CN114686494B - SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用 - Google Patents

SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用 Download PDF

Info

Publication number
CN114686494B
CN114686494B CN202210516218.7A CN202210516218A CN114686494B CN 114686494 B CN114686494 B CN 114686494B CN 202210516218 A CN202210516218 A CN 202210516218A CN 114686494 B CN114686494 B CN 114686494B
Authority
CN
China
Prior art keywords
slerf
gene
plant
expression
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210516218.7A
Other languages
English (en)
Other versions
CN114686494A (zh
Inventor
贾承国
赵佩清
薛棋洋
陈思琪
马斌
娜迪丽·木萨
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Publication of CN114686494A publication Critical patent/CN114686494A/zh
Application granted granted Critical
Publication of CN114686494B publication Critical patent/CN114686494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于分子生物学和生物技术领域,具体为SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用,SlERF.H2的核苷酸序列如序列表1所示;一种SlERF.H2蛋白质,由SlERF.H2基因编码,其氨基酸序列如序列表中2所示;一种重组植物表达载体,含有SlERF.H2基因及其所编码的蛋白质;构建了植物表达载体并转化番茄,将SlERF.H2载体导入后得到的阳性过表达植株的表型与野生型有很明显的差异,过表达植株更加粗壮,株高降低、茎粗增加。对野生型和过表达植株进行相同浓度和时间的高盐处理,过表达植株对于盐胁迫带来的萎蔫黄化有明显的缓解作用。

Description

SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的 应用
技术领域
本发明涉及分子生物学和生物技术领域,具体为SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用。
背景技术
随着经济发展和工业化进程加快,严重的工业污染以及不合理的农业生产活动造成土壤盐渍化程度加剧,盐碱地资源的利用成为了世界性的难题。盐胁迫对植物产生离子毒害,降低土壤溶液的渗透势、破坏生物膜并造成光合作用和生理代谢发生紊乱,还会造成更为严重的氧化胁迫,减缓植物的生长发育,导致产量的减少、品质的降低。土壤盐化已成为农业生产活动中的主要逆境胁迫之一,制约现代农业的可持续发展。我国有大面积无法用于正常农业生产的盐碱地,研究作物的耐盐机制、培育耐盐的新品种对于提高作物产量和品质以及充分利用盐碱地具有重要的指导意义。
番茄(Solanum lycopersicum)在我国是重要的经济作物,也是目前市面上常见的蔬菜品种,具有独特的口感和较高的营养价值,广受群众喜爱。番茄是一种中度盐敏感的设施蔬菜,在高盐土壤上发育时会受到影响,导致病虫害加重以及产量的大幅下降,次生盐渍化是当前番茄种植过程中存在的主要问题。
随着分子生物学的深入发展,已经可以从分子层面对番茄的耐盐机理进行研究。目前已经有很多响应盐胁迫的基因被分离、鉴定出来。研究过程中发现,番茄的耐盐性是一个复杂的数量性状,会同时受到多个不同的遗传基因共同控制。比如,NHX家族基因能够提高番茄的耐盐性;SlMIP基因在番茄中可以响应盐胁迫并且在不同组织器官的响应机制不一样;ATPase基因对于保持番茄体内离子平衡具有关键作用。
AP2/ERF(APETALA2/ethylene responsive factor)在植物中广泛存在,是转录因子家族中重要一员。AP2/ERF超家族成员均含有保守的AP2结构域,该结构域由三个反向平行的β-片和一个平行于β-片的α-螺旋组成。AP2/ERF超家族由5个亚家族组成,分别为AP2、ERF、DREB、RAV和Soloist。ERF亚族成员含有一个AP2/ERF结构域,多数参与乙烯信号转导,能与GCC-box(保守序列为AGCCGCC)特异性结合,在乙烯响应中发挥作用。随着对ERF转录因子的认识不断深入,对其参与植物生理活动的研究也越来越多,ERF转录因子在植物生长发育、响应生物与非生物胁迫以及植物激素信号转导过程中发挥重要作用,其中主要与非生物逆境胁迫相关。拟南芥中,AtERF1过表达增强了对干旱、高温和高盐等胁迫的抗性。对AtERF019进行超表达可以提升对于干旱环境的耐受力。过表达TaERD1则会提高小麦对高温、低温和干旱的耐受力。在水稻中,OsERF48可以调控逆境胁迫中钙离子信号关键基因OsCML16,从而增强水稻对干旱的耐受力。在番茄中,过表达SlERF1和SlERF2可以对乙烯介导的盐胁迫响应进行正向调控,SlERF1可以通过促进脯氨酸的合成从而提高番茄的耐盐性。ERF亚族成员在植物逆境应答过程中发挥了重要作用,是作物改良的理想候选基因。
发明内容
本部分的目的在于概述本发明的实施方式的一些方面以及简要介绍一些较佳实施方式。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。。
因此,本发明的目的是提供(1)SlERF.H2在提高植物耐盐性中的应用;(2)SlERF.H2在培育耐盐性提高的转基因植物中的应用;(3)编码SlERF.H2转录因子的核酸分子在提高植物耐盐性中的应用。
为解决上述技术问题,根据本发明的一个方面,本发明提供了如下技术方案:
SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用,SlERF.H2的核苷酸序列如序列表1所示:
作为本发明所述的SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用的一种优选方案,其中:所述的核苷酸序列如表1,其氨基酸序列如序列表中2所示:
作为本发明所述的SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用的一种优选方案,其中:一种重组植物表达载体,含有SlERF.H2基因及其所编码的蛋白质。
作为本发明所述的SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用的一种优选方案,其中:SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用。
与现有技术相比,本发明的有益效果是:将SlERF.H2基因导入后得到的过表达阳性植株的表型与野生型有很明显的差异,过表达植株更加粗壮,株高降低、茎粗增加。对野生型和过表达植株进行相同浓度和时间的高盐处理,SlERF.H2过表达植株对于盐胁迫带来的萎蔫黄化有明显的缓解作用。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将结合附图和详细实施方式对本发明进行详细说明,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明实施例1野生型番茄植株不同组织部位SlERF.H2表达情况示意图;
图2为本发明实施例1野生型番茄植株盐处理不同时期后SlERF.H2表达情况示意图;
图3为本发明实施例1过表达SlERF.H2植株与野生型植株表型示意图:
图4为本发明实施例1盐处理后实验组和对照组表型示意图及MDA和酶活性的变化。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施方式的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施方式时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
实施例1
一、野生型番茄植株不同组织部位SlERF.H2表达情况
所用植物材料为番茄常规实验品种Micro Tom,由实验室繁育保存。
利用实时荧光定量技术检测SlERF.H2在野生型番茄植株中不同组织部位的表达情况,包括根、茎、叶、花、果实(授粉后14天)和成熟红果。总RNA的提取使用北京全氏金生物技术有限公司生产的试剂盒,TAKARA公司生产的试剂盒PrimeScriptTM RT Master Mix进行cDNA第一条链的合成,利用Bio-Rad公司生产的CFX96进行荧光定量PCR的测定,每一组做3次生物学重复。根据目的基因表达的结果,分析目的基因在不同部位或者不同植株中的基因表达情况,数据分析采用2-△△CT的方法。反应体系以及反应条件如下:
根据上表进行加样,以番茄的Actin作为内参基因,程序为:预变性95℃30s,PCR反应95℃5s,60℃30s,共40个循环。熔解曲线程序为95℃5s,60℃1min,95℃15s,50℃30s。每个样品3次重复,待反应结束后分析荧光值变化曲线。
其中,检测SlERF.H2的引物为SlERF.H2-RT1:GATTTCGTGGTGTCCGTCAG,SlERF.H2-RT2:AAATTCGTCCGTGCTCTTGG;ACTIN的引物为SlACTIN-F:TGTCCCTATCTACGAGGGTTATGC;SlACTIN-R:AGTTAAATCACGACCAGCAAGAT
二、野生型番茄植株盐处理不同时期后SlERF.H2表达情况
对一批野生型番茄进行盐处理(200mmol/L的NaCl溶液),在开始处理的第0h、1h、3h、6h、12h、24h分别对番茄植株进行取样,每次取3株。检测SlERF.H2基因在盐处理不同时期的表达情况。总RNA的提取、cDNA第一条链的合成以及表达水平的测定同上。
三、SlERF.H2转基因番茄植株的获得
1、过表达载体的构建
提取野生型番茄植株叶片的总RNA,反转录出cDNA第一条链,以获得的cDNA为模板,进行PCR扩增,引物序列为SlERF.H2-L:TACGAACGATACTCGACCCCATGGCTCGTCCACAACAACG和SlERF.H2-R:CTAGAGTCGACGGATCCCCCTTCTTGCAAAACAGAAGAGA,胶回收约645bp的DNA片段。用限制性内切酶SmaI酶切pCambia1300-YFP载体,使其线性化,凝胶电泳回收线性化载体。利用无缝克隆技术将目标基因片段连接到pCambia1300-YFP载体上,构建过表达载体。
2、根癌农杆菌介导遗传转化获得过表达植株
将重组质粒35S-SlERF.H2-YFP通过冻融法转化至根癌农杆菌GV3101,得到重组农杆菌。冻融法转化的步骤如下:
(1)取-80℃保存的农杆菌感受态于室温或手心片刻待其部分融化,处于冰水混合状态时插入冰中。
(2)每50μL感受态加入5μL(或者更少一些)质粒DNA,用手拨打管底混匀,依次于冰上静置5min、液氮5min、37℃水浴5min、冰浴5min。
(3)加入500μL LB液体培养液(不加抗生素),于28℃振荡培养3~5h。
(4)6000rpm离心1min收菌,留取100μL左右上清液轻轻吹打重悬菌块涂布于含利福平和潮霉素的LB平板上,倒置放于28℃培养箱培养2~3d。
选取阳性菌进行挑菌、保菌,菌液存放于-80℃冰箱进行后续的实验。
农杆菌菌液的制备:吸取保存好的菌液5μL,接种于含有利福平和潮霉素的5mL LB液体培养基中(具体用量可按比例增加),28℃、200rpm/min振荡培养至对数生长期。测定其OD600值约为0.8时,在离心机中8000rpm离心10min,弃掉上清液,用MS液体培养基清洗沉淀两次,之后用MS液体培养基稀释到值为0.3~0.4,得到侵染用的农杆菌菌液。无菌处理的番茄外植体预培养2d后,膨大的子叶外植体在制备好的农杆菌菌液中浸泡10~15min,在灭菌滤纸上吸取多余菌液后接种到铺上无菌滤纸的预培养培养基上。之后进行继代培养和生根培养,获得T0代番茄植株,自交获得T1代转基因种子。
四、耐盐性功能的鉴定
1、植物材料的播种和培养条件
番茄在种植前需要进行催芽处理,将种子放入垫有两张吸水滤纸的培养皿中,加入适量的蒸馏水在培养室黑暗培养2~3d进行催芽。出芽后播在由泥炭土和蛭石(体积比为3:1)混合作为基质的营养钵中,顶部覆盖相同厚度的基质。放置在培养室中,生长环境为:温度25/20℃(昼/夜),光周期16/8h光暗循环,光照强度12000lux,用1g营养肥加1L蒸馏水配制营养液进行培养。
2、转基因阳性苗的鉴定
取新鲜叶片样品提取DNA,基因组DNA的提取采用2%CTAB(十六烷基三甲基溴化铵)抽提缓冲液的方法。PCR检测引物序列为35SF:GACGCACAATCCCACTATCC,SlERF.H2-RT2:AAATTCGTCCGTGCTCTTGG,进行PCR扩增,PCR反应体系(10μL)如下:
反应条件为:
PCR结束后,按1g:100mL的比例配制琼脂糖和TAE缓冲液,过表达载体作为阳性对照,同时设置阴性对照。与过表达载体有对应的条带的即为阳性植株,挑选阳性植株进行后续的留种以及耐盐性检测等。
3、过表达SlERF.H2植株与野生型植株表型观察
在植株生长过程中我们发现,处在同一生长时期的野生型Micro Tom和SlERF.H2转基因T2代植株在株高上存在较大差异,野生型植株显著高于SlERF.H2过表达植株。同一批次播种的两组植株生长两个半月后,此时的植株高度和茎粗不再发生变化,对两组植株进行表型观察,测量其株高和茎粗。每组选取相同生长环境下长势一致的番茄植株,株高测量以子叶节所在位置到顶部分生花序为范围,单位为cm;茎粗以第一节间直径为准,用游标卡尺进行测量,单位为mm。
4、盐处理
在番茄种子发芽转入营养钵中生长5周后进行盐胁迫的处理,用蒸馏水配制200mmol/L的NaCl溶液,用于浇灌处理组,对照组则只用蒸馏水进行浇灌。
5、盐处理后实验组和对照组表型观察及生理指标测定
盐处理一周后观察实验组和对照组的表型,并进行拍照。盐处理24h时,分别取野生型和过表达SlERF.H2转基因番茄植株从下向上数第3-4片叶子进行取样,液氮速冻后保存在-80℃冰箱中。采用硫代巴比妥酸(TBA)测定丙二醛(MDA)含量,紫外吸收法测定过氧化氢酶(CAT)活性,愈创木酚法测定过氧化物酶(POD)活性。
实验数据
1、野生型番茄植株不同组织部位SlERF.H2表达情况
利用qPCR技术检测SlERF.H2在野生番茄植株不同器官的表达情况,结果表明SlERF.H2在番茄的所有部位均有表达,但有所差异,在花中大量表达,授粉后结出的果实中表达明显降低,且随着果实的成熟逐渐降低。
2、野生型番茄植株盐处理不同时期后SlERF.H2表达情况
探究盐胁迫下SlERF.H2在番茄中的表达情况,实时荧光定量结果显示,番茄在遭受盐胁迫后第1h SlERF.H2表达量上升,之后3~6h呈现下降趋势,到12h出现极显著的表达水平上调,24h再次降低,但和0h相比表达水平仍有上升。这说明在盐胁迫在短时间内对番茄中SlERF.H2的表达水平具有一定的影响作用。
3、过表达SlERF.H2植株与野生型植株表型观察
表型观察发现,过表达SlERF.H2后植株出现矮化、茎粗增大,叶片相较于野生型更为厚大,出现了明显的落花现象,座果率显著低于野生型植株。对株高和茎粗进行统计分析,野生型的株高和茎粗的平均值分别为18.50cm和4.95mm,转基因植株分别为14.47cm和5.77mm。过表达SlERF.H2植株较之野生型株高降低了21.77%,茎粗增加了16.85%。野生型整体为高瘦型,转基因植株更偏粗壮。
4、盐处理后实验组和对照组表型观察及生理指标测定
盐处理一周后观察表型发现,野生型植株在高盐的渗透胁迫下黄化萎蔫严重,叶片基本完全蜷缩。而过表达SlERF.H2植株的叶片更为挺拔,蜷缩现象并不明显。表明转基因植株盐胁迫敏感性较低,相比野生型更容易在盐胁迫环境下生存。
盐胁迫后,两组植株的MDA含量均上升,过表达植株的增幅小于野生型植株。说明SlERF.H2的过表达可以延缓由盐胁迫引起的MDA的积累。处理前后抗氧化酶活性的测定结果表明,在处理之前野生型植株的CAT酶活性高于过表达植株,POD酶活性转基因组野生型相差不大,说明了过表达SlERF.H2对于抗氧化酶的活性有一定的影响。盐处理1d后,过表达SlERF.H2植株中CAT酶活性上升,野生型植株则出现了大幅的下降,两组植株POD酶活性都有所下降。以上结果表明,过量表达SlERF.H2植株可以显著一定程度上提高转基因植株的CAT活性,从而降低由于非生物胁迫而引起的机体O2-的过量累积所产生的细胞膜氧化损伤作用,进而提高植物的耐盐胁迫能力。
虽然在上文中已经参考实施方式对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的实施方式中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述仅仅是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施方式,而是包括落入权利要求的范围内的所有技术方案。
序列表
<110> 吉林大学
<120> SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用
<150> 2021110403704
<151> 2021-09-06
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 648
<212> DNA/RNA
<213> 核苷酸(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 1
atggctcgtc cacaacaacg atttcgtggt gtccgtcagc gacattgggg ttcctgggtt 60
tccgaaattc gacatccttt actgtaatta gctcctcttc tttctctgaa gtatttgatg 120
tcaatttaat tttccataat tgaaatctga ttattattta tttttatttt tgggtaaatt 180
caataggaag acgagaatat ggctaggtac atttgagaca gcagaggatg cagcgcgagc 240
atatgatgaa gctgcaaggc catgtgtgga ccaagagcac ggacgaattt cgcatttaac 300
gatactgatt ctcattcatc atcatcgacc aagtatctat ctgctgcatt gatagctaaa 360
ctacaacgat gccagatgaa atctcttaat atggtgaata atcgacctgg aacgatgaaa 420
ttagaagatc aaaatgaccg tttatcgtca tgtggaaaca ggggagatca tggcattact 480
agaaggactg tgcaaatgag tgttgaaatg ccggtaaaat atgaaagcca aacagagaat 540
aataatacgc aagaattcaa gtcacttgaa gatcatcaaa ttgaacagat gattgaagag 600
ttgttggatt atggatcaat tgaactctct tctgttttgc aagaataa 648
<210> 2
<211> 181
<212> PRT
<213> 氨基酸(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 2
Met Ala Arg Pro Gln Gln Arg Phe Arg Gly Val Arg Gln Arg His Trp
1 5 10 15
Gly Ser Trp Val Ser Glu Ile Arg His Pro Leu Leu Lys Thr Arg Ile
20 25 30
Trp Leu Gly Thr Phe Glu Thr Ala Glu Asp Ala Ala Arg Ala Tyr Asp
35 40 45
Glu Ala Ala Arg Leu Met Cys Gly Pro Arg Ala Arg Thr Asn Phe Ala
50 55 60
Phe Asn Asp Thr Asp Ser His Ser Ser Ser Ser Thr Lys Tyr Leu Ser
65 70 75 80
Ala Ala Leu Ile Ala Lys Leu Gln Arg Cys Gln Met Lys Ser Leu Asn
85 90 95
Met Val Asn Asn Arg Pro Gly Thr Met Lys Leu Glu Asp Gln Asn Asp
100 105 110
Arg Leu Ser Ser Cys Gly Asn Arg Gly Asp His Gly Ile Thr Arg Arg
115 120 125
Thr Val Gln Met Ser Val Glu Met Pro Val Lys Tyr Glu Ser Gln Thr
130 135 140
Glu Asn Asn Asn Thr Gln Glu Phe Lys Ser Leu Glu Asp His Gln Ile
145 150 155 160
Glu Gln Met Ile Glu Glu Leu Leu Asp Tyr Gly Ser Ile Glu Leu Ser
165 170 175
Ser Val Leu Gln Glu
180

Claims (1)

1.SlERF.H2基因所编码的蛋白质在调控番茄耐盐性中的应用,其特征在于:所述蛋白质的氨基酸序列如序列2所示。
CN202210516218.7A 2021-09-06 2022-05-12 SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用 Active CN114686494B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021110403704 2021-09-06
CN202111040370 2021-09-06

Publications (2)

Publication Number Publication Date
CN114686494A CN114686494A (zh) 2022-07-01
CN114686494B true CN114686494B (zh) 2024-01-26

Family

ID=82145562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210516218.7A Active CN114686494B (zh) 2021-09-06 2022-05-12 SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用

Country Status (1)

Country Link
CN (1) CN114686494B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851757A (zh) * 2022-08-22 2023-03-28 吉林大学 AP2/ERF转录因子OsDREB2B基因的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1706949A (zh) * 2004-06-11 2005-12-14 中国农业科学院作物育种栽培研究所 一种植物乙烯应答元件结合蛋白及其编码基因
CN102516377A (zh) * 2012-01-12 2012-06-27 吉林大学 一种大豆erf转录因子及其编码基因与耐盐应用
EP2599870A2 (en) * 2006-06-15 2013-06-05 CropDesign N.V. Plants having enhanced yield-related traits and a method for making the same
CN104293802A (zh) * 2013-09-23 2015-01-21 中国农业科学院生物技术研究所 百脉根erf类转录因子、其编码基因及表达载体和应用
CN104313033A (zh) * 2013-09-23 2015-01-28 中国农业科学院生物技术研究所 百脉根抗逆相关转录因子及其编码基因和应用
CN104561036A (zh) * 2014-12-11 2015-04-29 中国农业科学院生物技术研究所 植物耐盐相关基因PpSIG1及其编码蛋白和应用
CN106868023A (zh) * 2017-04-29 2017-06-20 东北农业大学 黄瓜CsERF004基因及其编码蛋白和应用
CN112646012A (zh) * 2021-01-14 2021-04-13 沈阳农业大学 用于调节花柄脱落的番茄水通道蛋白SlTIP1;1
CN113846121A (zh) * 2021-11-13 2021-12-28 吉林大学 一种番茄侧枝发生的调控方法
CN114752622A (zh) * 2022-05-05 2022-07-15 安庆市长三角未来产业研究院 多肽受体pskr1基因在提高番茄植株和/或番茄花粉对高温逆境抗性中的应用
CN117164687A (zh) * 2023-05-11 2023-12-05 合肥工业大学 一种促进番茄果实成熟的基因及其方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2163639A1 (en) * 2008-09-04 2010-03-17 Institute National Polytechnique de Toulouse New tomato ethylene response factors and uses thereof
CN102234320B (zh) * 2010-04-27 2013-07-31 中国农业科学院作物科学研究所 植物耐逆性相关蛋白TaDREB4B及其编码基因和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1706949A (zh) * 2004-06-11 2005-12-14 中国农业科学院作物育种栽培研究所 一种植物乙烯应答元件结合蛋白及其编码基因
EP2599870A2 (en) * 2006-06-15 2013-06-05 CropDesign N.V. Plants having enhanced yield-related traits and a method for making the same
CN102516377A (zh) * 2012-01-12 2012-06-27 吉林大学 一种大豆erf转录因子及其编码基因与耐盐应用
CN104293802A (zh) * 2013-09-23 2015-01-21 中国农业科学院生物技术研究所 百脉根erf类转录因子、其编码基因及表达载体和应用
CN104313033A (zh) * 2013-09-23 2015-01-28 中国农业科学院生物技术研究所 百脉根抗逆相关转录因子及其编码基因和应用
CN104561036A (zh) * 2014-12-11 2015-04-29 中国农业科学院生物技术研究所 植物耐盐相关基因PpSIG1及其编码蛋白和应用
CN106868023A (zh) * 2017-04-29 2017-06-20 东北农业大学 黄瓜CsERF004基因及其编码蛋白和应用
CN112646012A (zh) * 2021-01-14 2021-04-13 沈阳农业大学 用于调节花柄脱落的番茄水通道蛋白SlTIP1;1
CN113846121A (zh) * 2021-11-13 2021-12-28 吉林大学 一种番茄侧枝发生的调控方法
CN114752622A (zh) * 2022-05-05 2022-07-15 安庆市长三角未来产业研究院 多肽受体pskr1基因在提高番茄植株和/或番茄花粉对高温逆境抗性中的应用
CN117164687A (zh) * 2023-05-11 2023-12-05 合肥工业大学 一种促进番茄果实成熟的基因及其方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Imène Hichri等.The Solanum lycopersicum Zinc Finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato and Arabidopsis.Plant Physiology.2014,1967–1990页. *
NCBI.PREDICTED: Solanum lycopersicum ethylene-responsive transcription factor ERF003-like (LOC101266647), mRNA.genbank database.2018,accession no.XM_004242151.4. *
李鹤鹏.番茄SlERF.F4转录因子在果实成熟及响应干旱胁迫中的功能分析.中国优秀硕士学位论文全文数据库农业科技辑.2022,D048-85. *
王雅慧等.番茄2个ERF-B1亚族转录因子基因的克隆及其对生物和非生物胁迫响应.核农学报.2019,1893~ 1904页. *

Also Published As

Publication number Publication date
CN114686494A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN110699361B (zh) 水稻抗盐胁迫相关基因Os16及其编码蛋白与应用
CN109456982B (zh) 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用
CN109797157B (zh) 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用
CN109536516B (zh) 玉米抗旱基因ZmDSR的克隆及其应用
CN110643618A (zh) 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
CN113846121B (zh) 一种番茄侧枝发生的调控方法
CN109879947B (zh) 毛竹转录因子PheDof 2基因及应用
CN114686494B (zh) SlERF.H2基因及其所编码的蛋白质在调控番茄耐盐性中的应用
CN114480341A (zh) 枳蛋白激酶PtrSnRK2.4在植物抗旱遗传改良中的应用
CN106591324B (zh) 谷子SiASR4基因及应用
CN106749577B (zh) 耐逆性相关转录因子蛋白nac及其应用
CN111171127B (zh) 紫云英lhy基因及其应用
CN108823220B (zh) 一种苹果中蜡质合成相关基因MdCER1的克隆及其应用
CN113604475B (zh) 棉花gh_d03g1517基因在促进抗旱和耐盐中的应用
CN114990137A (zh) 拟南芥钙结合蛋白基因AtCAREF及应用
CN114606243A (zh) 一种编码甘薯TCP转录因子的IbTCP11基因及其应用
Liu et al. Saussurea involucrata SIDhn2 gene confers tolerance to drought stress in upland cotton
CN113481210A (zh) 棉花GhDof1.7基因在促进植物耐盐中的应用
CN108841831B (zh) 成花素基因GmFT2a的应用
CN115976046B (zh) SlCAS基因及其所编码的蛋白质在调控番茄抗灰霉病中的应用
CN114875044B (zh) 野葡萄VyVTE1基因及其编码的蛋白和应用
CN117568289B (zh) 一种抗大豆胞囊线虫病的蛋白质及其编码基因与应用
CN114561404B (zh) 苹果MdSHN1基因及在提高植物耐涝性中的应用
CN113444732B (zh) 基因TaPT16在提高植物对白粉菌抗性方面的应用
CN107653252A (zh) 棉花GbSLR1基因在植物根和分枝发育中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant