CN109503153A - 一种高储能性能介质陶瓷、制备方法及其应用 - Google Patents

一种高储能性能介质陶瓷、制备方法及其应用 Download PDF

Info

Publication number
CN109503153A
CN109503153A CN201811532677.4A CN201811532677A CN109503153A CN 109503153 A CN109503153 A CN 109503153A CN 201811532677 A CN201811532677 A CN 201811532677A CN 109503153 A CN109503153 A CN 109503153A
Authority
CN
China
Prior art keywords
powder
ceramic material
high energy
tio
bazro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811532677.4A
Other languages
English (en)
Inventor
蒲永平
张磊
陈敏
李润
郭旭
师裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201811532677.4A priority Critical patent/CN109503153A/zh
Publication of CN109503153A publication Critical patent/CN109503153A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种新的高储能性能介质陶瓷材料,其化学计量式为(1‑x)(0.775Na0.5Bi0.5TiO3‑0.225BaSnO3)‑x BaZrO3。本发明还公布了该陶瓷材料的制备方法,将BaZrO3添加到0.775Na0.5Bi0.5TiO3‑0.225BaSnO3中,通过球磨、烘干、压块、过筛、冷等静压和烧结得到(1‑x)(0.775Na0.5Bi0.5TiO3‑0.225BaSnO3)‑x BaZrO3陶瓷样品((1‑x)(0.775NBT‑0.225BSN)‑x BZ陶瓷)。本发明提供的高储能性能介质陶瓷材料制备工艺简单,材料成本低,绿色环保,提供了一种新的无铅的储能材料基体。

Description

一种高储能性能介质陶瓷、制备方法及其应用
技术领域
本发明涉及高储能介质陶瓷电容器技术领域,具体涉及一种 (1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3高储能性能介质陶瓷材料、制备方法及其应用。
背景技术
陶瓷介电材料由于充放电速率快、功率密度高和耐高温性等特点,广泛应用于电力电子设备中。然而,低的储能密度导致介电材料占据了电力电子设备的25%的体积和重量,为了减小电子器件的体积和重量,迫切需要提高介电材料的储能密度。
弛豫铁电体由于在理想状态下具有零剩余极化(Pr)和高饱和极化(Ps),在能量储存应用中受到越来越多的关注。但是大多数弛豫铁电体都是含有铅的,在制备和使用过程中对环境造成很大的损害,因此需要开发无铅的弛豫铁电体系。
Na0.5Bi0.5TiO3(NBT)是由于其高的极化强度(P s=43 μC/cm2),被认为是一种具有反铁电性的弛豫铁电体,本发明通过添加BaZrO3,制备出了一种高储能性能的介质陶瓷。
发明内容
本发明的目的在于提供一种无铅的高储能性能介质陶瓷材料、制备方法及其应用,以克服上述现有技术存在的缺陷。利用本发明的方法得到的陶瓷具有高的储能密度,而且较高的储能效率,制备工艺简单,材料成本低,环境友好。
为达到上述目的,本发明采用如下技术方案:
一种无铅的反铁电体陶瓷材料,化学计量式为:(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3x=0,0.1,0.15,0.2, 0.25, 0.3,0.35。
以及,上述介质陶瓷材料的制备方法,包括以下步骤:
步骤一:按照摩尔比分别称量相应质量的Na2CO3、Bi2O3、TiO2、SnO2、ZrO2、BaCO3,合成Na0.5Bi0.5TiO3、BaZrO3粉体和BaSnO3粉体,然后按照化学计量式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3x=0~0.35,取NBT粉体和BSN粉体和BaZrO3粉体混合均匀形成全配料;
步骤二:将全配料与氧化锆球石、去离子水混合后进行球磨、烘干、过筛,形成过筛料;
步骤三:将过筛料在200~220MPa的压强下,通过冷等静压压制成试样,并将制好的试样进行微波烧结得到烧结试样。
进一步地,步骤一中BSN粉体的制备步骤包括:首先按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;然后取混合物A、锆球石及去离子水按照质量比为1:5:1混合后依次进行球磨、烘干和压块,最后于1100-1200℃保温2.5~3小时,得到纯相的BSN粉体。
进一步地,步骤一中NBT粉体的制备步骤包括:首先按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2混合形成混合物B;然后取混合物B、锆球石及去离子水按照质量比为1:5:1混合后依次进行球磨、烘干、于820~840℃煅烧3~4小时,得到的粉体C,将粉体C在上述条件下再次进行球磨、烘干、煅烧,得到纯相的NBT粉体。
进一步地,BaZrO3粉体制备步骤包括:首先按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物D;然后取混合物D、锆球石及去离子水按照质量比为1:5:1混合后依次进行球磨、烘干、于1200~1250℃煅烧3~4小时,得到粉体E;取粉体E在同样的条件下再次球磨、烘干、煅烧得到纯相的BZ粉体。
进一步地,步骤二中将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨。
进一步地,步骤二中的球磨时间为36h。
进一步地,步骤二中过筛时筛网目数为150目。
进一步地,步骤三中的压制成型,先在200MPa下保压3分钟,再在190MPa下保压5分钟,最后再40MPa/min 卸压。
进一步地,步骤三中烧结在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
以及,一种利用上述陶瓷材料制备高储能性能介质陶瓷材料的方法,具体步骤包括:打磨、清洗烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样进行烧结得到(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷基无铅高储能密度陶瓷材料。
进一步地,所述(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷基无铅高储能密度陶瓷材料的烧结条件为:在580~600℃的温度下烧结10~20min。
以及,由上述方法制备的(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷基无铅高储能密度陶瓷材料。
与现有技术相比,本发明具有以下有益的技术效果:
本发明方法制备的(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷材料,不但具有高储能密度和储能效率,而且制备工艺简单,材料成本低,绿色环保,成为替代铅基陶瓷材料用作高端工业应用材料在技术和经济上兼优的重要候选材料。
附图说明
图1是(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷材料的XRD图谱;
图2是(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷材料的SEM图和相对密度图;
图3是(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷材料的在不同电场下的电滞回线;
图4 是(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷材料的储能密度和储能效率图。
具体实施方式
下面对本发明的实施方式做进一步详细描述:
一种高储能性能介质陶瓷材料,其化学计量式为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0~0.35。
步骤一:制备纯相NBT、BZ与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物C。 Na2CO3、Bi2O3、BaCO3、ZrO2、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B和C分别与锆球石及去离子水,分别按照质量比为1:5:(0.8~1)、1: 5:(1~1.2)混合后,采用行星式球磨机球磨18~24h,再在85~100℃烘干20~24h、压块后,置于箱式炉中将A、B分别于1150~1200℃保温2.5~3小时、820~840℃保温3~4小时分别形成BSN、BZ粉体和NBT粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3x=0~0.35,取BSN、BZ粉体和NBT粉体,混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:(4.8~5.2):(0.8~1.2)混合后进行球磨18~24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200~220MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在580~600℃的温度下烧结10~20min得到(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷。
下面结合实施例对本发明做进一步详细描述,但是应该明白,以下具体实施方式仅是对于本发明的进一步的阐述,而不是对本发明的进一步的限制:
实施例1
本发明高储能性能介质陶瓷材料的制备方法,其配方为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0。
步骤一:制备纯相NBT与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B; Na2CO3、Bi2O3、BaCO3、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B分别与锆球石及去离子水,分别按照质量比为1:5:1、1: 5:1混合后,采用行星式球磨机球磨24 h,再在80℃烘干24 h、压块后,将A、B分别置于箱式炉中分别于1200℃保温3小时、820℃保温4小时,分别形成BSN粉体和NBT粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3x=0,取NBT粉体与BSN粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200 MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600 ℃的温度下烧结20 min得到0.775Na0.5Bi0.5TiO3-0.225BaSnO3体系陶瓷。
实施例2
本发明高储能性能介质陶瓷材料的制备方法,其配方为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.1。
步骤一:制备纯相NBT、BZ与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物C。Na2CO3、Bi2O3、BaCO3、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B、C分别与锆球石及去离子水,分别按照质量比为1:5:1、1:5:1混合后,采用行星式球磨机球磨24 h,再在80℃烘干24 h、压块后,将A、B、C分别置于箱式炉中分别于1200℃保温3小时、820℃保温4小时1220℃保温4小时分别形成BSN粉体和NBT粉体、BZ粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.1,取NBT粉体、BSN粉体和BZ粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200 MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600 ℃的温度下烧结20 min得到0.9(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-0.1 BaZrO3体系陶瓷。
实施例3
本发明高储能性能介质陶瓷材料的制备方法,其配方为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.15。
步骤一:制备纯相NBT、BZ与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物C。Na2CO3、Bi2O3、BaCO3、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B、C分别与锆球石及去离子水,分别按照质量比为1:5:1、1:5:1混合后,采用行星式球磨机球磨24 h,再在80℃烘干24 h、压块后,将A、B、C分别置于箱式炉中分别于1200℃保温3小时、820℃保温4小时1220℃保温4小时分别形成BSN粉体和NBT粉体、BZ粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.15,取NBT粉体、BSN粉体和BZ粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200 MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600 ℃的温度下烧结20 min得到0.85(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-0.15 BaZrO3体系陶瓷。
实施例4
本发明高储能性能介质陶瓷材料的制备方法,其配方为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.2。
步骤一:制备纯相NBT、BZ与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物C。Na2CO3、Bi2O3、BaCO3、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B、C分别与锆球石及去离子水,分别按照质量比为1:5:1、1:5:1混合后,采用行星式球磨机球磨24 h,再在80℃烘干24 h、压块后,将A、B、C分别置于箱式炉中分别于1200℃保温3小时、820℃保温4小时1220℃保温4小时分别形成BSN粉体和NBT粉体、BZ粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.2,取NBT粉体、BSN粉体和BZ粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200 MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600 ℃的温度下烧结20 min得到0.8(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-0.2 BaZrO3体系陶瓷。
实施例5
本发明高储能性能介质陶瓷材料的制备方法,其配方为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.25。
步骤一:制备纯相NBT、BZ与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物C。Na2CO3、Bi2O3、BaCO3、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B、C分别与锆球石及去离子水,分别按照质量比为1:5:1、1:5:1混合后,采用行星式球磨机球磨24 h,再在80℃烘干24 h、压块后,将A、B、C分别置于箱式炉中分别于1200℃保温3小时、820℃保温4小时1220℃保温4小时分别形成BSN粉体和NBT粉体、BZ粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.25,取NBT粉体、BSN粉体和BZ粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200 MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600 ℃的温度下烧结20 min得到0.75(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-0.25BaZrO3体系陶瓷。
实施例6
本发明高储能性能介质陶瓷材料的制备方法,其配方为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.3。
步骤一:制备纯相NBT、BZ与纯相BSN备用。按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;按照摩尔比1:1:4称取Bi2O3、Na2CO3和TiO2混合形成混合物B;按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物C。Na2CO3、Bi2O3、BaCO3、TiO2、SnO2的纯度为99.0%以上。
步骤二:取混合物A、B、C分别与锆球石及去离子水,分别按照质量比为1:5:1、1:5:1混合后,采用行星式球磨机球磨24 h,再在80℃烘干24 h、压块后,将A、B、C分别置于箱式炉中分别于1200℃保温3小时、820℃保温4小时1220℃保温4小时分别形成BSN粉体和NBT粉体、BZ粉体,备用;
步骤三:按照化学式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3,其中x=0.3,取NBT粉体、BSN粉体和BZ粉体混合均匀形成全配料,并将全配料与氧化锆球石、去离子水按照质量比1:5:1混合后进行球磨24h、烘干,得到烘干料;
步骤四:将烘干料研磨过120目筛,形成过筛料;
步骤五:将步骤四得到的过筛料在200 MPa的压强下,通过冷等静压压制成试样,并将制好的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
步骤六:打磨、清洗步骤五得到的烧结试样,在打磨和清洗后的烧结试样正反两面均匀涂覆银电极浆料,将涂覆银电极的试样置于以氧化锆为垫板的氧化铝匣钵内,然后将氧化铝匣钵置于箱式炉中,在600 ℃的温度下烧结20 min得到0.7(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-0.3 BaZrO3体系陶瓷。
实施例7
对实施例1~6制备的样品进行XRD测试,得到图1结果,图1为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3体系陶瓷的XRD图谱。从图1可以看出,所有样品呈现伪立方钙钛矿晶体结构,有少量的第二相Na0.5Bi4.5Ti4O15,说明在烧结过程BZ与基体发生少量的反应。
图2为(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3体系陶瓷的SEM图和EDS图。从图2可以看出,随着BaZrO3添加量的增加,晶粒尺寸不断减小,有利于提高击穿场强。从相对密度图可以看出制备的陶瓷具有很高的致密度。
对实施例1~5样品在不同电场下的测试P-E loops,得到图3结果。图3为该体系陶瓷的在临界击穿电场下的P-E loops,可以发现加入BZ后,电滞回线不断变瘦且斜率减小,此外可以看到击穿场强不断提高。
对实例1~5样品计算储能密度和储能效率,得到图4结果。图4是该体系陶瓷在不同组分的储能密度和储能效率,可以看到,制备的介质陶瓷在保持高的储能密度(2.08 J/cm3)同时具有高的储能效率(88.8 %),说明本发明提供了一种优良的储能介质陶瓷。

Claims (10)

1.一种高储能性能介质陶瓷材料,其特征在于,化学计量式为:(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3x≤0.35。
2.一种高储能性能介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤一:将Na0.5Bi0.5TiO3粉体、BaSnO3粉体和BaZrO3粉体按照化学计量式(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3x≤0.35,混合均匀形成全配料;
步骤二:将全配料进行球磨,烘干、过筛,形成过筛料;
步骤三:将过筛料压制成坯体,并将制好的坯体进行烧结得到烧结陶瓷。
3.根据权利要求2所述的一种高储能性能介质陶瓷材料的制备方法,其特征在于,步骤一中BaSnO3粉体由包括以下步骤的方法得到:首先按照摩尔比1:1称取BaCO3和SnO2混合形成混合物A;然后取混合物A、锆球石及去离子水按照质量比为1:5:1混合后依次进行球磨、烘干和压块,最后于1100~1200℃保温2.5~3小时,得到纯相的BSN粉体。
4.根据权利要求2所述的一种高储能性能介质陶瓷材料的制备方法,其特征在于,步骤一中Na0.5Bi0.5TiO3粉体由包括以下步骤的方法得到:首先按照摩尔比1:1:4称取Na2CO3、Bi2O3和TiO2混合形成混合物B;然后取混合物B、锆球石及去离子水按照质量比为1:5:1混合后依次进行球磨、烘干、于820~840℃煅烧3~4小时,得到粉体C;取粉体C在同样的条件下再次球磨、烘干、煅烧得到纯相的NBT粉体。
5.根据权利要求2所述的一种高储能性能介质陶瓷材料的制备方法,其特征在于,步骤一中BaZrO3粉体由包括以下步骤的方法得到:首先按照摩尔比1:1称取BaCO3和ZrO2混合形成混合物D;然后取混合物D、锆球石及去离子水按照质量比为1:5:1混合后依次进行球磨、烘干、于1200~1250℃煅烧3~4小时,得到粉体E;取粉体E在同样的条件下再次球磨、烘干、煅烧得到纯相的BZ粉体。
6.根据权利要求2所述的一种高储能性能介质陶瓷材料的制备方法,其特征在于,步骤三中的压制成型,在200~220MPa的压强下,通过冷等静压压制成坯体。
7.根据权利要求2所述的一种高储能性能介质陶瓷材料的制备方法,其特征在于,步骤三中的烧结,在箱式炉中,过程具体为:首先以100min升温至500℃,保温3 min,接着以100min升温至1000℃时保温30min;140min升温至1140℃时保温120min,然后70min降温至1000℃,接着以100min降温至500℃最后随炉冷却至室温。
8.权利要求1所述一种高储能性能介质陶瓷材料作为无铅高储能密度陶瓷材料的应用,其特征在于:打磨、清洗烧结陶瓷,在烧结陶瓷表面涂覆银电极浆料,将涂覆银电极的陶瓷材料进行烧结,得到(1-x)(0.775Na0.5Bi0.5TiO3-0.225BaSnO3)-x BaZrO3陶瓷基无铅高储能密度陶瓷材料。
9.根据权利要求8所述的一种高储能性能介质陶瓷材料作为无铅高储能密度陶瓷材料的应用,其特征在于,涂覆银电极的陶瓷材料的烧结条件为:在580~600℃的温度下烧结10~20min。
10.权利要求8或9所述方法制备的一种高储能性能介质陶瓷材料作为无铅高储能密度陶瓷材料的应用。
CN201811532677.4A 2018-12-14 2018-12-14 一种高储能性能介质陶瓷、制备方法及其应用 Pending CN109503153A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811532677.4A CN109503153A (zh) 2018-12-14 2018-12-14 一种高储能性能介质陶瓷、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811532677.4A CN109503153A (zh) 2018-12-14 2018-12-14 一种高储能性能介质陶瓷、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN109503153A true CN109503153A (zh) 2019-03-22

Family

ID=65752572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811532677.4A Pending CN109503153A (zh) 2018-12-14 2018-12-14 一种高储能性能介质陶瓷、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109503153A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971381A (zh) * 2008-03-19 2011-02-09 国立大学法人山梨大学 压电材料
CN102531599A (zh) * 2011-12-22 2012-07-04 四川师范大学 铌酸钠钛酸铋锂系无铅压电陶瓷组合物
CN103102162A (zh) * 2013-01-30 2013-05-15 江苏天诚线缆集团有限公司 一种元素掺杂钇钆钡铜氧高温超导薄膜的制备方法
KR101268487B1 (ko) * 2011-06-03 2013-06-04 한국세라믹기술원 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN105016723A (zh) * 2015-07-01 2015-11-04 陕西科技大学 一种制备纯相Na1/2Bi1/2TiO3陶瓷粉体的方法
CN106915964A (zh) * 2017-02-21 2017-07-04 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN108863348A (zh) * 2018-07-26 2018-11-23 陕西科技大学 一种超宽温度稳定性的介电陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101971381A (zh) * 2008-03-19 2011-02-09 国立大学法人山梨大学 压电材料
KR101268487B1 (ko) * 2011-06-03 2013-06-04 한국세라믹기술원 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN102531599A (zh) * 2011-12-22 2012-07-04 四川师范大学 铌酸钠钛酸铋锂系无铅压电陶瓷组合物
CN103102162A (zh) * 2013-01-30 2013-05-15 江苏天诚线缆集团有限公司 一种元素掺杂钇钆钡铜氧高温超导薄膜的制备方法
CN105016723A (zh) * 2015-07-01 2015-11-04 陕西科技大学 一种制备纯相Na1/2Bi1/2TiO3陶瓷粉体的方法
CN106915964A (zh) * 2017-02-21 2017-07-04 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN108863348A (zh) * 2018-07-26 2018-11-23 陕西科技大学 一种超宽温度稳定性的介电陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI ZHANG: "Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
LEI ZHANG: "Influence of BaZrO3 additive on the energy-storage properties of", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
王举: "钛酸铋钠基陶瓷的掺杂与电卡及储能特性研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039672A (zh) * 2020-01-08 2020-04-21 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法
CN111039672B (zh) * 2020-01-08 2022-04-12 陕西科技大学 一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN107814569B (zh) 一种无铅反铁电体陶瓷及其制备方法
CN110511018A (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN109180181A (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN110981479B (zh) 一种高击穿的铁电陶瓷及其制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN111170735B (zh) 一种高电能存储效率的陶瓷材料及其制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN112266247A (zh) 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
CN107857585A (zh) (Na0.5Bi0.5)(1‑x)BaxTi(1‑x)SnxO3陶瓷及其制备方法
CN107445616B (zh) 一种钛酸锶基无铅耐高压储能陶瓷材料及其制备方法
CN109503153A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN109516800A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN111004030A (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN109678496A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN109809815B (zh) 一种具有高饱和极化以及低剩余极化的无铅铌酸钠基反铁电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190322