CN110229224B - SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用 - Google Patents

SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用 Download PDF

Info

Publication number
CN110229224B
CN110229224B CN201910574778.6A CN201910574778A CN110229224B CN 110229224 B CN110229224 B CN 110229224B CN 201910574778 A CN201910574778 A CN 201910574778A CN 110229224 B CN110229224 B CN 110229224B
Authority
CN
China
Prior art keywords
gene
slralf5
tomato
low
temperature resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910574778.6A
Other languages
English (en)
Other versions
CN110229224A (zh
Inventor
夏晓剑
秦可臻
齐振宇
喻景权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910574778.6A priority Critical patent/CN110229224B/zh
Publication of CN110229224A publication Critical patent/CN110229224A/zh
Application granted granted Critical
Publication of CN110229224B publication Critical patent/CN110229224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了SlRALF5基因作为负调控因子在调控番茄低温抗性和番茄幼苗生长中的新用途,所述SlRALF5基因的蛋白编码区的核苷酸序列如SEQ ID No.1所示。本发明利用CRISPR/Cas9基因编辑技术获得番茄SlRALF5基因敲除的突变体,发现该突变体不仅能够通过提高番茄幼苗的株高和根冠比,促进番茄幼苗的生长;而且能够通过降低叶片相对电解质渗透率和/或最大光化学效率,以及通过提高ABA合成基因表达量提高番茄的低温抗性,为培育抗低温的番茄品种提供依据。

Description

SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用
技术领域
本发明涉及生物技术领域,主要涉及SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用。
背景技术
番茄(Solanum lycopersicum L.)系茄科茄属番茄亚属的多年生草本植物,是我国重要的园艺栽培作物。番茄是喜温蔬菜,其最适宜的生长温度约20-25℃。然而,冬季或早春的低温严重限制设施番茄的光合作用和生长发育,进而影响其产量和品质。挖掘番茄低温抗性的负调控因子,进而对基因定向突变构建耐低温种质资源,对于设施蔬菜发展具有重要意义。
多肽信号对于细胞间交流具有重要作用,并参与了植物生长发育以及对环境的响应。快速碱化因子(RALF)是植物多肽家族中的一类。RALF多肽前体在RRXL(R代表精氨酸,L代表亮氨酸,X代表其他任意氨基酸)位点被S1P蛋白酶切割形成成熟肽。成熟的RALF多肽含有四个保守的半胱氨酸,能够形成分子内二硫键并且对维持多肽正确构象十分重要。
成熟肽在N末端附近含有YISY结构,对于RALF多肽信号识别具有重要作用。RALF成熟肽的大小一般为5kDa,能够引起植物细胞质外体pH快速提高,并且诱导丝裂原活化蛋白激酶(MAPK)的活性。RALF多肽参与根系伸长、侧根发育、授粉受精等发育过程,也参与了抗病性和耐盐性的调控。因此,鉴别出番茄RALF的功能,对于调控番茄生长发育和逆境抗性具有重要意义。
CRISPR/Cas9(Clustered Regularly Interspaced Short PalindromicRepeats/CRISPR-associated protein 9)技术是近几年新发展起来的一种基因组定向编辑技术,其已成功应用于植物基因功能鉴定、野生植物人工驯化和作物抗病/抗逆种质创新等多个方面。由于其突变效率高、操作简便、成本低廉等特点,CRISPR/Cas9基因编辑系统在作物遗传改良中的应用前景十分广阔。
发明内容
本发明提供了SlRALF5基因作为负调控因子在调控番茄低温抗性和幼苗生长中的新用途,为培育抗低温的番茄品种提供依据。
具体技术方案如下:
本发明提供了SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用,所述SlRALF5基因的蛋白编码区的核苷酸序列如SEQ ID No.1所示,其蛋白编码区长度为357bp;所述应用的途径为通过敲除SlRALF5基因,使番茄突变体低温抗性增强。
进一步地,所述应用的途径为通过敲除SlRALF5基因,降低叶片相对电解质渗透率和/或最大光化学效率,从而提高番茄突变体的低温抗性。
进一步地,所述应用的途径为通过敲除SlRALF5基因,提高ABA合成基因表达量,从而提高番茄突变体的低温抗性。
本发明利用CRISPR/Cas9基因编辑技术获得了SlRALF5敲除的突变体,并通过生理生化试验发现:与野生型相比,SlRALF5敲除突变体的叶片相对电解质渗透率显著降低,而最大光化学效率(Fv/Fm)显著提高;同时,脱落酸(ABA)合成基因表达上调,从而增加了突变体ABA的含量。上述试验表明:敲除SlRALF5的突变体能够从转录水平上调控ABA等植物抗逆激素信号,从而增强番茄低温抗性。该发现为利用RALF基因创制作物抗逆种质提供了新思路。
SlRALF5基因编码蛋白的氨基酸序列如SEQ ID No.2所示。
本发明还通过试验观察发现:敲除SlRALF5能够促进番茄生长,同野生型相比株高和根冠比都显著增加。
本发明还提供了SlRALF5基因作为负调控因子在促进番茄幼苗生长中的应用,所述SlRALF5基因的蛋白编码区的核苷酸序列如SEQ ID No.1所示,所述应用的途径为通过敲除SlRALF5基因,提高番茄幼苗的株高和根冠比,从而促进番茄突变体幼苗的生长。
SlRALF5基因的敲除,可利用CRISPR/Cas9基因编辑方法,还可以采用T-DNA插入、EMS诱变、RNA干涉等方法;且载体导入方法不局限于通过农杆菌转化方法,还包括通过花粉管导入作物细胞、愈伤组织、组织或器官中获得的植株。
本发明还提供了一种抗低温番茄的培育方法,包括以下步骤:
(1)设计SlRALF5基因的靶序列sgRNA1,构建CRISPR/Cas9载体;
所述靶序列sgRNA1的核苷酸序列如SEQ ID NO.3所示;
(2)构建含步骤(1)所述CRISPR/Cas9载体的农杆菌基因工程菌;
(3)将步骤(2)所述基因工程菌转化番茄子叶,获得不含外源Cas9蛋白且稳定遗传的纯合突变体株系。
进一步地,步骤(2)中,所述农杆菌为GV3101。
与现有技术相比,本发明具有以下有益效果:
(1)本发明利用CRISPR/Cas9基因编辑技术获得番茄SlRALF5基因敲除的突变体,发现该突变体不仅能够通过提高番茄幼苗的株高和根冠比,促进番茄幼苗的生长;而且能够通过降低叶片相对电解质渗透率和/或最大光化学效率,以及通过提高ABA合成基因表达量提高番茄的低温抗性,为培育抗低温的番茄品种提供依据。
(2)本发明利用基因编辑技术,将SlRALF5基因在番茄中特异敲除,经一系列实验证明,与野生型对照番茄植株相比,SlRALF5敲除突变体生长得到促进,并且在不经过任何前期处理的情况下突变体植株通过积累ABA等抗逆激素信号从而提高番茄低温抗性;这一发现不仅丰富了对植物RALF多肽信号功能的认识,而且为耐低温胁迫作物的种质创新提供了新途径。
附图说明
图1为SlRALF5成熟肽的蛋白序列结构。
图2为实施例1中SlRALF5基因在番茄不同器官组织中的表达情况。
图3为实施例2中CRISPR/Cas9介导的敲除SlRALF5的纯合子的代表序列,其在sgRNA1靶标区域缺失1bp碱基。
图4为实施例3中野生型番茄植株(WT)和SlRALF5基因敲除番茄植株(ralf5)的生长表型以及相关生理指标;
其中,A为生长表型图;B为株高统计结果;C为根冠比统计结果;D为茎粗统计结果。
图5为实施例4中野生型番茄植株(WT)和SlRALF5基因敲除番茄植株(ralf5)低温处理后的表型和叶片相对电解质渗透率;
其中,A为低温处理后植株表型图;B为植株低温处理后叶片相对电解质渗透率。
图6为实施例4中野生型番茄植株(WT)和SlRALF5基因敲除番茄植株(ralf5)低温处理后的最大光化学效率(Fv/Fm);
其中,A为低温处理后叶片的最大光化学效率荧光图;B为最大光化学效率的数值统计结果。
图7为实施例4中野生型番茄植株(WT)和SlRALF5基因敲除番茄植株(ralf5)低温处理后的ABA含量及其合成基因NCED1表达量;
其中,A为低温处理后叶片的ABA含量;B为ABA合成基因NCED1的表达量。
具体实施方式
下面对本发明的实施例和附图作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1 qRT-PCR分析SlRALF5基因在番茄不同组织器官中的表达
利用qRT-PCR研究SlRALF5基因(成熟肽蛋白序列结构如图1所示)的表达模式,发现SlRALF5在不同组织中均有表达,在根中表达量最高,其次为花,顶芽、侧芽、茎和叶片中表达相对较低(如图2所示)。
具体方法如下:
(1)待植株长至六叶一心时取样,叶片取自上而下第三叶位,茎样为第三和第四节之间的茎段,侧芽样为长至5mm的侧芽,花样为完全展开的花朵,根样为白色幼嫩的根系;然后提取RNA并反转录成cDNA。
(2)利用
Figure BDA0002111789650000051
480II荧光定量PCR仪(Roche,Swiss)进行检测。反应体系详见2×SYBR Green Supermix(Vazyme)说明书。
SlRALF5基因的特异性引物为(DL-SlRALF5-F:5'-CCGATAGCTGTGAAGGTTCG-3';DL-SlRALF5-R:5'-CGCACCTCTTCTAGAACACG-3'),利用2-ΔΔCt法计算基因相对表达水平。
实施例2 SlRALF5CRISPR/Cas9敲除载体的构建及SlRALF5突变体
为明确SlRALF5基因缺失对番茄植株生长和低温抗性的影响,我们设计SlRALF5基因的靶序列sgRNA1,通过酶切连接构建pCAMBIA1301-U6-26-sgRNA1-SlRALF5-35S-Cas9-SK载体。上述载体通过遗传转化导入番茄植株,利用CRISPR/Cas9技术敲除SlRALF5以研究其功能。
首先,利用CRISPR-P网站(http://cbi.hzau.edu.cn/cgi-bin/CRISPR)设计SlRALF5基因的靶序列sgRNA1:5'-ATCTCCGGCGATGCTAC-3'。将合成的sgRNA1序列(单链)退火,形成双链sgRNA1,同时其两端具有Bbs I限制性内切酶酶切位点。
接着,将形成的sgRNA1与通过Bbs I限制性内切酶酶切的AtU6-26 SK载体进行连接,提取阳性质粒备用,命名为U6-26-sgRNA1-SlRALF5-SK。利用Kpn I与Sal I限制性内切酶对U6-26-sgRNA1-SlRALF5-SK和35S-Cas9-SK载体进行双酶切,将各自酶切产物回收并连接。菌液PCR检测,测序验证阳性克隆,提取阳性质粒备用,命名为U6-26-sgRNA1-SlRALF5-35S-Cas9-SK。
然后,利用Kpn I与Xba I限制性内切酶对U6-26-sgRNA1-SlRALF5-35S-Cas9-SK和pCAMBIA1301载体进行双酶切,U6-26-sgRNA1-SlRAL F5-35S-Cas9-SK回收约6kb的条带,连接到酶切过的pCAMBIA1301载体上。连接产物转化大肠杆菌DH 5α感受态细胞,挑取单菌落,在含50mg/L卡那霉素的液体LB培养基中,37℃,200rpm振荡培养过夜。在pCAMBIA1301载体的5’端设计引物进行菌液PCR检测(约550bp)。测序验证阳性克隆,提取阳性质粒备用,命名为pCAMBIA1301-U6-26-sgRNA1-SlRALF5-35S-Cas9-SK。
上述载体利用“叶盘法”通过GV3101农杆菌侵染普通番茄子叶,获得转化pCAMBIA1301-U6-26-sgRNA1-SlRALF5-35S-Cas9-SK敲除载体的抗性芽系,生根培养后移栽,自交一代后,分离鉴定SlRALF5基因纯合突变植株。SlRALF5基因纯合突变植株sgRNA1靶标区域缺失一个碱基,导致蛋白翻译提前终止(如图3所示)。
实施例3 SlRALF5基因敲除番茄突变体生长发育观察
SlRALF5基因敲除番茄突变体生长得到促进,表现为植株株高和根冠比增加。
具体操作如下:
以野生型番茄(Solanum lycopersicum cv.Condine Red)和SlRALF5基因敲除番茄突变体为实验材料。
将种子浸泡在50℃左右温水15min,之后放置在28℃恒温摇床(200rpm/min)2d左右,期间注意换水,待种子胚根长至1cm左右时,播种于装有珍珠岩的72孔穴盘中。将穴盘放置于植物生长室,培养条件为:光周期12h/12h,温度21℃/19℃,相对湿度75%左右,平均光强200μmol m-2s-1,营养液为1/2Hoagland营养液。
待幼苗长到两叶一心时,洗去根部珍珠岩,将幼苗置于18cm×14cm×6cm水培盒中营养液培养,每盒放4株,每两天换一次营养液。待植株长到六叶一心时,对长势一致的植株进行相关生理指标测定。
株高统计以植株子叶处为起点,测量至顶芽的高度;茎粗统计利用游标卡尺测量靠近子叶部分茎的直径;生物量统计以根茎交界处为分割点,称量地上部与地下部的质量;根长统计以根茎交界处为起始位置,束拢根系,最末端为终点测量长度;每个处理包含6个生物重复。
如图4所示,SlRALF5基因敲除突变体较野生型株高和根冠比显著增加,而茎粗没有明显变化。
实施例4 SlRALF5基因敲除番茄突变体低温抗性观察
为了探究SlRALF5基因敲除番茄突变体对于低温胁迫的抗性,对野生型和突变体植株进行4℃低温处理;并探究了植物激素ABA在SlRALF5调控低温抗性中的作用。
具体操作如下:
待幼苗长到六叶一心时,选取长势一致的植株于上午9点置于人工气候箱进行4℃低温处理,其它环境条件不变,并于0h、9h采集叶片样品分析基因表达,于0h、24h采集叶片样品分析激素水平,每个时间点设置3个重复。本次实验重复3次。
将叶片平行主叶脉剪成0.5cm宽的长条,称取0.2g放置在装有20mLddH2O的50ml离心管中,在28℃恒温摇床(200rpm/min)孵育2h后,用数显电导率仪(DDS-11A,杭州奥立龙仪器有限公司)测定其电导率为EC1。然后将装有样品的离心管放置在100℃水浴锅中半个小时,待冷却后再次测定电导率,测定值为EC2;最后计算相对电解质渗透率EC(%)=EC1/EC2×100%。
将番茄植株避光暗适应半个小时,选取从上往下第二、三节位叶片,利用ImagingPAM荧光成像系统(IMAG-MAX/L,Germany)测定叶绿素荧光,得到最大光化学效率(Fv/Fm)等数据。
ABA提取方法参考Wu等(Wu et al,2007)并稍作改动。取0.1g样品,加入1ml乙酸乙酯和2.5μl内标研磨,涡旋30s后,放入4℃震荡过夜;4000rpm离心10min,吸取900μl上清,4℃保存;再加1ml乙酸乙酯4℃震荡1h,4000rpm离心10min,吸取900μl上清;将两次上清合并,利用氮气吹干;加入500μl 70%甲醇溶液,涡旋30s,吸取200μl加入棕色进样瓶内的衬管中,利用高效液相色谱串联质谱法测定(Varian320-MSLC/MS,Agilent Technologies,Amstelveen,the Netherlands)。
低温处理6h后取番茄植株第三叶位的功能叶(3个生物学重复),提取叶片RNA,再反转录为cDNA。利用
Figure BDA0002111789650000071
480II荧光定量PCR仪(Roche,Swiss)进行检测。反应体系详见2×SYBR Green Supermix(Vazyme)说明书。
NCED1基因的特异性引物为(DL-NCED1-F:5'-TTCGATCGGAAGAAGTTTCA-3';DL-NCED1-R:5'-CAAGTAATCCTGGCATGGAA-3'),利用2-ΔΔCt法计算基因相对表达水平。
结果:如图6所示,与野生型对照植株相比,SlRALF5基因敲除突变体的叶片相对电解质渗透率降低,最大光化学效率(Fv/Fm)提高,并且植株的萎蔫表型得到缓解。
如图7所示,SlRALF5基因敲除突变体ABA合成基因NCED1表达量增加,导致ABA含量提高。
综合以上研究,本发明发现了SlRALF5基因负调控番茄低温抗性,其敲除突变可促进番茄生长和提高低温抗性。
序列表
<110> 浙江大学
<120> SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 357
<212> DNA
<213> 番茄(Solanum lycopersicum L.)
<400> 1
atggctgcga attccttttg ttccattttc atcatctctt cattattgat cgcagctttg 60
atcatctccg gcgatgctac cggcggcgat ttcgacgtga gcggttggat tccgatgaaa 120
tccgccgata gctgtgaagg ttcgatagcg gagtgtatgg ctgccggaga attcgaaatg 180
gattcggaga gcaacaggcg tatattagca actactgatt atataagcta tggtgcgctg 240
cagagtaaca gtgttccgtg ttctagaaga ggtgcgtcgt attataactg caaaacaggt 300
gctgaagcta atccgtatac acgtggttgc agtgctatta ctcgttgccg gagttaa 357
<210> 2
<211> 118
<212> PRT
<213> 番茄(Solanum lycopersicum L.)
<400> 2
Met Ala Ala Asn Ser Phe Cys Ser Ile Phe Ile Ile Ser Ser Leu Leu
1 5 10 15
Ile Ala Ala Leu Ile Ile Ser Gly Asp Ala Thr Gly Gly Asp Phe Asp
20 25 30
Val Ser Gly Trp Ile Pro Met Lys Ser Ala Asp Ser Cys Glu Gly Ser
35 40 45
Ile Ala Glu Cys Met Ala Ala Gly Glu Phe Glu Met Asp Ser Glu Ser
50 55 60
Asn Arg Arg Ile Leu Ala Thr Thr Asp Tyr Ile Ser Tyr Gly Ala Leu
65 70 75 80
Gln Ser Asn Ser Val Pro Cys Ser Arg Arg Gly Ala Ser Tyr Tyr Asn
85 90 95
Cys Lys Thr Gly Ala Glu Ala Asn Pro Tyr Thr Arg Gly Cys Ser Ala
100 105 110
Ile Thr Arg Cys Arg Ser
115
<210> 3
<211> 17
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 3
atctccggcg atgctac 17
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 4
ccgatagctg tgaaggttcg 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 5
cgcacctctt ctagaacacg 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 6
ttcgatcgga agaagtttca 20
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 7
caagtaatcc tggcatggaa 20
<210> 8
<211> 21
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 8
caaagaaaga atgctgggaa a 21
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial sequence)
<400> 9
tatcgcgatg gattcaatgt 20

Claims (5)

1.SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用,其特征在于,所述SlRALF5基因的蛋白编码区的核苷酸序列如SEQ ID NO .1所示;所述应用的途径为通过敲除SlRALF5基因,使番茄突变体低温抗性增强。
2.如权利要求1所述的应用,其特征在于,所述应用的途径为通过敲除SlRALF5基因,降低叶片相对电解质渗透率和/或最大光化学效率,从而提高番茄突变体的低温抗性。
3.如权利要求1所述的应用,其特征在于,所述应用的途径为通过敲除SlRALF5基因,提高ABA合成基因表达量,从而提高番茄突变体的低温抗性。
4.一种抗低温番茄的培育方法,其特征在于,包括以下步骤:
(1)设计SlRALF5基因的靶序列sgRNA1,构建CRISPR/Cas9载体;
所述靶序列sgRNA1的核苷酸序列如SEQ ID NO.3所示;
(2)构建含步骤(1)所述CRISPR/Cas9载体的农杆菌基因工程菌;
(3)将步骤(2)所述基因工程菌转化番茄子叶,获得不含外源Cas9蛋白且稳定遗传的纯合突变体株系。
5.如权利要求4所述的抗低温番茄的培育方法,其特征在于,步骤(2)中,所述农杆菌为GV3101。
CN201910574778.6A 2019-06-28 2019-06-28 SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用 Active CN110229224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910574778.6A CN110229224B (zh) 2019-06-28 2019-06-28 SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910574778.6A CN110229224B (zh) 2019-06-28 2019-06-28 SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用

Publications (2)

Publication Number Publication Date
CN110229224A CN110229224A (zh) 2019-09-13
CN110229224B true CN110229224B (zh) 2020-09-11

Family

ID=67857548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910574778.6A Active CN110229224B (zh) 2019-06-28 2019-06-28 SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用

Country Status (1)

Country Link
CN (1) CN110229224B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583097B (zh) * 2021-05-25 2024-03-29 湖南大学 CtRALF蛋白质、CtRALF基因、引物、原核表达载体及其应用
CN114540407B (zh) * 2022-01-13 2023-11-28 安庆市长三角未来产业研究院 SlCYP707A基因作为负调控因子在促进番茄亚低温抗性中的应用
CN116120414A (zh) * 2023-01-04 2023-05-16 沈阳农业大学 番茄SlCSN5A蛋白或其编码基因的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642073A (zh) * 2018-05-18 2018-10-12 南京农业大学 一种梨PbrRALF2蛋白质的体外表达及其多克隆抗体的制备方法
CN109504686A (zh) * 2018-11-19 2019-03-22 浙江大学 番茄SlCaM6基因在提高低温抗性中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642073A (zh) * 2018-05-18 2018-10-12 南京农业大学 一种梨PbrRALF2蛋白质的体外表达及其多克隆抗体的制备方法
CN109504686A (zh) * 2018-11-19 2019-03-22 浙江大学 番茄SlCaM6基因在提高低温抗性中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation;Tábata Bergonci等;《Journal of Experimental Botany》;20140531;第65卷(第8期);2219-2230 *
NaRALF, a Peptide Signal Essential for the Regulation of Root Hair Tip Apoplastic pH in Nicotiana Attenuata, Is Required for Root Hair Development and Plant Growth in Native Soils;Jinsong Wu等;《The Plant Journal: for cell and molecular biology》;20071231;第52卷(第5期);第877页、880页、883页右栏 *
RALF信号调控番茄生长发育和低温抗性的功能研究;秦可臻;《中国优秀硕士学位论文全文数据库农业科技辑》;20200115(第1期);D048-65 *
快速碱化因子类基因在茄科植物中的研究进展;李焰焰等;《云南植物研究》;20091231;第31卷(第2期);第159页右栏 *
香蕉MaRALF基因功能的初步探究;陈晓;《中国优秀硕士学位论文全文数据库农业科技辑》;20190115(第1期);D048-391 *

Also Published As

Publication number Publication date
CN110229224A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110229224B (zh) SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用
CN117904142B (zh) SlMYB52基因在提高番茄盐胁迫抗性中的应用
CN113151307B (zh) 一种烟草乙烯响应转录因子相关的基因及其应用
CN113684225A (zh) 番茄SlHMGA3基因在培育果实延迟成熟的番茄中的应用
CN115927390B (zh) 一种墨兰花器官发育基因CsPI1及其编码蛋白与应用
CN117089550A (zh) 苹果MhMYB4基因及在提高植物抗旱性中的应用
CN114686494B (zh) SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用
CN114214333B (zh) 一种调控植物叶表皮毛发育和次生壁厚度的基因及其应用
CN116064568A (zh) 紫花苜蓿MsASG166基因及在提高植物耐旱中的用途
CN107988238A (zh) 观赏羽衣甘蓝花青素相关R2R3-MYB基因BoMYB及其表达载体与应用
CN114292855A (zh) 一种调控杨树木质部发育的PagARR9基因及其应用
CN114480417A (zh) 一种调控叶片衰老基因ZmSAG39、编码蛋白及其应用
CN114150013A (zh) SlHDA4基因在培育顶端优势增强型番茄种质中的应用
CN117568289B (zh) 一种抗大豆胞囊线虫病的蛋白质及其编码基因与应用
CN115720852B (zh) 棉花耐盐负调控基因GhFB15及应用
CN116555301B (zh) 一种SlMETS1基因及其在调控番茄生长发育中的应用
CN115948454B (zh) 一种葡萄VvDREB2c基因在提高植物耐热能力中的应用
CN118726385A (zh) 一种陆地棉株型调控基因GhIAA19及其应用
CN117802153A (zh) SlBIW基因在调控番茄果实形状中的应用
CN114657187A (zh) 一种调控烟草花丝长度的WRKY转录因子基因NtWRKY65及其应用
CN117721121A (zh) MtSPG9基因、蛋白及应用
CN116970638A (zh) 敲除番茄SlZF3基因在提高番茄产量中的应用
KR20230161078A (ko) 초형 변이를 유도하는 OsHDSTART2 유전자 및 이의 용도
CN116396968A (zh) 一种鸭茅分蘖相关基因及其应用
CN118562855A (zh) 芥蓝BoabHLH137基因在调控植物生长发育和类胡萝卜素含量中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant