CN110156133B - 一种硫化纳米零价铁颗粒及其制备方法和应用 - Google Patents

一种硫化纳米零价铁颗粒及其制备方法和应用 Download PDF

Info

Publication number
CN110156133B
CN110156133B CN201910393183.0A CN201910393183A CN110156133B CN 110156133 B CN110156133 B CN 110156133B CN 201910393183 A CN201910393183 A CN 201910393183A CN 110156133 B CN110156133 B CN 110156133B
Authority
CN
China
Prior art keywords
valent iron
nano zero
iron particles
nzvi
vulcanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910393183.0A
Other languages
English (en)
Other versions
CN110156133A (zh
Inventor
钟音
王贺丽
朱锡芬
李丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Geochemistry of CAS
Original Assignee
Guangzhou Institute of Geochemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Geochemistry of CAS filed Critical Guangzhou Institute of Geochemistry of CAS
Priority to CN201910393183.0A priority Critical patent/CN110156133B/zh
Publication of CN110156133A publication Critical patent/CN110156133A/zh
Priority to US16/870,495 priority patent/US20200361783A1/en
Application granted granted Critical
Publication of CN110156133B publication Critical patent/CN110156133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/13Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
    • C01B6/15Metal borohydrides; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Soil Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种硫化纳米零价铁颗粒及其制备方法和应用,该硫化纳米零价铁颗粒的制备方法包括以下步骤:1)亚铁盐和NaBH4反应,制备纳米零价铁颗粒;2)用单质硫粉对纳米零价铁颗粒进行包覆,制备单质硫包覆型纳米零价铁颗粒。本发明以单质硫粉为硫源对纳米零价铁颗粒进行包覆改性,反应条件温和、操作简单、生产成本低,便于进行规模化生产,且制备的硫化纳米零价铁颗粒对目标污染物的选择性高、还原转化效率高,可以大规模应用在受污染的地下水或土壤的修复处理。

Description

一种硫化纳米零价铁颗粒及其制备方法和应用
技术领域
本发明涉及一种硫化纳米零价铁颗粒及其制备方法和应用。
背景技术
纳米零价铁颗粒被广泛应用于污染地下水和土壤的处理,其具有以下优点:1)还原能力强;2)用于污染物处理后,其自身会转变成铁氧化物,对环境的影响小;3)粒径小,粒度均一,比表面积大;4)使用方便,通过注射井注入到受污染的地下水或土壤中便可以进行原位修复,且可以接触到细含水层,对污染水体的净化更加彻底。
然而,纳米零价铁颗粒在实际应用过程中仍然存在以下缺陷和不足:1)受范德华力、磁力等表面作用力的影响,纳米零价铁颗粒容易聚集成粒径更大的颗粒体,反应活性大大降低;2)在实际污染修复过程中,纳米零价铁颗粒的反应活性较高,可以将电子任意地传递给H2O、溶解氧(DO)和硝酸盐(NO3 -)等电子受体,会消耗大量的还原能力,降低了其对目标污染物的选择性和还原转化效率。
为了克服上述缺点,并进一步提高纳米零价铁颗粒的实际应用效果,目前的研究主要集中在以下几个方面:
1)负载型纳米零价铁颗粒:以多孔材料(如:树脂、羧甲基纤维素、活性炭等)、无机黏土矿物(如:蒙脱石、高岭石、膨润土等)作为载体,将纳米零价铁颗粒负载在载体上,进而减少纳米零价铁颗粒的团聚。然而,通过负载虽然可以有效减少纳米零价铁颗粒的团聚,但并没有提高其电子选择性,被水腐蚀消耗的速率依然较快;
2)双金属型纳米零价铁颗粒:在纳米零价铁颗粒制备过程中加入Pd、Ni等贵金属,形成双金属体系,增加纳米零价铁颗粒的活性吸附位点,Pd、Ni是较好的加氢催化剂,能够将原子氢(·H)吸附在颗粒表面,并嵌入贵金属的晶格中形成强还原性物质,从而提高纳米零价铁颗粒对吸附在其表面的污染物的还原去除率。然而,对于双金属型纳米零价铁颗粒而言,其被水腐蚀的速率会进一步加快,同时Pd、Ni等贵金属的价格较高,且Pd、Ni等使用后遗留在土壤或沉积物中对环境基质存在潜在风险。因此,双金属型纳米零价铁颗粒存在电子选择性差、腐蚀速率较快等问题,在实际应用中需要加大投加量才可以达到预期的效果,大大增加了污染修复成本,限制了其应用;
3)硫化型纳米零价铁颗粒:在纳米零价铁颗粒制备过程中或合成纳米零价铁颗粒后引入硫化试剂,在纳米零价铁颗粒表面形成了一层硫铁矿物保护膜,硫铁矿物的电子层中含有离域电子,是良好的半导体材料,可以增强纳米零价铁颗粒的电子传递能力,且硫铁矿物具有一定的疏水性,可以促使Fe(0)将电子优先传递给目标污染物,提高污染物的还原转化效率,并抑制纳米零价铁颗粒与水之间的副反应,减缓纳米零价铁颗粒的腐蚀,提高纳米零价铁颗粒的电子选择性。因此,硫化型纳米零价铁颗粒最具应用前景。
目前,合成硫化型纳米零价铁颗粒使用的硫化试剂包括Na2S2O4和Na2S,但Na2S2O4具有一定的氧化性,会导致大量的Fe(0)转化为FeS,大大消耗了由Fe(0)提供的初始还原力,而Na2S在空气中易潮解,易吸收CO2而变质,且会不断释放有毒有害的H2S气体,因此硫化型纳米零价铁颗粒的规模化生产和应用受到了很大限制。
发明内容
本发明的目的在于提供一种硫化纳米零价铁颗粒及其制备方法和应用。
本发明所采取的技术方案是:
一种硫化纳米零价铁颗粒的制备方法,包括以下步骤:
1)将亚铁盐溶液加入反应器,再加入NaBH4溶液进行还原反应,再静置沉淀,除去上清液,对固体产物进行清洗,得到纳米零价铁颗粒;
2)将纳米零价铁颗粒分散在溶剂中,再加入单质硫粉,混合均匀,再充分静置,除去上清液,对固体产物进行清洗,得到硫化纳米零价铁颗粒。
优选的,步骤1)中Fe2+、NaBH4的摩尔比为1:(4~5)。
优选的,步骤1)所述亚铁盐为氯化亚铁、硝酸亚铁、硫酸亚铁中的一种。
进一步优选的,步骤1)所述亚铁盐为氯化亚铁。
优选的,步骤1)所述亚铁盐溶液的浓度为0.1~0.3mol/L。
优选的,步骤1)所述NaBH4溶液的浓度为0.2~0.4mol/L。
优选的,步骤1)所述NaBH4溶液通过滴加的方式加入反应器。
优选的,步骤2)所述单质硫粉、纳米零价铁颗粒的摩尔比为(0.015~0.100):1。
进一步优选的,步骤2)所述单质硫粉、纳米零价铁颗粒的摩尔比为0.025:1。
优选的,步骤2)所述溶剂为乙醇。
本发明的有益效果是:本发明以单质硫粉为硫源对纳米零价铁颗粒进行包覆改性,反应条件温和、操作简单、生产成本低,便于进行规模化生产,且制备的硫化纳米零价铁颗粒对目标污染物的选择性高、还原转化效率高,可以大规模应用在受污染的地下水或土壤的修复处理。
附图说明
图1为纳米零价铁颗粒的SEM图。
图2为硫化纳米零价铁颗粒的SEM图。
图3为nZVI和S-nZVI对TBBPA的降解效果图。
图4为nZVI降解TBBPA过程中的中间产物动态变化图。
图5为S-nZVI降解TBBPA过程中的中间产物动态变化图。
图6为S-nZVI和nZVI对不同水体中的TBBPA的降解效果图。
图7为nZVI和不同S/Fe摩尔比的S-nZVI对TBBPA的降解效果图。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种硫化纳米零价铁颗粒,其制备方法包括以下步骤:
1)将60mL浓度为0.2mol/L的FeCl2溶液加入反应器,再边搅拌边将180mL浓度为0.3mol/L的NaBH4溶液滴加到FeCl2溶液中,滴加完后继续搅拌反应15min,再静置沉淀,除去上清液,用高纯水清洗固体产物4次,得到纳米零价铁颗粒(nZVI);
2)将纳米零价铁颗粒分散在420mL的乙醇中,再加入0.0096g的单质硫粉(单质硫粉、纳米零价铁颗粒的摩尔比为0.025:1),搅拌12h,再充分静置,除去上清液,用乙醇清洗固体产物4次,得到硫化纳米零价铁颗粒(S-nZVI)。
性能测试:
1)形貌测试:
将步骤1)制备的纳米零价铁颗粒和步骤2)制备的硫化纳米零价铁颗粒分别分散在乙醇中,再利用扫描电镜图(SEM)进行形貌测试,得到的SEM图如图1和图2所示。
由图1可知:纳米零价铁颗粒团聚十分明显,呈链状聚集体状态。
由图2可知:通过单质硫粉进行包覆改性可以显著减少纳米零价铁颗粒的团聚,得到的硫化纳米零价铁颗粒的粒径较小、表面粗糙度较高。
2)nZVI和S-nZVI对TBBPA的降解效果测试:
将nZVI的乙醇溶液和TBBPA(四溴双酚A)的甲醇溶液加入厌氧反应瓶,再加入去离子水得到nZVI浓度为2.3g/L、TBBPA浓度为20ppm(36.77μmol/L)的反应液,再30℃进行搅拌,每隔一段时间取一次样,在取样的反应液中加入5mol/L的HCl溶液使nZVI完全溶解,终止nZVI与TBBPA的反应,并加入1mL的甲醇增加TBBPA在溶液中的溶解度,再利用高效液相色谱仪(日本岛津LC-20A)测定样品中TBBPA的剩余浓度,并利用液相色谱-电喷雾三重四级杆质谱(Agilent LC-ESI-MS/MS)测定样品中TBBPA的各种降解产物的浓度,再配制S-nZVI浓度为2.3g/L、TBBPA浓度为20ppm的反应液,采用同样的测试方法,对S-nZVI进行测试。nZVI和S-nZVI对TBBPA的降解效果如图3所示,nZVI降解TBBPA过程中的中间产物动态变化如图4所示,S-nZVI降解TBBPA过程的中间产物动态变化如图5所示。
由图3可知:反应4h后,S-nZVI对TBBPA的去除率达到100%,而nZVI对TBBPA的去除率只有约40%,反应12h后,nZVI对TBBPA的去除率只有约70%,且nZVI对TBBPA的去除率不再增加,说明S-nZVI对TBBPA的去除效果更加优异。
由图4可知:反应24h后,nZVI对TBBPA的降解产物主要为三溴双酚A。
由图5可知:反应24h后,S-nZV对TBBPA的降解产物主要为二溴双酚A和一溴双酚A,且还有少量的无溴产物双酚A,说明S-nZVI对TBBPA具有优异的脱溴效果。
3)nZVI和S-nZVI对不同水体中的TBBPA的降解效果测试:
将nZVI的乙醇溶液和TBBPA的甲醇溶液加入厌氧反应瓶,再加入自来水得到nZVI浓度为2.3g/L、TBBPA浓度为5ppm(9.19μmol/L)的反应液,再30℃进行搅拌,每隔一段时间取一次样,在取样的反应液中加入5mol/L的HCl溶液使nZVI完全溶解,终止ZVI与TBBPA的反应,并加入1mL的甲醇增加TBBPA在溶液中的溶解度,再利用高效液相色谱仪(日本岛津LC-20A)测定样品中TBBPA的剩余浓度,再采用同样的测试方法,用地下水和珠江水替换自来水,用S-nZVI替换nZVI,分别进行nZVI对地下水中的TBBPA的降解效果测试、nZVI对珠江水中的TBBPA的降解效果测试、S-nZVI对自来水中的TBBPA的降解效果测试、S-nZVI对地下水中的TBBPA的降解效果测试和S-nZVI对珠江水中的TBBPA的降解效果测试,测试结果如图6所示。
由图6可知:S-nZVI对自来水、地下水和珠江水中的TBBPA的降解效果均要显著优于nZVI。
实施例2:
参照实施例1的制备方法,调整单质硫粉、纳米零价铁颗粒的摩尔比(简称S/Fe摩尔比,分别为0.015:1、0.025:1、0.05:1、0.1:1和0.25:1),制备得到不同S/Fe摩尔比的S-nZVI,再参照实施例1的方法测试nZVI和不同S/Fe摩尔比的S-nZVI对TBBPA的降解效果,测试结果如图7所示。
由图7可知:单质硫粉、纳米零价铁颗粒的摩尔比为0.025:1时,制备得到S-nZVI对TBBPA的降解效果最好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种硫化纳米零价铁颗粒的制备方法,其特征在于:包括以下步骤:
1)将亚铁盐溶液加入反应器,再加入NaBH4溶液进行还原反应,再静置沉淀,除去上清液,对固体产物进行清洗,得到纳米零价铁颗粒;
2)将纳米零价铁颗粒分散在溶剂中,再加入单质硫粉,混合均匀,再充分静置,除去上清液,对固体产物进行清洗,得到硫化纳米零价铁颗粒;
步骤2)所述单质硫粉、纳米零价铁颗粒的摩尔比为(0.015~0.100):1;
步骤2)所述溶剂为乙醇;
所述硫化纳米零价铁颗粒的粒径为50~200nm。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中Fe2+、NaBH4的摩尔比为1:(4~5)。
3.根据权利要求1或2所述的制备方法,其特征在于:步骤1)所述亚铁盐为氯化亚铁、硝酸亚铁、硫酸亚铁中的一种。
4.根据权利要求1或2所述的制备方法,其特征在于:步骤1)所述亚铁盐溶液的浓度为0.1~0.3mol/L;步骤1)所述NaBH4溶液的浓度为0.2~0.4mol/L。
5.根据权利要求1或2所述的制备方法,其特征在于:步骤1)所述NaBH4溶液通过滴加的方式加入反应器。
6.一种硫化纳米零价铁颗粒,其特征在于:由权利要求1~5中任意一项所述的方法制备得到。
7.权利要求6所述的硫化纳米零价铁颗粒用于分解污水中卤代有机物的应用。
CN201910393183.0A 2019-05-13 2019-05-13 一种硫化纳米零价铁颗粒及其制备方法和应用 Active CN110156133B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910393183.0A CN110156133B (zh) 2019-05-13 2019-05-13 一种硫化纳米零价铁颗粒及其制备方法和应用
US16/870,495 US20200361783A1 (en) 2019-05-13 2020-05-08 Sulfidated nanoscale zero valent iron particle as well as preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910393183.0A CN110156133B (zh) 2019-05-13 2019-05-13 一种硫化纳米零价铁颗粒及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110156133A CN110156133A (zh) 2019-08-23
CN110156133B true CN110156133B (zh) 2021-07-27

Family

ID=67634323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910393183.0A Active CN110156133B (zh) 2019-05-13 2019-05-13 一种硫化纳米零价铁颗粒及其制备方法和应用

Country Status (2)

Country Link
US (1) US20200361783A1 (zh)
CN (1) CN110156133B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862137A (zh) * 2019-11-21 2020-03-06 北京工业大学 一种硫化改性纳米零价铁的制备及在处理抗生素抗性基因中的应用
CN110980858B (zh) * 2019-11-25 2021-10-01 中国科学技术大学 一种污水中卤代有机物的脱除方法
CN111633021B (zh) * 2020-06-08 2021-12-28 上海大学 一种纳米零价铁改性复合介孔材料及其制备方法和应用
CN116143263A (zh) * 2021-06-29 2023-05-23 北京市科学技术研究院资源环境研究所 一种膨润土负载硫化纳米铁修复剂的制备方法及其应用
CN113457617B (zh) * 2021-08-20 2022-06-21 兰州交通大学 一种改性凹凸棒石负载硫化纳米零价铁重金属吸附剂的制备方法及其产品和应用
CN114247475A (zh) * 2021-12-21 2022-03-29 大连理工大学 一种聚天冬氨酸及保险粉复合改性纳米零价铁材料的制备方法及应用
CN115283020A (zh) * 2022-01-12 2022-11-04 伊犁师范大学 一种S-nZVI/PVDF水处理复合膜的制备方法及应用
CN114799199B (zh) * 2022-04-19 2024-02-02 浙江大学 硫含量与形态可控的硫化纳米零价铁及其制备方法、应用
CN114870794B (zh) * 2022-05-05 2023-06-23 中国农业大学 一种树莓状结构的复合颗粒及其制备方法
CN115108632B (zh) * 2022-05-27 2023-11-21 广州大学 一种好氧颗粒污泥培养系统的快速构建方法
CN115070029B (zh) * 2022-05-31 2024-02-23 扬州大学 一种碳基负载型硫化纳米零价铁及其制备方法和应用
CN115055679B (zh) * 2022-06-07 2024-05-21 安徽师范大学 零价铁还原剂及其制备方法和应用
CN115178583A (zh) * 2022-07-11 2022-10-14 南京格洛特环境工程股份有限公司 一种基于改性零价铁的原位修复二噁英污染土壤的方法
CN115487831B (zh) * 2022-09-28 2023-11-03 中国科学院南京土壤研究所 一种Fe改性材料的制备方法及其在活化过硫酸盐降解土壤中有机污染物中的应用
CN115970658A (zh) * 2022-12-28 2023-04-18 西华师范大学 一种零价铁基共价有机框架复合材料的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038793A (ko) * 2010-10-14 2012-04-24 효림산업주식회사 황화철 침전물이 표면에 부착된 D-nZVI 및 이를 이용한 오염토양 및 지하수 환경오염물질의 정화처리방법
CN104827028A (zh) * 2015-04-15 2015-08-12 刘骁勇 复合型纳米零价铁颗粒
CN109607635A (zh) * 2018-09-20 2019-04-12 浙江工业大学 一种硫化零价铁的制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138727B2 (en) * 2012-12-12 2015-09-22 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Iron—nickel core-shell nanoparticles
US20170297931A1 (en) * 2016-04-13 2017-10-19 The Royal Institution For The Advancement Of Learning/Mcgill University Sulfidated nanoscale zerovalent iron and method of use thereof
US10640406B2 (en) * 2016-05-17 2020-05-05 Texas Tech University System Surface modification of zero valent iron material for enhanced reactivity for degrading chlorinated contaminants in water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038793A (ko) * 2010-10-14 2012-04-24 효림산업주식회사 황화철 침전물이 표면에 부착된 D-nZVI 및 이를 이용한 오염토양 및 지하수 환경오염물질의 정화처리방법
CN104827028A (zh) * 2015-04-15 2015-08-12 刘骁勇 复合型纳米零价铁颗粒
CN109607635A (zh) * 2018-09-20 2019-04-12 浙江工业大学 一种硫化零价铁的制备方法及其应用

Also Published As

Publication number Publication date
CN110156133A (zh) 2019-08-23
US20200361783A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN110156133B (zh) 一种硫化纳米零价铁颗粒及其制备方法和应用
Lv et al. Mechanism and influence factors of chromium (VI) removal by sulfide-modified nanoscale zerovalent iron
Zhang et al. Mechanism investigation of anoxic Cr (VI) removal by nano zero-valent iron based on XPS analysis in time scale
Gao et al. Scavenging of Cr (VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar
Deng et al. Ca (OH) 2 coated nanoscale zero-valent iron as a persulfate activator for the degradation of sulfamethazine in aqueous solution
Zhang et al. Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr (VI)-polluted water
CN103706327B (zh) 三维石墨烯基纳米金属复合材料、其制备方法及应用
CN105944667A (zh) 一种地下介质中磁分离特性的氧化石墨烯负载纳米铁材料及其制备方法
Zhou et al. Enhanced hydrodeiodination of iodinated contrast medium by sulfide-modified nano-sized zero-valent iron: Kinetics, mechanisms and application prospects
CN106001599B (zh) 多壁碳纳米管/纳米级双金属零价铁复合材料的制备方法
Gao et al. Enhanced reductive degradation of tetrabromobisphenol A by biochar supported sulfidated nanoscale zero-valent iron: Selectivity and core reactivity
Gao et al. Enhanced nitrobenzene removal in soil by biochar supported sulfidated nano zerovalent iron: Solubilization effect and mechanism
Zhang et al. Preparation of new materials by ethylene glycol modification and Al (OH) 3 coating NZVI to remove sulfides in water
Zhong et al. Intrinsic acid resistance and high removal performance from the incorporation of nickel nanoparticles into nitrogen doped tubular carbons for environmental remediation
Zhang et al. Chromium (VI) removal from synthetic solution using novel zero-valent iron biochar composites derived from iron-rich sludge via one-pot synthesis
Wang et al. Selective removal of Cr (VI) by tannic acid and polyethyleneimine modified zero-valent iron particles with air stability
Xing et al. Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr (VI) from aqueous solution
Pu et al. Optimizing the removal of nitrate from aqueous solutions via reduced graphite oxide–supported nZVI: synthesis, characterization, kinetics, and reduction mechanism
CN112742340A (zh) 一种s-zvi磁性环境修复材料及其制备方法和用途
CN110947385A (zh) 一种碳封装缺陷铁纳米催化剂及其制备方法与其催化过一硫酸氢盐降解新兴污染物的应用
Zhu et al. Novel core-shell sulfidated nano-Fe (0) particles for chromate sequestration: Promoted electron transfer and Fe (II) production
Xu et al. Preparation of highly stable and easily regenerated sulfuretted nZVI via one-pot fast pyrolysis method for the removal of diclofenac
Yin et al. Efficient removal of Cr (VI) by tannic acid-modified FeS nanoparticles: Performance and mechanisms
Kou et al. Efficient adsorptive and reductive removal of U (VI) and Se (IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism
Liu et al. Enhanced dechlorination of 2, 6-dichlorophenol by carbon nanotubes supported Fe/Ni nanoparticles: Characterization, influencing factors, and kinetics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant