CN110197791B - 多晶硅作为源区的沟槽mosfet结构及其制备方法 - Google Patents

多晶硅作为源区的沟槽mosfet结构及其制备方法 Download PDF

Info

Publication number
CN110197791B
CN110197791B CN201910589417.9A CN201910589417A CN110197791B CN 110197791 B CN110197791 B CN 110197791B CN 201910589417 A CN201910589417 A CN 201910589417A CN 110197791 B CN110197791 B CN 110197791B
Authority
CN
China
Prior art keywords
layer
polysilicon
source region
trench
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910589417.9A
Other languages
English (en)
Other versions
CN110197791A (zh
Inventor
代萌
李承杰
顾嘉庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Geruibao Electronic Co ltd
Original Assignee
Shanghai Geruibao Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Geruibao Electronic Co ltd filed Critical Shanghai Geruibao Electronic Co ltd
Priority to CN201910589417.9A priority Critical patent/CN110197791B/zh
Publication of CN110197791A publication Critical patent/CN110197791A/zh
Application granted granted Critical
Publication of CN110197791B publication Critical patent/CN110197791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了多晶硅作为源区的沟槽MOSFET结构及其制备方法,MOSFET结构,包括基片和外延层,且外延层上淀积有重掺杂多晶硅层形成源区,外延层内设有沟槽,沟槽内部和侧壁上淀积有栅氧化物层,且外延层内部的栅氧化层的厚度小于源区内的栅氧化物层的厚度。本发明的优点是:比传统MOSFET整个工艺流程更为简单,通过淀积多晶硅形成的源区宽度更易控制,增强了的源区的可靠性,且不会影响沟道长度。

Description

多晶硅作为源区的沟槽MOSFET结构及其制备方法
技术领域
本发明涉及半导体领域,更确切地说是多晶硅作为源区的沟槽MOSFET结构的制备方法。
背景技术
沟槽MOSFET是近年来发展的新一代功率MOSFET,以N型沟槽MOSFET元胞为例,简要工艺流程如下。首先在N-外延层表面刻蚀出沟槽,沟槽内生长栅氧化层,淀积填充满N型重掺杂多晶硅形成栅极。然后外延层表面注入硼离子加热扩散后形成P-沟道区,再低能量注入磷离子形成N+源区。外延层表面刻蚀出接触孔,填充金属,连接沟道区和源区,背面N+衬底作为漏区。因其与传统MOSFET相比具有开关速度快,低导通电阻,高耐压,大电流,热稳定性好等优点,现已经得到广泛应用。元胞结构如图16所示。
如今沟槽MOSFET源区形成的工艺,一般都是在沟道注入后,在外延层表面通过离子注入,注入低能量重掺杂的杂质,再经过热扩散形成。这样形成的源区宽度受到源区和沟道区离子注入的能量以及剂量影响,不易控制,很可能出现源区过窄或者沟道过短,影响MOSFET器件性能。
鉴于上述原因,本发明提出了一种运用淀积在外延层表面的重掺杂多晶硅作为源极区的结构,并阐述了制备该结构的工艺流程,与传统沟槽MOSFET工艺流程相比,新结构制备流程更为简易,且不影响MOSFET基本电性参数,更好的控制源极区域的大小,省去了源区离子注入以及扩散工艺,增强了的源极区的可靠性。
发明内容
本发明的目的是提供多晶硅作为源区的沟槽MOSFET结构的制备方法,其可以解决现有技术中的上述缺点。
本发明采用以下技术方案:
多晶硅作为源区的沟槽MOSFET结构的制备方法,包括以下步骤:
制作外延圆片,该外延圆片由低电阻率的N型基片和N型外延层组成;
在外延层表面注入P型杂质,注入能量在100~200keV,并进行退火,形成沟道区;
在外延层表面淀积一层重掺杂多晶硅,厚度为2~4um,退火,形成源区;
在多晶硅表面生长一层掩蔽层;
在掩蔽层上淀积一层光刻胶,进行沟槽光刻,刻蚀掉所需刻蚀沟槽处的掩蔽层,形成刻蚀窗口;
去除表面多余光刻胶,在掩蔽层的作用下进行沟槽刻蚀;
生长一层待牺牲氧化层再去除;在外延层表面以及表面热生长一层100-800A的牺牲氧化层,然后刻蚀去除;
去除牺牲氧化层后,再在沟槽表面以及多晶硅表面生长一层较薄的氧化层,形成栅氧,氧化层的厚度为200~1000A,其可以根据产品实际参数需求进行选择;
淀积N型重掺杂的多晶硅,将沟槽填充满,降低电阻率;
刻蚀掉多余的多晶硅,保证沟槽内多晶硅表面与源区多晶硅持平,保证器件沟道能形成,并在表面淀积一层介质层;
进行接触孔开口光刻;
去除多余光刻胶,进行接触孔刻蚀;
接触孔注入;
接触孔金属填充,淀积一层接触孔金属并刻蚀表面多余金属。
多晶硅作为源区的沟槽MOSFET结构,其通过上述的方法制备得到。
包括基片和外延层,且外延层上淀积有重掺杂多晶硅层形成源区,外延层内设有沟槽,沟槽内部和侧壁上淀积有栅氧化物层,且外延层内部的栅氧化层的厚度小于源区内的栅氧化物层的厚度。
还包括接触孔沟槽,其设于沟槽之间,且接触孔沟槽的底部设有接触孔注入区,且接触孔注入区处于沟道区内。
所述接触孔注入区为P型掺杂注入。
源区的重掺杂多晶硅层上垫积有介质层。
所述接触孔沟槽内部和介质层上垫积有金属层。
基片的背面设有金属镀层,形成漏极。
本发明的优点是:比传统MOSFET整体更为简单,通过淀积多晶硅形成的源区宽度更易控制,且不会影响沟道长度。
附图说明
下面结合实施例和附图对本发明进行详细说明,其中:
图1至图14所示是本发明的制备方法的流程示意图。
图15A是本发明现有技术的模拟仿真验证结果示意图。
图15B是本发明结构的模拟仿真验证结果示意图。
图16是本发明的现有技术的结构示意图。
具体实施方式
下面进一步阐述本发明的具体实施方式:
与传统MOSFET先制备工艺的先刻蚀沟槽后做沟道区和源区相比,本发明将沟槽刻蚀放在沟道区和源区刻蚀之后。在沟道区注入、退火完成后,通过在硅表面淀积重掺杂多晶硅形成源区,替代传统沟槽MOSFET通过离子注入形成的源区。然后再刻蚀沟槽,生长栅氧,填充多晶硅,保证栅极多晶硅高度至少与源极多晶硅高度一致,形成完整沟道。
本发明的制备方法如下:
根据MOSFET的特性需求选择合适的外延圆片,该圆片由低电阻率的N型基片1和N型外延层2组成,如图1所示;
在外延层2表面注入P型杂质,并进行退火,形成沟道区3。一般注入能量在100~200keV,具体的离子注入剂量和能量根据实际沟槽深度或者和所需开启电压范围控制,如图2所示;
在外延层2表面淀积一层重掺杂多晶硅,厚度约为2~4um左右,退火,形成源区4,如图3所示;
在多晶硅表面生长一层掩蔽层5,该掩蔽层5的作用是为后面的沟槽刻蚀提供掩蔽,掩蔽层材料的成分可以为氧化硅、氮化硅或者两者结合,如图4所示;
在掩蔽层上淀积一层光刻胶6,进行沟槽光刻,刻蚀掉所需刻蚀沟槽处的掩蔽层,形成刻蚀窗口,刻蚀窗口尺寸大小根据MOSFET特性需求确定,如图5所示;
去除表面多余光刻胶6,在掩蔽层的作用下进行沟槽7刻蚀,该刻蚀一般采用干法刻蚀,如图6所示;
生长氧化层之前一般会先生长一层很薄的牺牲氧化层再去除,目的是去除硅表面的杂质以及表面态,改善沟槽形貌,能生长出更优质的栅氧化层,在流程图中未特别做单独说明;即在外延层表面以及表面热生长一层500A左右的牺牲氧化层,然后刻蚀去除。去除牺牲氧化层后,再在沟槽表面以及多晶硅表面生长一层较薄的氧化层,形成栅氧8,氧化层的厚度为200~1000A,其可以根据产品实际参数需求进行选择。此时因为沟槽表面源极多晶硅与外延层硅的浓度差异,实际生长中多晶硅表面的氧化层会比硅表面生长出的氧化层稍厚一些,如图7所示;
淀积N型重掺杂的多晶硅9,将沟槽填充满,降低电阻率,如图8所示;
刻蚀掉多余的多晶硅,保证沟槽内多晶硅表面与源区多晶硅持平,保证器件沟道能形成,并在表面淀积一层介质层10。此步骤中刻蚀多晶硅一般采用化学机械平面化的方式实现刻蚀目的。淀积的介质层10可以是氧化硅或者氮化硅等,目的是为接下来的接触孔刻蚀提供掩蔽,如图9所示;
进行接触孔开口光刻。在介质层表面淀积一层光刻胶11,刻蚀掉接触孔位置的介质层和源区多晶硅表面的氧化层,如图10所示;
去除多余光刻胶,进行接触孔12刻蚀,一般也为干法刻蚀,接触孔深度保证接触沟道区,如图11所示;
接触孔13注入,一般注入杂质为二氟化硼(BF 2 )或硼离子(Boron),如图12所示;
接触孔金属填充,淀积一层接触孔金属并刻蚀表面多余金属14,通常金属材料为钨,如图13所示。
背面金属镀层15,根据实际需求减薄芯片背面,通过化学镀层的方式镀上金属层,此金属层一般为TiNiAg或AgSn或Au,厚度一般为几个微米,形成器件漏极,如图14所示。
多晶硅作为源区的沟槽MOSFET结构,其通过上述方法制备得到。包括基片1和外延层2,且外延层2上淀积有重掺杂多晶硅层形成源区3,外延层内设有沟槽7,沟槽内部和侧壁上淀积有栅氧化物层8,且外延层内部的栅氧化层的厚度小于源区内的栅氧化物层的厚度。
本发明还包括接触孔沟槽12,其设于沟槽之间,且接触孔沟槽的底部设有接触孔注入区13,且接触孔注入区处于沟道区3内。所述接触孔注入区为P型掺杂注入。源区的重掺杂多晶硅层上垫积有介质层10。所述接触孔沟槽内部和介质层上垫积有金属层14。
本发明通过多晶硅作为源极的MOSFET元胞结构;如图15所示,通过模拟仿真验证结构和工艺可行性。仿真结果显示,现有结构如图15A所示,与本发明的结构,如图15B所示,相比,新结构在保证了源区宽度的同时,沟道长度也有所改善。淀积的掺杂多晶硅浓度可根据实际需求选择合适浓度。经过热过程之后,多晶硅内的杂质会像外延层内部扩散,即外延层靠近表面处也会因为扩散形成源区。如图15B所示,根据仿真结果显示,把新结构与传统结构阈值电压调整到相同时,新结构的漏电流(IR)会更小,且漏电流(IR)随反向电压的增加更平缓。
本发明的制备方法是先制备沟道区和源极区后再制备沟槽。按一般沟槽MOSFET制备顺序先制备先沟槽,后制备沟道区和源极区也是可行的。不过要做到沟槽多晶硅与表面源区多晶硅持平,不出现断沟的情况,整个流程实现比较困难且相对复杂,不如本发明的方法简洁实用。本发明的方法相比于传统MOSFET整体更为简单,通过淀积多晶硅形成的源区宽度更易控制,且不会影响沟道长度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.多晶硅作为源区的沟槽MOSFET结构的制备方法,其特征在于,包括以下步骤:
制作外延圆片,该外延圆片由低电阻率的N型基片和N型外延层组成;
在外延层表面注入P型杂质,并进行退火,形成沟道区;
在外延层表面淀积一层重掺杂多晶硅,厚度为2~4um,退火,形成源区;
在多晶硅表面生长一层掩蔽层;
在掩蔽层上淀积一层光刻胶,进行沟槽光刻,刻蚀掉所需刻蚀沟槽处的掩蔽层,形成刻蚀窗口;
去除表面多余光刻胶,在掩蔽层的作用下进行沟槽刻蚀;
生长一层待牺牲氧化层再去除;
去除牺牲氧化层后,再在沟槽表面以及多晶硅表面生长一层氧化层,形成栅氧;
淀积N型重掺杂的多晶硅,将沟槽填充满,降低电阻率;
刻蚀掉多余的多晶硅,保证沟槽内多晶硅表面与源区多晶硅持平,保证器件沟道能形成,并在表面淀积一层介质层;
进行接触孔开口光刻;
去除多余光刻胶,进行接触孔刻蚀;
接触孔注入;
接触孔金属填充,淀积一层接触孔金属并刻蚀表面多余金属。
2.根据权利要求1所述的多晶硅作为源区的沟槽MOSFET结构的制备方法,其特征在于,在沟槽刻蚀前通过淀积在外延层表面的重掺杂多晶硅形成源区。
3.多晶硅作为源区的沟槽MOSFET结构,其特征在于,其通过如权利要求1或2所述的方法制备得到。
4.根据权利要求3所述的多晶硅作为源区的沟槽MOSFET结构,其特征在于,包括基片和外延层,且外延层上淀积有重掺杂多晶硅层形成源区,外延层内设有沟槽,沟槽内部和侧壁上淀积有栅氧化物层,且外延层内部的栅氧化层的厚度小于源区内的栅氧化物层的厚度。
5.根据权利要求4所述的多晶硅作为源区的沟槽MOSFET结构,其特征在于,还包括接触孔沟槽,其设于沟槽之间,且接触孔沟槽的底部设有接触孔注入区,且接触孔注入区处于沟道区内。
6.根据权利要求5所述的多晶硅作为源区的沟槽MOSFET结构,其特征在于,所述接触孔注入区为P型掺杂注入。
7.根据权利要求6所述的多晶硅作为源区的沟槽MOSFET结构,其特征在于,源区的重掺杂多晶硅层上垫积有介质层。
8.根据权利要求7所述的多晶硅作为源区的沟槽MOSFET结构,其特征在于,所述接触孔沟槽内部和介质层上垫积有金属层。
9.根据权利要求8所述的多晶硅作为源区的沟槽MOSFET结构,其特征在于,基片的背面设有金属镀层,形成漏极。
CN201910589417.9A 2019-07-02 2019-07-02 多晶硅作为源区的沟槽mosfet结构及其制备方法 Active CN110197791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910589417.9A CN110197791B (zh) 2019-07-02 2019-07-02 多晶硅作为源区的沟槽mosfet结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910589417.9A CN110197791B (zh) 2019-07-02 2019-07-02 多晶硅作为源区的沟槽mosfet结构及其制备方法

Publications (2)

Publication Number Publication Date
CN110197791A CN110197791A (zh) 2019-09-03
CN110197791B true CN110197791B (zh) 2024-01-23

Family

ID=67755638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910589417.9A Active CN110197791B (zh) 2019-07-02 2019-07-02 多晶硅作为源区的沟槽mosfet结构及其制备方法

Country Status (1)

Country Link
CN (1) CN110197791B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411101A (zh) * 2022-07-22 2022-11-29 上海林众电子科技有限公司 一种多晶硅发射极igbt器件、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656810B1 (en) * 1998-10-30 2003-12-02 Sharp Kabushiki Kaisha Semiconductor device capable of reducing dispersion in electrical characteristics and operating at high speed and method for fabricating the same
CN105762193A (zh) * 2016-04-28 2016-07-13 上海格瑞宝电子有限公司 一种mosfet及其制备方法
CN210200737U (zh) * 2019-07-02 2020-03-27 上海格瑞宝电子有限公司 一种多晶硅作为源区的沟槽mosfet结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924130A (zh) * 2009-06-09 2010-12-22 上海韦尔半导体股份有限公司 具有沟槽式接触孔的沟槽式mosfet及其制备方法
US8723317B2 (en) * 2012-09-14 2014-05-13 Force Mos Technology Co., Ltd. Trench metal oxide semiconductor field effect transistor with embedded schottky rectifier using reduced masks process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656810B1 (en) * 1998-10-30 2003-12-02 Sharp Kabushiki Kaisha Semiconductor device capable of reducing dispersion in electrical characteristics and operating at high speed and method for fabricating the same
CN105762193A (zh) * 2016-04-28 2016-07-13 上海格瑞宝电子有限公司 一种mosfet及其制备方法
CN210200737U (zh) * 2019-07-02 2020-03-27 上海格瑞宝电子有限公司 一种多晶硅作为源区的沟槽mosfet结构

Also Published As

Publication number Publication date
CN110197791A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
US8049276B2 (en) Reduced process sensitivity of electrode-semiconductor rectifiers
US6586800B2 (en) Trench-gate semiconductor devices
TWI441336B (zh) 帶有減小的擊穿電壓的金屬氧化物半導體場效應管裝置
CN101958283B (zh) 获得交替排列的p型和n型半导体薄层结构的方法及结构
KR20100029701A (ko) 밀봉 플러그를 구비한 반도체 트렌치 구조와 방법
CN108172563B (zh) 一种带有自对准接触孔的沟槽形器件及其制造方法
JP2001127292A (ja) 高密度トレンチゲートパワーmosfet
CN109216276B (zh) 一种mos管及其制造方法
TW200816370A (en) Method of forming a semiconductor device having trench charge compensation regions
TW200805657A (en) Power semiconductor device having improved performance and method
JP2004520718A (ja) トレンチ−ゲート構造半導体装置及びその製造方法
KR20010048716A (ko) 자기 정렬 기술을 이용한 트렌치 게이트 전력 소자 제조방법
JP5048214B2 (ja) 低閾値電圧を有する短チャンネルトレンチパワーmosfet
CN111755525A (zh) 一种Trench MOS功率器件及制备方法
CN106876449A (zh) 一种沟槽金属-氧化物半导体及其制备方法
CN112242446A (zh) 一种mosfet终端结构及其制备方法
CN110197791B (zh) 多晶硅作为源区的沟槽mosfet结构及其制备方法
CN112510081B (zh) 一种星用抗辐射沟槽型mos管的加固结构和制备方法
CN113690143A (zh) 一种解决sgt-mosfet栅极多晶硅刻蚀穿通的工艺方法
CN210200737U (zh) 一种多晶硅作为源区的沟槽mosfet结构
CN110047929B (zh) 具有沟槽栅极的半导体电子器件及其制造方法
CN108231886B (zh) 制造半导体器件的方法以及半导体器件
CN110223959B (zh) 深浅沟槽的金属氧化物半导体场效应晶体管及其制备方法
CN206697482U (zh) 一种沟槽金属-氧化物半导体
CN105280493A (zh) 一种沟槽igbt器件的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant