CN110117188A - 一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法 - Google Patents

一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法 Download PDF

Info

Publication number
CN110117188A
CN110117188A CN201910204541.9A CN201910204541A CN110117188A CN 110117188 A CN110117188 A CN 110117188A CN 201910204541 A CN201910204541 A CN 201910204541A CN 110117188 A CN110117188 A CN 110117188A
Authority
CN
China
Prior art keywords
batio
dielectric material
high voltage
base composite
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910204541.9A
Other languages
English (en)
Other versions
CN110117188B (zh
Inventor
曹明贺
范玉婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910204541.9A priority Critical patent/CN110117188B/zh
Publication of CN110117188A publication Critical patent/CN110117188A/zh
Application granted granted Critical
Publication of CN110117188B publication Critical patent/CN110117188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高耐压BaTiO3基复合陶瓷介质材料及其制备方法。提供一种高耐压BaTiO3基复合陶瓷介质材料,包括陶瓷材料BaTiO3、MgO包覆层和SiO2包覆层,其中MgO包覆层在SiO2包覆层和陶瓷材料BaTiO3之间。MgO采用溶胶‑共沉淀法包覆在BaTiO3粉体表面,对包覆后的粉体再通过传统固相法添加SiO2,得到SiO2和MgO双层包覆的高耐压BaTiO3基复合陶瓷介质材料。本方法制备的BaTiO3基介质材料耐压高,直流耐电压可达41kV/mm以上。此外,本发明制备工艺可控且简单,重复性优良,对于原料粒度及粒径无特殊要求,成本低。

Description

一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法
技术领域
本发明属于介电陶瓷技术领域,具体涉及一种高耐压钛酸钡(BaTiO3)基复合陶瓷介质材料及其制备方法。
背景技术
由于电子行业的不断发展,电子设备的大量运用,高压陶瓷电容器一直是广泛应用的电子设备之一,小到显示器中的倍压整流电路,大到激光、雷达以及电子显微镜的高压电源中,都能随处见到高压陶瓷电容器的身影。高的介电常数可以实现电子元器件的小型化和轻型化;高的击穿强度可以提高陶瓷电容器的使用范围和使用寿命;低的介电损耗可以降低能耗。用于高压陶瓷电容器的电介质材料主要为钙钛矿结构的铁酸盐系列,以钛酸钡和钛酸锶铁电陶瓷为代表。其中BaTiO3是钙钛矿型结构,在室温下是典型的铁电材料,由四方铁电体向立方顺电体转变的居里温度是120℃。BaTiO3基陶瓷材料由于具有优良的介电性能和铁电特性,被广泛应用于电子陶瓷工业中,成为储能陶瓷电容器的首选材料,非常有利于制造小型、大容量储能材料。一般BaTiO3陶瓷击穿场强往往只有5kV/mm左右,而储能密度的关键影响因素是击穿场强和极化,由于BaTiO3本身就具有大的极化,因而低的击穿场强成为显著影响其介电性能的因素,也限制了其进一步发展,可见提高击穿场强势在必行。
为了提高BaTiO3的击穿场强,对其进行改性研究的报道有很多,但目前报道中对击穿场强的提升依然有限,因此亟需探究更优方法使对BaTiO3材料进行改性,进一步提升击穿场强。
发明内容
本发明的目的在于提供一种高耐压BaTiO3基复合陶瓷介质材料及其制备,该材料具有高的击穿强度,较低的电介质损耗,且该制备方法简单可控,重复性好,成本低。
为实现上述目的,本发明提供的技术方案如下:
提供一种高耐压BaTiO3基复合陶瓷介质材料,其具有BaTiO3主晶相和Ba2Si2Ti2O8第二相结构,BaTiO3基材料外依次包覆有MgO和SiO2
按上述方案,高耐压BaTiO3基复合陶瓷介质材料由MgO包覆的BaTiO3陶瓷粉体与SiO2粉体烧结得到,其中部分SiO2与BaTiO3反应生成Ba2Si2Ti2O8晶相,所述SiO2按质量比计为SiO2和MgO包覆的BaTiO3总质量的的10-15%。
按上述方案,MgO按质量比计为所述BaTiO3陶瓷粉体的1-3%。
上述高耐压BaTiO3基复合陶瓷介质材料的制备方法,包括以下步骤:
1)将BaTiO3陶瓷粉体置于乙醇和冰醋酸混合溶液中,水浴搅拌,再超声分散得到悬浊液;
2)将六水合氯化镁置于乙醇和去离子水混合溶液中,搅拌溶解后加入到步骤1)所得悬浊液中,搅拌下滴加氨水控制pH=10-11,得粘稠浆液;
3)水浴搅拌步骤2)所得粘稠浆液,然后烘干并进行预烧;
4)将步骤3)所得MgO包覆的BaTiO3陶瓷粉体与SiO2粉体混合后球磨,烘干后加入粘结剂造粒过筛,成型,排胶处理后,在空气气氛下烧结即可得到高耐压BaTiO3基介质材料。
按上述方案,六水合氯化镁按质量比计为BaTiO3的5-15%。
按上述方案,SiO2按质量比计为SiO2和MgO包覆的BaTiO3总质量的10-15%。
按上述方案,冰醋酸按质量比计为BaTiO3质量的17-22%。
按上述方案,步骤1)中水浴搅拌条件为:温度为40-80℃,时间为40-55分钟;超声分散条件为:温度为25-30℃,时间为40-55分钟。
按上述方案,步骤2)中氨水的滴加速度为1-10秒/滴。
按上述方案,步骤3)中水浴搅拌条件为:温度为40-60℃,时间为20-26h;烘干条件为:100℃下烘干12h;预烧条件为:600-800℃下预烧120min。
按上述方案,步骤4)中,球磨为湿式球磨,球磨过程中加入三种型号的锆球和酒精,球磨时间为22-28小时。
按上述方案,步骤4)中,三种型号的锆球直径比为9:6:4,质量比为3:4:3;酒精加入量为球磨罐的2/3。
按上述方案,步骤4)中粘结剂为PVA,粘结剂加入量为预烧粉体质量的4-6%。
按上述方案,步骤4)中排胶工艺条件为:以1℃/min的速率升温至600℃,保温2h,然后随炉冷却至室温。
按上述方案,步骤4)所述烧结工艺条件为:在空气气氛下、以5℃/min从室温升温至1000℃,随后2℃/min升温至1150-1220℃并保温2h,随后先以1℃/min降温至970℃并保温5h,再以2℃/min降温至600℃,进而5℃/min降温至300℃,最后随炉冷却至室温。
通过加入冰醋酸可改善BaTiO3粒子表面的电荷分布,从而活化BaTiO3陶瓷粉体,而六水合氯化镁遇水可分解为金属氧化物MgO和HCl,利用金属氧化物MgO易团聚的特性,使MgO吸附在BaTiO3陶瓷粉体表面,得到包覆均匀的“核壳”结构物质。由于MgO的绝缘性大于BaTiO3,损耗因子小,因此包覆后会提升击穿场强,降低电介质损耗。
同时,MgO的存在避免了SiO2与BaTiO3的直接接触,减少了它们之间的副反应,从而更有利于SiO2在提升BaTiO3击穿场强方面做出贡献,同时也增加了SiO2的添加量,更大程度的提升BaTiO3的介电性能。
此外,由于气孔及体系缺陷是导致陶瓷材料在远低于理论电场强度的外加电场下发生断裂的主要原因,包覆MgO后,可以避免BaTiO3晶粒之间的传质反应,使BaTiO3晶粒生长更均匀,减少陶瓷内部的孔隙率,提高致密度,从而达到提升击穿场强的目的。
本发明的有益效果在于:
1.本发明与现有制备高耐压储能介质材料的方法相比,不需要对包覆物质进行特殊的热处理的优点,制备工艺可控且简单,重复性优良,对于原料粒度及粒径无特殊要求,因此能极大地降低生产成本。
2.本发明通过MgO和SiO2双包覆层改性BaTiO3,其中MgO的存在不仅可以直接提升击穿场强,还可以减小SiO2与BaTiO3之间的副反应,提高SiO2的包覆量,同时还提升了陶瓷在烧结过程中的致密度,从而很大程度的改善了BaTiO3陶瓷基体的击穿场强,本发明的击穿强度可高达41.2kV/mm。
附图说明
图1为MgO包覆BaTiO3陶瓷粉体,在不同MgO含量下的TEM图,其中(a)为纯BaTiO3粉体的TEM图,(b)(c)(d)分别为实施例1-3中的MgO包覆的BaTiO3陶瓷粉体的TEM图;
图2为实施例1和3中制备得到的高耐压BaTiO3基复合材料的XRD图谱;
图3为实施例1-3中制备得到的高耐压BaTiO3基复合材料的耐击穿场强性能曲线;
图4为实施例1-3中制备得到的高耐压BaTiO3基复合材料在室温下的介电常数和损耗曲线;
图5为实施例1-3中制备得到的高耐压BaTiO3基复合材料的SEM图,其中(a)为纯BaTiO3粉体的SEM图,(b)(c)(d)分别为实施例1-3中的MgO包覆的BaTiO3陶瓷粉体的SEM图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
制备高耐压BaTiO3基复合陶瓷介质材料:1wt%MgO@BaTiO3-10wt%SiO2
1)将14.85g<100nm的BaTiO3陶瓷粉体置于A溶液(50mL乙醇和3mL冰醋酸的混合液)中,40℃水浴搅拌40min,25℃超声分散40min得到B悬浊液;
2)将0.76g,纯度大于99%的六水合氯化镁置于10mL乙醇和5mL去离子水混合溶液中,搅拌溶解后加入到B悬浊液中,标记为C悬浊液;
3)搅拌C悬浊液过程中滴加氨水,通过氨水的加入使氯化镁水解,控制pH在11左右得到粘稠的D浆液;
4)40℃水浴搅拌D浆液24h后,在100℃下烘干12h得到E粉体;
5)将E粉体在600℃下预烧120min得到F粉体,即MgO包覆的BaTiO3陶瓷粉体;
6)按照1:9的质量比配备SiO2、F粉体,总重为10g,将混合料倒入球磨罐中,添锆球(三种型号的锆球直径比为9:6:4,三种锆球质量比为3:4:3)并加无水乙醇(加入量为球磨罐的2/3)。球磨24小时左右,用筛网分离出锆球,并将混合物料浆放置干燥箱中烘干,干燥箱温度设置为100℃,干燥24小时后取出得到G粉体。
7)将G粉体加入0.8g粘结剂PVA造粒、过筛、陈化、压制成型,再对其进行排胶处理得到H生胚,其中排胶工艺条件为:以1℃/min的速率升温至600℃,保温2h,然后随炉冷却至室温。
8)对H生胚进行烧结得到高耐压BaTiO3基复合材料,其中烧结条件为:空气气氛下、以5℃/min从室温升温至1000℃,随后2℃/min升温至1200℃并保温2h,随后先以1℃/min降温至970℃并保温5h,再以2℃/min降温至600℃,进而5℃/min降温至300℃,最后随炉冷却至室温。
本实施例所制备的MgO包覆的BaTiO3陶瓷粉体的TEM如图1(b)所示,MgO均匀包覆在<100nm的BaTiO3粉体上,图1(a)为纯的BaTiO3粉体上没有该包覆层。制备的高耐压BaTiO3基复合陶瓷介质材料1wt%MgO@BaTiO3-10wt%SiO2的XRD图谱如图2中所示,主晶相为BaTiO3,含有第二相Ba2TiSi2O8,由于MgO和未反应的SiO2量较小,XRD测试精准度有限,因此在XRD图谱中并未观测到与其有关的相出现;SEM图如图5(b)所示,与图5(a)中纯的BaTiO3粉体相比,可以发现,引入1wt%MgO和10wt%SiO2可以抑制晶粒生长,细化晶粒,减少孔洞;介电性能如图4所示,介电常数178,介质损耗1.4%;耐压如图3所示,该体系具有41.28kV/mm的耐压性能。
实施例2:
制备高耐压BaTiO3基复合陶瓷介质材料:2wt%MgO@BaTiO3-10wt%SiO2
1)将14.7g<100nm的BaTiO3陶瓷粉体置于A溶液(50mL乙醇和3mL冰醋酸的混合液)中,40℃水浴搅拌40min,25℃超声分散40min得到B悬浊液;
2)将1.52g,纯度大于99%的六水合氯化镁置于10mL乙醇和5mL去离子水混合溶液中,搅拌溶解后加入到B悬浊液中,标记为C悬浊液;
3)搅拌C悬浊液过程中滴加氨水,通过氨水的加入使氯化镁水解,控制pH在11左右得到粘稠的D浆液;
4)40℃水浴搅拌D浆液24h后,在100℃下烘干12h得到E粉体;
5)将E粉体在600℃下预烧120min得到F粉体,即MgO包覆的BaTiO3陶瓷粉体;
6)按照1:9的质量比配备SiO2、F粉体,总重为10g,将混合料倒入球磨罐中,添锆球(三种型号的锆球直径比为9:6:4,三种锆球质量比为3:4:3)并加无水乙醇(加入量为球磨罐的2/3)。球磨24小时左右,用筛网分离出锆球,并将混合物料浆放置干燥箱中烘干,干燥箱温度设置为100℃,干燥24小时后取出得到G粉体。
7)将G粉体加入0.9g粘结剂PVA造粒、过筛、陈化、压制成型,再对其进行排胶处理得到H生胚,其中排胶工艺条件为:以1℃/min的速率升温至600℃,保温2h,然后随炉冷却至室温。
8)对H生胚进行烧结得到高耐压BaTiO3基复合材料,其中烧结条件为:空气气氛下、以5℃/min从室温升温至1000℃,随后2℃/min升温至1150℃并保温2h,随后先以1℃/min降温至970℃并保温5h,再以2℃/min降温至600℃,进而5℃/min降温至300℃,最后随炉冷却至室温。
本实施例所制备的MgO包覆的BaTiO3陶瓷粉体的TEM如图1(c)所示,MgO均匀包覆在BaTiO3粉体上。制备的高耐压BaTiO3基复合陶瓷介质材料2wt%MgO@BaTiO3-10wt%SiO2的SEM图如图5(c)所示,与纯BaTiO3SEM图相比可以发现,引入2wt%MgO和10wt%SiO2可以抑制晶粒生长,细化晶粒,减少孔洞;介电性能如图4所示,介电常数80,介质损耗0.7%;耐压如图3所示,该体系具有39.61kV/mm的耐压性能。
实施例3:
制备高耐压BaTiO3基复合陶瓷介质材料:3wt%MgO@BaTiO3-10wt%SiO2
1)将14.55g<100nm的BaTiO3陶瓷粉体置于A溶液(50mL乙醇和3mL冰醋酸的混合液)中,40℃水浴搅拌40min,25℃超声分散40min得到B悬浊液;
2)将2.28g,纯度大于99%的六水合氯化镁置于乙醇和去离子水混合溶液中,搅拌溶解后加入到B悬浊液中,标记为C悬浊液;
3)搅拌C悬浊液过程中滴加氨水,通过氨水的加入使氯化镁水解,控制pH在11左右得到粘稠的D浆液;
4)40℃水浴搅拌D浆液24h后,在100℃下烘干12h得到E粉体;
5)将E粉体在600℃下预烧120min得到F粉体,即MgO包覆的BaTiO3陶瓷粉体;
6)按照1:9的质量比配备SiO2、F粉体,总重为10g,将混合料倒入球磨罐中,添锆球(三种型号的锆球直径比为9:6:4,三种锆球质量比为3:4:3)并加无水乙醇(加入量为球磨罐的2/3)。球磨24小时左右,用筛网分离出锆球,并将混合物料浆放置干燥箱中烘干,干燥箱温度设置为100℃,干燥24小时后取出得到G粉体。
7)将G粉体加入1g粘结剂PVA造粒、过筛、陈化、压制成型,再对其进行排胶处理得到H生胚,其中排胶工艺条件为:以1℃/min的速率升温至600℃,保温2h,然后随炉冷却至室温。
8)对H生胚进行烧结得到高耐压BaTiO3基复合材料,其中烧结条件为:空气气氛下、以5℃/min从室温升温至1000℃,随后2℃/min升温至1200℃并保温2h,随后先以1℃/min降温至970℃并保温5h,再以2℃/min降温至600℃,进而5℃/min降温至300℃,最后随炉冷却至室温。
本实施例所制备的MgO包覆的BaTiO3陶瓷粉体的TEM如图1(d)所示,MgO均匀包覆在BaTiO3粉体上。制备的高耐压BaTiO3基复合陶瓷介质材料3wt%MgO@BaTiO3-10wt%SiO2的XRD图谱如图2中所示,SEM图如图5(d)所示,与纯BaTiO3SEM图相比可以发现,引入3wt%MgO和10wt%SiO2可以抑制晶粒生长,细化晶粒,减少孔洞;介电性能如图4所示,介电常数67,介质损耗0.8%;耐压如图3所示,该体系具有27.75kV/mm的耐压性能。

Claims (10)

1.一种高耐压BaTiO3基复合陶瓷介质材料,其特征在于,其具有BaTiO3主晶相和Ba2Si2Ti2O8第二相结构,BaTiO3基材料外依次包覆有MgO和SiO2
2.根据权利要求1所述的高耐压BaTiO3基复合陶瓷介质材料,其特征在于,所述的高耐压BaTiO3基复合陶瓷介质材料由MgO包覆的BaTiO3陶瓷粉体与SiO2粉体烧结得到,其中部分SiO2与BaTiO3反应生成Ba2Si2Ti2O8晶相,所述SiO2按质量比计为SiO2和MgO包覆的BaTiO3总质量的的10-15%。
3.根据权利要求2所述的高耐压BaTiO3基复合陶瓷介质材料,其特征在于,所述MgO按质量比计为所述BaTiO3陶瓷粉体的1-3%。
4.一种权利要求1所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,包括以下步骤:
1)将BaTiO3陶瓷粉体置于乙醇和冰醋酸混合溶液中,水浴搅拌,再超声分散得到悬浊液;
2)将六水合氯化镁置于乙醇和去离子水混合溶液中,搅拌溶解后加入到步骤1)所得悬浊液中,搅拌下滴加氨水控制pH=10-11,得粘稠浆液;
3)水浴搅拌步骤2)所得粘稠浆液,然后烘干并进行预烧,即得MgO包覆的BaTiO3陶瓷粉体;
4)将步骤3)所得MgO包覆的BaTiO3陶瓷粉体与SiO2粉体混合后球磨,烘干后加入粘结剂造粒过筛,成型,排胶处理后,在空气气氛下烧结即可得到高耐压BaTiO3基介质材料。
5.根据权利要求4所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,所述步骤2)中,六水合氯化镁按质量比计为BaTiO3的5-15%;所述步骤4)中SiO2按质量比计为SiO2和MgO包覆的BaTiO3总质量的10-15%。
6.根据权利要求4所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,所述步骤1)中,冰醋酸按质量比计为BaTiO3质量的17-22%。
7.根据权利要求4所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,所述步骤1)中,水浴搅拌条件为:温度为40-80℃,时间为40-55分钟;超声分散条件为:温度为25-30℃,时间为40-55分钟。
8.根据权利要求4所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,所述步骤2)中,氨水的滴加速度为1-10秒/滴。
9.根据权利要求4所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,所述步骤3)中,水浴搅拌条件为:温度为40-60℃,时间为20-26h;烘干条件为:100℃下烘干12h;预烧条件为:600-800℃下预烧120min。
10.根据权利要求4所述的高耐压BaTiO3基复合陶瓷介质材料的制备方法,其特征在于,所述步骤4)中,球磨为湿式球磨,球磨过程中加入直径比为9:6:4,质量比为3:4:3的三种型号的锆球和加入量为球磨罐的2/3的酒精,球磨时间为22-28小时;粘结剂为PVA,粘结剂加入量为预烧粉体质量的4-6%;排胶工艺条件为:以1℃/min的速率升温至600℃,保温2h,然后随炉冷却至室温;烧结工艺条件为:在空气气氛下、以5℃/min从室温升温至1000℃,随后2℃/min升温至1150-1220℃并保温2h,随后先以1℃/min降温至970℃并保温5h,再以2℃/min降温至600℃,进而5℃/min降温至300℃,最后随炉冷却至室温。
CN201910204541.9A 2019-03-18 2019-03-18 一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法 Active CN110117188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910204541.9A CN110117188B (zh) 2019-03-18 2019-03-18 一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910204541.9A CN110117188B (zh) 2019-03-18 2019-03-18 一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110117188A true CN110117188A (zh) 2019-08-13
CN110117188B CN110117188B (zh) 2022-03-25

Family

ID=67520467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910204541.9A Active CN110117188B (zh) 2019-03-18 2019-03-18 一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110117188B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919901A (zh) * 2021-02-06 2021-06-08 四川建筑职业技术学院 一种陶瓷玻璃介电复合材料及制备工艺
CN115557785A (zh) * 2022-10-09 2023-01-03 中国科学院上海硅酸盐研究所 一种低电场、高能量密度BaTiO3复合陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996298A (zh) * 1973-01-19 1974-09-12
US20030007315A1 (en) * 2001-06-12 2003-01-09 Taiyo Yuden Co., Ltd. Dielectric ceramic composition and ceramic capacitor
CN101183610A (zh) * 2007-11-27 2008-05-21 清华大学 化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料
CN104086172A (zh) * 2014-07-16 2014-10-08 武汉理工大学 一种超宽温高稳定无铅电容器陶瓷介质材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996298A (zh) * 1973-01-19 1974-09-12
US20030007315A1 (en) * 2001-06-12 2003-01-09 Taiyo Yuden Co., Ltd. Dielectric ceramic composition and ceramic capacitor
CN101183610A (zh) * 2007-11-27 2008-05-21 清华大学 化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料
CN104086172A (zh) * 2014-07-16 2014-10-08 武汉理工大学 一种超宽温高稳定无铅电容器陶瓷介质材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RONG MA ET AL.: ""A novel double-coating approach to prepare fine-grained BaTiO3@La2O3@SiO2 dielectric ceramics for energy storage application"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YAN WANGET AL.: ""Fabrication of submicron La2O3-coated BaTiO3 particles and fine-grained ceramics with temperature-stable dielectric properties"", 《SCRIPTA MATERIALIA》 *
涂伟: ""包覆氧化物对BaTiO3基陶瓷的性能影响"", 《万方数据》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919901A (zh) * 2021-02-06 2021-06-08 四川建筑职业技术学院 一种陶瓷玻璃介电复合材料及制备工艺
CN115557785A (zh) * 2022-10-09 2023-01-03 中国科学院上海硅酸盐研究所 一种低电场、高能量密度BaTiO3复合陶瓷及其制备方法
CN115557785B (zh) * 2022-10-09 2023-07-11 中国科学院上海硅酸盐研究所 一种低电场、高能量密度BaTiO3复合陶瓷及其制备方法

Also Published As

Publication number Publication date
CN110117188B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Huang et al. From core–shell Ba 0.4 Sr 0.6 TiO 3@ SiO 2 particles to dense ceramics with high energy storage performance by spark plasma sintering
US11735360B2 (en) Sandwich-structured dielectric materials for pulse energy storage as well as preparation method and application thereof
CN110117188A (zh) 一种高耐压钛酸钡基复合陶瓷介质材料及其制备方法
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN114163231B (zh) 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
JP2011006266A (ja) BaTi2O5系強誘電性セラミックス製造方法
JPH02293384A (ja) 電子伝導性多孔質セラミックス管の製造方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN109650878A (zh) 一种无铅宽频下巨介电低损耗高绝缘电阻陶瓷材料及其制备方法
EP2951134B1 (en) Thermistor material and method of preparing the same
CN105198410B (zh) 一种核壳结构高储能密度电介质陶瓷的制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN105198409A (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
CN111732431B (zh) 一种核壳结构高耐电强度氧化钛基介质粉体及其制备方法和应用
JPH02137759A (ja) 高誘電率、低損失係数及び平らな温度係数を有する誘電セラミック
CN105777115B (zh) 一种制备多元协同掺杂钛酸锶钡制备高性能陶瓷电容器材料的方法
JP2004315344A (ja) 単結晶セラミックス粒子の製造方法
KR100695760B1 (ko) 산화마그네슘 코팅된 티탄산바륨 입자 및 초음파를사용하는 그의 제조방법
CN109516800A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN109503153A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN115557785B (zh) 一种低电场、高能量密度BaTiO3复合陶瓷及其制备方法
CN107814551B (zh) 一种高储能和功率密度介质材料及其制备方法
CN108409324A (zh) 一种陶瓷电容器用介质材料
CN116606143B (zh) 一种压电陶瓷材料及其制备方法
CN108439975B (zh) 一种具有稳定缺陷结构的钛酸锶钙基储能陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant