CN110180521A - 一种碳量子点/二氧化钛纳米复合材料的制备方法 - Google Patents

一种碳量子点/二氧化钛纳米复合材料的制备方法 Download PDF

Info

Publication number
CN110180521A
CN110180521A CN201910484020.3A CN201910484020A CN110180521A CN 110180521 A CN110180521 A CN 110180521A CN 201910484020 A CN201910484020 A CN 201910484020A CN 110180521 A CN110180521 A CN 110180521A
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
preparation
solution
oxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910484020.3A
Other languages
English (en)
Other versions
CN110180521B (zh
Inventor
徐群娜
张鑫
仇瑞杰
马建中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910484020.3A priority Critical patent/CN110180521B/zh
Publication of CN110180521A publication Critical patent/CN110180521A/zh
Application granted granted Critical
Publication of CN110180521B publication Critical patent/CN110180521B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/025Applications of microcapsules not provided for in other subclasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种碳量子点/二氧化钛纳米复合材料的制备方法,技术方案为:首先称取碳源和去离子水,搅拌溶解,高温加热反应,制得碳量子点溶液,将其稀释作为水相溶液;称取F127、钛酸丁酯、四氢呋喃溶液,混合均匀,作为油相溶液;将制备好的油相溶液缓慢滴加到配置好的水相溶液中,磁力搅拌,离心干燥,得到碳量子点/二氧化钛纳米复合材料。本发明使用界面聚合法,该方法工艺简单,反应条件温和,聚合反应速度快且无需复杂设备,并且可以制备出一种微胶囊结构的碳量子点/二氧化钛纳米复合材料。

Description

一种碳量子点/二氧化钛纳米复合材料的制备方法
技术领域
本发明属于纳米复合材料领域,具体涉及一种碳量子点/二氧化钛纳米复合材料的制备方法。
背景技术
无机粒子二氧化钛是一种无毒且性质稳定的氧化物,它有着很强的粘附力,不易引起化学变化,具有较好的耐腐蚀性。同时,二氧化钛具有高折光性和高光活性,这可以使其拥有了很强的防晒机理,有着强抗紫外线能力。由于二氧化钛的亲水性较强,且又是性质稳定的无机物,因此它有着防污能力和自洁净能力,是一种极其重要的环保型材料。但是,在可见光照下,由于二氧化钛的带隙过宽,其光催化活性较低[Yu Hongtao,XieQuan.Nano-heterojunction photocata-lytic materials in environmental pollutioncontrolling [J].Progress in Chenistry ,2009,21:406-419.Liang Fengxia,Kelly TL,Luo Linbao,et al.Self-cleaning organic vapor sensor based on a nanoporousTiO2 interfaces,2012,4:4177-4183. Sharma S D,Saini K K,Kant C,etal.Photodegradation of dye pollutant under UV light by nanocatalyst dopedtitania thin film [J].Applied Catalysis B:Environmental,2008,84:233-240]。
碳量子点具有优秀的光学性质,良好的水溶性、低毒性、环境友好、原料来源广、成本低、生物相容性好等诸多优点。碳量子点和二氧化钛的复合是当前用来提高二氧化钛光催化效率的一种有效方法。复合方法多集中在溶剂热处理法、电化学沉积法、物理混合法[王春来, 李钒, 杨焜, et al. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19):71-80.]。界面聚合法操作简单,聚合反应速度快且无复杂设备。截至目前,以界面聚合的方式将碳量子点和二氧化钛进行复合的研究还鲜见报道。
发明人所在课题组前期采用界面聚合法制备缓香型壳聚糖基SiO2纳米胶囊,并将其作为涂层材料应用于皮革和织物表面,获得一种香味持久性较好的缓香产物[FacileSynthesis of Chitosan-Coated Silica Nanocapsules via Interfacial CondensationApproach for Sustained Release of Vanillin[J]. Industrial & EngineeringChemistry Research, 2018, 57(18):6171-6179.]。
基于前期研究基础,本发明提出将碳量子点和二氧化钛通过界面聚合法制备出具有良好光催化性能的碳量子点/二氧化钛纳米复合材料,对于提高二氧化钛的光催化性能以及扩宽碳量子点的应用领域具有重要意义。该材料有望应用于太阳能电池、降解污物、抗菌等领域。
现有的碳量子点/二氧化钛纳米复合材料,使用水热反应、阵列原位复合等,其制备方法复杂,制备条件要求高。
发明内容
本发明的目的是要提供一种碳量子点/二氧化钛纳米复合材料的制备方法,克服现有碳量子点/二氧化钛纳米复合材料制备方法复杂,制备条件要求高的缺点。
为了达到上述目的,本发明提供的一种碳量子点/二氧化钛纳米复合材料的制备方法,依次包括以下步骤:
步骤一、碳量子点溶液的制备:
称取碳源4.0-6.0g,去离子水40-60mL,搅拌溶解,倒入高压反应釜中,高温160-200℃,加热5h,制得水溶性碳量子点溶液;
步骤二、水相溶液的制备:
取步骤一中制得的水溶性碳量子点水溶液1mL,将其稀释10-100倍,作为水相溶液;
步骤三、油相溶液的制备:
称取0.065-0.085g的非离子表面活性剂PEO-PPO-PEO三嵌段共聚物F127,30-70uL的钛酸丁酯, 900uL-1800uL的四氢呋喃溶液,通过磁力搅拌使其混合均匀,制得均匀的油相溶液;
步骤四、碳量子点/二氧化钛纳米复合材料的制备:
将步骤三制得的油相溶液缓慢滴加到步骤二制得的水相溶液中,磁力搅拌0.5-5h,形成二者复合的纳米材料溶液,通过离心干燥,得到碳量子点/二氧化钛纳米复合材料。
步骤一中,碳源为柠檬酸、葡萄糖或抗坏血酸。
步骤四中,滴加速度为每滴间隔1~5s。
与现有技术相比,本发明的有益效果是:
本发明使用界面聚合法,该方法工艺简单,反应条件温和,聚合反应速度快且无需复杂设备,并且可以制备出一种微胶囊结构的碳量子点/二氧化钛纳米复合材料。
具体实施方式
下面将结合具体实施例对本发明作进一步详细的描述,但本发明的实施方式包括但不限于以下实施例表示的范围。
本发明采用界面聚合法,提供一种碳量子点/二氧化钛纳米复合材料的制备方法,具体步骤为:
步骤一、碳量子点溶液的制备:
称取碳源4.0-6.0g,去离子水40-60mL,倒入烧杯中,搅拌使它们充分溶解,倒入高压反应釜中,高温160-200℃,加热5h,制备出水溶性碳量子点溶液;碳源为柠檬酸、葡萄糖或抗坏血酸。
步骤二、水相溶液的制备:
取步骤一中制备的水溶性碳量子点水溶液1mL,将其稀释10-100倍,作为水相。
步骤三、油相溶液的制备:
称取0.065-0.085g的非离子表面活性剂PEO-PPO-PEO三嵌段共聚物F127,用移液枪量取30-70uL的钛酸丁酯,量取900uL-1800uL的四氢呋喃溶液,倒入25mL的样品瓶中,通过磁力搅拌使其混合均匀,形成均匀的油相溶液。
步骤四、碳量子点/二氧化钛纳米复合材料的制备:
将制备好的油相溶液缓慢滴加到配置好的水相溶液中,滴加速度为每滴间隔1~5s,磁力搅拌0.5-5h,形成二者复合的纳米材料溶液,通过离心干燥,得到碳量子点/二氧化钛纳米复合材料。
实施例1
步骤一:碳量子点溶液的制备
称取柠檬酸4.0g,去离子水40mL,倒入烧杯中,搅拌使它们充分溶解,倒入高压反应釜中,高温160℃,加热5h,制备出水溶性碳量子点溶液。
步骤二:水相溶液的制备
取步骤一中制备的水溶性碳量子点水溶液1mL,将其稀释10倍,作为水相。
步骤三:油相溶液的制备
称取0.065g的F127,用移液枪量取30uL的钛酸丁酯,量取900uL的四氢呋喃溶液,倒入25mL的样品瓶中,通过磁力搅拌使其混合均匀,形成均匀的油相溶液。
步骤四:
将制备好的油相溶液缓慢滴加(滴加速度为1s每滴)到配置好的水相溶液中,磁力搅拌0.5h,形成二者复合的纳米材料溶液,通过离心干燥,得到碳量子点/二氧化钛纳米复合材料。
实施例2
步骤一:碳量子点溶液的制备
称取葡萄糖5.0g,去离子水50mL,倒入烧杯中,搅拌使它们充分溶解,倒入高压反应釜中,高温200℃,加热5h,制备出水溶性碳量子点溶液。
步骤二:水相溶液的制备
取步骤一中制备的水溶性碳量子点水溶液1mL,将其稀释50倍,作为水相。
步骤三:油相溶液的制备
称取0.075g的F127,用移液枪量取50uL的钛酸丁酯,量取1200uL的四氢呋喃溶液,倒入25mL的样品瓶中,通过磁力搅拌使其混合均匀,形成均匀的油相溶液。
步骤四:
将制备好的油相溶液缓慢滴加(滴加速度为3s每滴)到配置好的水相溶液中,磁力搅拌2h,形成二者复合的纳米材料溶液,通过离心干燥,得到碳量子点/二氧化钛纳米复合材料。
实施例3
步骤一:碳量子点溶液的制备
称取抗坏血酸6.0g,去离子水60mL,倒入烧杯中,搅拌使它们充分溶解,倒入高压反应釜中,高温200℃,加热5h,制备出水溶性碳量子点溶液。
步骤二:水相溶液的制备
取步骤一中制备的水溶性碳量子点水溶液1mL,将其稀释100倍,作为水相。
步骤三:油相溶液的制备
称取0.085g的F127,用移液枪量取70uL的钛酸丁酯,量取1800uL的四氢呋喃溶液,倒入25mL的样品瓶中,通过磁力搅拌使其混合均匀,形成均匀的油相溶液。
步骤四:
将制备好的油相溶液缓慢滴加(滴加速度为5s每滴)到配置好的水相溶液中,磁力搅拌5h,形成二者复合的纳米材料溶液,通过离心干燥,得到碳量子点/二氧化钛纳米复合材料。
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,皆为本发明的权利要求所涵盖。

Claims (3)

1.一种碳量子点/二氧化钛纳米复合材料的制备方法,其特征在于:
依次包括以下步骤:
步骤一、碳量子点溶液的制备:
称取碳源4.0-6.0g,去离子水40-60mL,搅拌溶解,倒入高压反应釜中,高温160-200℃,加热5h,制得水溶性碳量子点溶液;
步骤二、水相溶液的制备:
取步骤一中制得的水溶性碳量子点水溶液1mL,将其稀释10-100倍,作为水相溶液;
步骤三、油相溶液的制备:
称取0.065-0.085g的非离子表面活性剂PEO-PPO-PEO三嵌段共聚物F127,30-70uL的钛酸丁酯, 900uL-1800uL的四氢呋喃溶液,通过磁力搅拌使其混合均匀,制得均匀的油相溶液;
步骤四、碳量子点/二氧化钛纳米复合材料的制备:
将步骤三制得的油相溶液缓慢滴加到步骤二制得的水相溶液中,磁力搅拌0.5-5h,形成二者复合的纳米材料溶液,通过离心干燥,得到碳量子点/二氧化钛纳米复合材料。
2.根据权利要求1所述的一种碳量子点/二氧化钛纳米复合材料的制备方法,其特征在于:
步骤一中,碳源为柠檬酸、葡萄糖或抗坏血酸。
3.根据权利要求2所述的一种碳量子点/二氧化钛纳米复合材料的制备方法,其特征在于:
步骤四中,滴加速度为每滴间隔1~5s。
CN201910484020.3A 2019-06-05 2019-06-05 一种碳量子点/二氧化钛纳米复合材料的制备方法 Active CN110180521B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910484020.3A CN110180521B (zh) 2019-06-05 2019-06-05 一种碳量子点/二氧化钛纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910484020.3A CN110180521B (zh) 2019-06-05 2019-06-05 一种碳量子点/二氧化钛纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110180521A true CN110180521A (zh) 2019-08-30
CN110180521B CN110180521B (zh) 2022-07-26

Family

ID=67720249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910484020.3A Active CN110180521B (zh) 2019-06-05 2019-06-05 一种碳量子点/二氧化钛纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110180521B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622195A (zh) * 2021-07-19 2021-11-09 武汉纺织大学 一种掺杂碳量子点防紫外棉织物的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576043B1 (ko) * 2014-09-22 2015-12-10 한국과학기술원 양자점 나노입자 표면에 비정질 TiO2가 코팅된 광촉매 및 이의 제조방법
CN107876035A (zh) * 2017-11-24 2018-04-06 中国科学院上海硅酸盐研究所 一种碳量子点/二氧化钛复合光催化材料及其制备方法和应用
CN108160013A (zh) * 2017-12-15 2018-06-15 华南理工大学 一种水溶性碳量子点缓释微胶囊及其制备方法与应用
CN108435002A (zh) * 2018-03-27 2018-08-24 东华大学 一种功能化碳量子点改性的复合纳滤膜的制备方法
US20180264440A1 (en) * 2015-10-26 2018-09-20 University Of Shanghai For Science And Technology A composite photocatalyst, preparation method hereof and use thereof
WO2019051745A1 (zh) * 2017-09-14 2019-03-21 谢秋生 一种制备表面改性碳量子点-二氧化钛复合光催化剂方法
CN109550493A (zh) * 2018-12-03 2019-04-02 西北师范大学 碳量子点负载二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用
CN109833836A (zh) * 2019-03-19 2019-06-04 陕西科技大学 界面聚合法制备玉米醇溶蛋白基二氧化钛杂化微胶囊的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576043B1 (ko) * 2014-09-22 2015-12-10 한국과학기술원 양자점 나노입자 표면에 비정질 TiO2가 코팅된 광촉매 및 이의 제조방법
US20180264440A1 (en) * 2015-10-26 2018-09-20 University Of Shanghai For Science And Technology A composite photocatalyst, preparation method hereof and use thereof
WO2019051745A1 (zh) * 2017-09-14 2019-03-21 谢秋生 一种制备表面改性碳量子点-二氧化钛复合光催化剂方法
CN107876035A (zh) * 2017-11-24 2018-04-06 中国科学院上海硅酸盐研究所 一种碳量子点/二氧化钛复合光催化材料及其制备方法和应用
CN108160013A (zh) * 2017-12-15 2018-06-15 华南理工大学 一种水溶性碳量子点缓释微胶囊及其制备方法与应用
CN108435002A (zh) * 2018-03-27 2018-08-24 东华大学 一种功能化碳量子点改性的复合纳滤膜的制备方法
CN109550493A (zh) * 2018-12-03 2019-04-02 西北师范大学 碳量子点负载二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用
CN109833836A (zh) * 2019-03-19 2019-06-04 陕西科技大学 界面聚合法制备玉米醇溶蛋白基二氧化钛杂化微胶囊的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王春来等: "碳量子点-二氧化钛复合光催化剂的研究进展", 《材料导报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622195A (zh) * 2021-07-19 2021-11-09 武汉纺织大学 一种掺杂碳量子点防紫外棉织物的制备方法
CN113622195B (zh) * 2021-07-19 2024-05-14 武汉纺织大学 一种掺杂碳量子点防紫外棉织物的制备方法

Also Published As

Publication number Publication date
CN110180521B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN104549406B (zh) 一种g‑C3N4/铋系氧化物复合可见光催化剂及其制备方法与应用
CN102974373B (zh) 一种可见光光催化材料制备方法
CN107262131A (zh) 一种可见光响应Bi3O4Cl/g‑C3N4异质结材料的制备方法和应用
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN103537286B (zh) 制备铁掺杂纳米二氧化钛粉体的一步水热微乳液法
CN105195119B (zh) 一种玄武岩纤维-TiO2复合材料的制备方法及其应用
CN103691433A (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
CN105502485A (zh) 一种吸附相反应制备空心二氧化钛微球的方法
CN105056986B (zh) 一种制备片状羟基硝酸氧铋光催化剂的方法及催化剂用途
CN103657628B (zh) 一种SnO2-TiO2复合纳米光催化剂的制备方法
CN109225271A (zh) 一种SrTiO3/SnCoS4高效光催化剂的制备方法及其应用
CN110180521A (zh) 一种碳量子点/二氧化钛纳米复合材料的制备方法
CN103933957B (zh) 一种高结晶、尺寸可控、高能面暴露的多孔单晶纳米二氧化钛光催化剂及其制备方法和应用
CN102240561B (zh) 一种CS/TiO2-NTs复合光催化剂的制备方法
CN106964352B (zh) 新型光催化材料TiO2@Fe2O3、SrTiO3@Fe2O3的制备及应用
CN109133169A (zh) 一种钒酸铋及其制备方法和应用
CN102631923B (zh) 表面负载氧化铁的可见光响应型球形二氧化钛复合光催化剂的制备方法
CN110102324A (zh) 一种新型高效碳酸银/溴化银/go三元复合光催化剂及其制备方法和应用
CN106179431B (zh) 一种锌钛复合金属氧化物及其制备和应用
CN102824931B (zh) 三维孔道相互连通的纳米结晶介孔光催化剂及其制备方法
CN106824170B (zh) 一种碳网包覆介孔WO3/TiO2复合微球的制备方法及应用
CN109485093A (zh) 一种球形完好的锐钛矿型二氧化钛空心球壳及其制备方法
CN107970912A (zh) 一种阿尔法氧化铋/钒酸铋及制备方法
CN107626332A (zh) 一步法实现铁、氟共掺杂二氧化钛纳米片的制备
CN103332736A (zh) 一种具有多级孔道结构的二氧化钛的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant