锂离子电池负极经对辊、制片,再与正极片、隔膜一起卷绕装配,经注液、封口即得到常规的硅碳复合物负极的锂离子电池。
实施例:
1、将碳纳米带、导电剂、粘结剂按一定质量百分比称取物料,并均匀混合成混合浆料(其中:碳纳米带、导电剂、粘结剂质量比为95:2:2.5;碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-15):1,长度为1-15微米级;粘结剂为丙烯腈多元共聚物;导电剂为超导炭黑SP;混合浆料的均匀混合方法为高速机械搅拌);
2、将步骤1得到的混合浆料涂敷在负极集流体(铜箔)之上制成锂离子电池负极;
3、将步骤2得到的锂离子电池负极经对辊、制片,再与正极片、隔膜一起卷绕装配,经注液、封口即得到具有碳纳米带负极的锂离子电池。
图1为本发明使用的碳纳米带的SEM图,首先,碳纳米带具有石墨烯的石墨化结构,纤薄、比表面积大,同时由于有限尺寸的石墨烯纳米带中的电子在横向上受限,电子被迫纵向移动,具有半导体的性能,并且,碳纳米带在结构上具有柔韧性的特点,具有比石墨烯更灵活可调的性质;其次,与碳纳米管不同,碳纳米带的碳层完全是一种开放的结构,相对碳纳米管具有更大的比表面积及孔结构,不仅提供了更多的锂离子存储位点,而且提供了更多的锂离子反应界面,储锂插层反应更容易进行,同时带与带之间由于大的比表面积及柔韧性相互作用形成了三维多孔结构,更有利于电极活性材料与电解液的接触,同时缩短了锂离子及电解液的传输扩散路径,能很好的提升其作为锂离子电池负极材料的嵌锂容量和倍率性能。因此,碳纳米带同时具备了碳纳米管与石墨烯的优点,与常规的碳系负极材料、硅/锡合金系负极材料、钛酸锂负极材料相比同时具备了良好的导电性能和嵌锂能力,其作为锂离子负极材料具有更好的倍率性能和循环性能的同时,具有较高的比容量。
图2为对比例1、对比例2及本发明实施例所制备的锂离子电池容量正态分布图,图3为对比例1、对比例2及本发明实施例所制备的锂离子电池的3C循环图。从图2及图3可以看出,本发明实施例所制备的具有碳纳米带负极的锂离子电池的电池容量及3C循环性能优于对比例1及对比例2。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (10)

1.一种锂离子电池负极,包括负极集流体及涂覆在所述负极集流体上的负极活性材料,其特征在于:所述负极活性材料包括碳纳米带、导电剂及粘结剂,所述碳纳米带、导电剂及粘结剂的质量百分比为(90-95):(0-4):(2-5)。
2.如权利要求1所述的锂离子电池负极,其特征在于:所述碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-15):1,长度为1-15微米级。
3.如权利要求2所述的锂离子电池负极,其特征在于:所述粘结剂为聚偏氟乙烯或羧甲基纤维素纳及丁苯树脂或丙烯腈多元共聚物。
4.如权利要求3所述的锂离子电池负极,其特征在于:所述导电剂为乙炔黑、超导炭黑、碳纤维、超导石墨、碳纳米管及石墨烯中的任意一种或多种。
5.如权利要求1所述的锂离子电池负极,其特征在于:所述负极集流体为铜箔。
6.一种锂离子电池负极的制备方法,其特征在于:包括如下步骤:
步骤一:将碳纳米带、导电剂及粘结剂按质量百分比为(90-95):(0-4):(2-5)称取物料,并均匀混合制成混合浆料;
步骤二:将步骤一得到的混合浆料涂敷在负极集流体之上制成锂离子电池负极。
7.如权利要求6所述的锂离子电池负极的制备方法,其特征在于:所述步骤一中的碳纳米带的厚度为2-30nm,宽度与厚度的比例为(10-15):1,长度为1-15微米级。
8.如权利要求7所述的锂离子电池负极的制备方法,其特征在于:所述步骤一中的所述粘结剂为聚偏氟乙烯或羧甲基纤维素纳及丁苯树脂或丙烯腈多元共聚物。
9.如权利要求8所述的锂离子电池负极的制备方法,其特征在于:所述步骤一中的导电剂为乙炔黑、超导炭黑、碳纤维、超导石墨、碳纳米管及石墨烯中的任意一种或多种。
10.如权利要求6所述的锂离子电池负极的制备方法,其特征在于:所述步骤一中的均匀混合方法为高速机械搅拌法、研磨法及超声分散法的一种或多种;所述步骤二中的负极集流体为铜箔。
CN201610882892.1A 2016-10-09 2016-10-09 一种锂离子电池负极及其制备方法 Pending CN106356536A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610882892.1A CN106356536A (zh) 2016-10-09 2016-10-09 一种锂离子电池负极及其制备方法
EP17195177.5A EP3306710A1 (en) 2016-10-09 2017-10-06 Negative electrode for lithium ion battery and method for preparing the same
US15/727,646 US20180102533A1 (en) 2016-10-09 2017-10-09 Negative electrode for lithium ion battery and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610882892.1A CN106356536A (zh) 2016-10-09 2016-10-09 一种锂离子电池负极及其制备方法

Publications (1)

Publication Number Publication Date
CN106356536A true CN106356536A (zh) 2017-01-25

Family

ID=57866625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610882892.1A Pending CN106356536A (zh) 2016-10-09 2016-10-09 一种锂离子电池负极及其制备方法

Country Status (3)

Country Link
US (1) US20180102533A1 (zh)
EP (1) EP3306710A1 (zh)
CN (1) CN106356536A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065843A (zh) * 2018-07-03 2018-12-21 中国科学院金属研究所 一种锂离子电池负极片及其制备方法
CN110429278A (zh) * 2019-07-10 2019-11-08 中盐安徽红四方锂电有限公司 一种用于低温型锂离子电池的负极浆料及其制备方法
CN113138221A (zh) * 2021-04-20 2021-07-20 合肥国轩高科动力能源有限公司 一种优化导电剂和粘结剂比例表征sei膜阻抗的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602789A (zh) * 2019-03-01 2023-01-13 宁德时代新能源科技股份有限公司(Cn) 负极片及二次电池
CN111211298A (zh) * 2020-01-07 2020-05-29 天津市捷威动力工业有限公司 导电复合材料、制备方法及其应用
CN112185607B (zh) * 2020-10-16 2022-02-22 郑州大学 一种一体化电极的柔性传感器及其制备方法和应用
CN114420891B (zh) * 2021-11-25 2023-12-19 西安交通大学 一种高压锂离子电池集流体、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288075A (zh) * 2013-05-24 2013-09-11 大连理工大学 氮掺杂石墨烯纳米带及其制备方法
CN103879988A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 硼掺杂石墨烯纳米带的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236183B1 (ko) * 2011-04-26 2013-02-22 한국과학기술연구원 그라핀 리튬이온전지 전극 및 이의 제조방법
US10818914B2 (en) * 2015-03-05 2020-10-27 The Regents Of The University Of California Carbonized mushroom electrodes and methods
WO2016145083A1 (en) * 2015-03-09 2016-09-15 William Marsh Rice University Graphene nanoribbon-based materials and their use in electronic devices
US10008723B1 (en) * 2016-05-17 2018-06-26 Nanotek Instruments, Inc. Chemical-free production of graphene-wrapped electrode active material particles for battery applications
US9899672B2 (en) * 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103879988A (zh) * 2012-12-20 2014-06-25 海洋王照明科技股份有限公司 硼掺杂石墨烯纳米带的制备方法
CN103288075A (zh) * 2013-05-24 2013-09-11 大连理工大学 氮掺杂石墨烯纳米带及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李同涛: "石墨烯纳米带及其复合材料的制备与电化学储锂性能的研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065843A (zh) * 2018-07-03 2018-12-21 中国科学院金属研究所 一种锂离子电池负极片及其制备方法
CN110429278A (zh) * 2019-07-10 2019-11-08 中盐安徽红四方锂电有限公司 一种用于低温型锂离子电池的负极浆料及其制备方法
CN113138221A (zh) * 2021-04-20 2021-07-20 合肥国轩高科动力能源有限公司 一种优化导电剂和粘结剂比例表征sei膜阻抗的方法

Also Published As

Publication number Publication date
EP3306710A1 (en) 2018-04-11
US20180102533A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
CN106356536A (zh) 一种锂离子电池负极及其制备方法
CN103053063B (zh) 涂布有底漆的正极集电体和包含所述正极集电体的镁二次电池
CN102790201B (zh) 锂离子电池正极及锂离子电池
CN108258236B (zh) 一种高比容量高循环寿命18650圆柱锂电池及其制备方法
CN107195857A (zh) 用于高性能硅基电极的底漆表面涂层
CN109411827A (zh) 改善或支持具有含锂阳极的电化学电池单元的阳极稳定性的醚基电解质体系
CN107925083A (zh) 负极活性材料和包含其的二次电池
CN105449269B (zh) 一种锂离子电池
CN113054155A (zh) 一种极片的制备方法和锂离子电池
CN109037592A (zh) 锂离子电池正极片及其制备方法、锂离子电池
CN109980290B (zh) 一种混合固液电解质锂蓄电池
CN107546363A (zh) 负极片及锂离子电池
WO2022047705A1 (zh) 正极材料、正极极片、锂二次电池、电池模块、电池包及装置
CN108232129A (zh) 锂离子电池负极材料、负极片和锂离子电池
JP2021034141A (ja) リチウムイオン電池モジュール及び電池パック
CN112713266A (zh) 负极浆料及其应用
Wu et al. Zinc–carbon paper composites as anodes for Zn-ion batteries: key impacts on their electrochemical behaviors
CN111799470A (zh) 正极极片及钠离子电池
CN114497698A (zh) 一种锂离子电池及用电装置
CN113328098A (zh) 一种负极片及包括该负极片的锂离子电池
CN115621464A (zh) 一种钠离子电池负极浆料及制备方法、电池负极片及制备方法、电池及制备方法
CN106602069A (zh) 锂离子电池正极材料、正极和锂离子电池
CN106374083B (zh) 硅基负电极及其制备方法和锂离子电池
Lang et al. High‐performance porous lead/graphite composite electrode for bipolar lead‐acid batteries
CN109411700B (zh) 一种应用于全固态锂离子电池的正极极片及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170125

WD01 Invention patent application deemed withdrawn after publication