CN110511018A - 一种高储能密度陶瓷电容器电介质及其制备方法 - Google Patents

一种高储能密度陶瓷电容器电介质及其制备方法 Download PDF

Info

Publication number
CN110511018A
CN110511018A CN201910743464.4A CN201910743464A CN110511018A CN 110511018 A CN110511018 A CN 110511018A CN 201910743464 A CN201910743464 A CN 201910743464A CN 110511018 A CN110511018 A CN 110511018A
Authority
CN
China
Prior art keywords
bzs
preparation
ceramic capacitor
powder
energy density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910743464.4A
Other languages
English (en)
Other versions
CN110511018B (zh
Inventor
曾敏
姬帅帅
陆旭兵
高兴森
刘俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201910743464.4A priority Critical patent/CN110511018B/zh
Publication of CN110511018A publication Critical patent/CN110511018A/zh
Application granted granted Critical
Publication of CN110511018B publication Critical patent/CN110511018B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高储能密度陶瓷电容器电介质及其制备方法,所述高储能密度陶瓷电容器由铁电材料固相烧结制成,所述铁电材料为锌、锡共掺杂铁酸铋‑钛酸钡,其化学组成为xBiFeO3‑(1‑x)[0.85BaTiO3‑0.15Bi(Sn0.5Zn0.5)O3],所述制备方法包括以下步骤:S1配料;S2合成BF‑BT‑BZS粉体;S3成型压片;S4烧结。本发明制得的陶瓷电容器通过Zn、Sn离子的共掺杂减少Fe2+和氧空位的生成,极大的改善了其电绝缘性能,使其耐压性好、漏电流小、大大提升了电容器的能储密度和能储效率,其能储密度和能储效率分别为3.23J/cm3,84%,性能优于其他无铅铁酸铋基储能材料。本发明制备方法工艺简单、生产效率高、更易于控制陶瓷结构的生成。

Description

一种高储能密度陶瓷电容器电介质及其制备方法
技术领域
本发明涉及电容器领域,具体一种高储能密度陶瓷电容器电介质及其制备方法。
背景技术
铁电材料是一类极为重要且应用广泛的高科技新材料,这类材料在日常生产、生活、国防安全等方面都被广泛应用。在国际电子元件领域,铁电材料占有及其重要的地位。
目前,商用的储能材料多为PbTiO3(PT)基材料,纯的PT陶瓷尽管具有高的居里温度Tc=490℃,但其性能差,且烧结比较困难,容易出现裂纹,同时铅(Pb)易挥发、污染环境、危害人体健康,而铁酸铋(BiFeO3)基陶瓷与PT相比,环境友好,原料廉价,且BiFeO3的居里温度高达835℃,尼尔温度为370℃,是少有的在室温以上同时具有铁电性和铁磁性的单相多铁性材料。
但BiFeO3的制备对合成温度要求较高,烧制后样品中常伴有Bi25FeO40和Bi2Fe4O9杂相。此外,在焙烧和烧结过程中,铋(Bi)易挥发和部分Fe3+会转变为Fe2+导致大量氧空位的生成,造成BiFeO3的漏电流大,介电损耗大,难以极化以及不能检测到饱和的电滞回线。
为了提高BiFeO3的性能,目前主要通过优化制备工艺,元素掺杂,与其他稳定钙钛矿结构形成三元固溶体等方式。制备工艺如:优化烧结温度或者利用水淬法;元素掺杂如:镧离子(La3+)、钐离子(Sm3+)以及钆离子(Gd3+)等离子取代A位Bi离子,镓离子(Ga3+)、钪离子(Sc3+)和钴离子(Co3+)取代B位上的Fe离子;与其他ABO3型铁电体,如钛酸钙(CaTiO3)、钛酸锶(SrTiO3)、铌酸钠(NaNbO3)和钛酸钡(BaTiO3)等,形成固溶体以稳定其钙钛矿结构。其中,BaTiO3的引入使BiFeO3材料的钙钛矿结构更加稳定,一定程度上增加了BiFeO3基体的绝缘性能。
尽管BaTiO3的引入在一定程度上提高了BiFeO3基体的性能,但是仍然具有其局限性,BiFeO3-BaTiO3陶瓷材料目前报道最高储能密度仅为1.2J/cm3,效率低,耐压性差,能储效率低仍是其发展的瓶颈。
发明内容
基于此,本发明的目的在于克服现有技术中存在的缺点,提供一种高储能密度陶瓷电容器电介质及其制备方法。
本发明的具体技术方案为:一种高储能密度陶瓷电容器电介质,由铁电材料固相烧结制成,所述铁电材料为锌、锡共掺杂铁酸铋-钛酸钡,其化学通式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3],其中x为摩尔分数,所述x的取值范围为0.325≤x≤0.375。
相对于现有技术,本发明的高储能密度陶瓷电容器电介质是由铁电材料BiFeO3和BaTiO3通过掺杂Zn、Sn离子固相烧结制成。利用Zn和Sn掺杂改性纯铁酸铋,使之随着锌元素和锡元素含量的增加,慢慢由明显的铁电性向接近于顺电相转变,而顺电材料具有耐高压的性能,且顺电层起到隔离电荷的作用,从而能获得大的击穿强度。本发明的高储能密度陶瓷电容器电介质,有效地改善了纯BiFeO3耐压性差,漏电流大的缺点,大大提升了电容器电介质的能储密度和能储效率,其能储密度和能储效率分别为3.23J/cm3,84%,性能优于其他无铅BiFeO3-BaTiO3基储能材料。
进一步地,所述高储能密度陶瓷电容器电介质的化学通式为0.35BiFeO3-0.65[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]。
本发明的另一个目的在于提供上述高储能密度陶瓷电容器电介质的制备方法,该制备方法包括合成BF-BT-BZS粉料工序,压片成型工序和烧结陶瓷工序,其中,所述合成BF-BT-BZS粉体工序包括以下步骤:
步骤S1:配料,以分析纯Bi2O3、BaCO3、TiO2、ZnO、SnO2和Fe2O3为原料,按制备化学式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]体系所需化学计量比称取上述原料;
步骤S2:合成BF-BT-BZS粉料。
相对于现有技术,本发明的BF-BT-BZS粉料由铁电材料BiFeO3和BaTiO3通过掺Zn和Sn固相烧结制成,通过Zn、Sn离子共掺杂BiFeO3-BaTiO3陶瓷,使BiFeO3-BaTiO3陶瓷慢慢由明显的铁电性向接近于顺电相转变,提高了其抗击穿强度。且Zn、Sn离子的共掺杂,可减少Fe2+和氧空位的生成,极大的改善了BiFeO3-BaTiO3陶瓷的电绝缘性能。再次,相比于热压烧结和快速液相烧结,本发明通过固相烧结方法烧结的陶瓷,基本无杂相生成,结构更致密、组分更均一,弛豫铁电性能和耐压性质更优异,能储密度更大,且该制备方法工艺简单、生产效率高、更易于控制陶瓷结构的生成。
进一步地,所述步骤S2合成BF-BT-BZS粉料工序包括一次球磨、高温预烧、二次球磨和高温煅烧工序。通过多次球磨和每次烘干后的研磨,能得到组分更均匀、颗粒更细的目标粉体,有利于保证最终得到陶瓷结构更加致密、组分更均一。
进一步地,所述步骤S2中的一次球磨与二次球磨工序相同,具体操作为在混合原料中加入乙醇和氧化锆磨球,其中,所述混合原料的总质量:氧化锆磨球的总质量=1:1。氧化锆磨球的致密度高,质地细腻,经研磨加工后,表面光洁度高,摩擦系数小。
进一步地,所述步骤S2中氧化锆磨球的直径为3-6mm,其中,6mm的磨球数量:4~5mm的磨球数量:3mm的磨球数量=1:2:3。氧化锆磨球的致密度高,质地细腻,经研磨加工后,表面光洁度高,摩擦系数小,不同大小的球比单种尺寸的球研磨效果和效率好。
进一步地,所述步骤S2还包括研磨工序,所述研磨工序具体操作为将烘干不含乙醇的混合料放入研钵,用玛瑙杆研磨,所述研磨工序分别设置于一次球磨后、高温预烧后及二次球磨后。研磨可增加烧结烧结密度。
进一步地,所述步骤S2中的高温预烧与高温煅烧工序相同,具体操作为先将球磨并干燥的混合料放入氧化铝坩埚A内,将氧化铝坩埚A正放置于氧化铝烧结板上后,再将氧化铝坩埚B倒扣套设在氧化铝坩埚A外,在氧化铝坩埚B口径的边缘覆盖一圈氧化铝粉末进行密封,恒温煅烧后随炉冷却至室温。马弗炉用于实验室热处理以及其他高温实验时稳定性强、保温耐用性强、自动化程度高、安全性高。
进一步地,所述压片成型工序具体为将步骤S2合成的BF-BT-BZS粉料装入压片模具中,用压片机进行压片成型。
进一步地,所述烧结工序具体为将所述压片成型的片子置于氧化铝烧结板上,在压片成型的片子上面覆盖所述合成BF-BT-BZS粉体工序中制得的BF-BT-BZS粉末,然后将氧化铝坩埚倒扣罩住所述覆盖了BF-BT-BZS粉末的片子,并在氧化铝坩埚口径的边缘覆盖一圈氧化铝粉末进行密封,恒温煅烧后随炉冷却至室温。
附图说明
图1是本发明高储能密度陶瓷电容器电介质及其制备方法的流程图。
图2是本发明制备方法制备的BF-BT-BZS陶瓷性能测试准备工作流程图。
图3是本发明制备方法制备的BF-BT-BZS陶瓷和BT-BZS陶瓷样品的XRD衍射对比图。
图4是本发明制备方法制备的BF-BT-BZS陶瓷的SEM截面表征图。
图5是本发明制备方法制备的BF-BT-BZS陶瓷在不同电压下的电滞回线图。
图6是本发明制备方法制备的BF-BT-BZS陶瓷在不同电压下的能储性能图。
图7是本发明制备方法制备的BF-BT-BZS陶瓷在不同频率下的电滞回线图。
图8是本发明制备方法制备的BF-BT-BZS陶瓷在不同频率下的能储性能图。
图9是本发明不同烧结温度得到的BF-BT-BZS陶瓷的电滞回线图。
图10是本发明不同烧结温度得到的BF-BT-BZS陶瓷的能储性能图。
图11是本发明制备方法制备的BF-BT-BZS陶瓷不同频率下的的介电常数-介电损耗图。
具体实施方式
请参阅图1,其是本发明高储能密度陶瓷电容器电介质制备方法的流程图,该方法包括以下步骤:
步骤S1:配料,以纯的Bi2O3、BaCO3、TiO2、ZnO、SnO2和Fe2O3为原料,按制备制备化学式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料所需化学计量比称取上述原料。其中,x的取值范围是0.325≤x≤0.375。
表1BF-BT-BZS粉体的制备原料
请参阅表1,其为BF-BT-BZS粉体的制备原料表,使用精度为0.0001的电子电平按照表1的称量质量称取各原料,以制备化学式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料。
步骤S2:合成BF-BT-BZS粉料;
目前制备陶瓷粉料的方法主要有传统固相法,微波水热法,溶胶凝胶法,共沉淀法和熔盐法等,其中微波水热法,溶胶凝胶法制备的粉料样品纯度高,颗粒尺寸小,但是这一方法仅仅适用于实验室的基础研究,其产量很小,不适合大规模的工业化生产。共沉淀法和熔盐法制备的样品纯度高,分散性好,尺寸分布均匀,但是其工艺流程复杂,不利于工业化生产,而适用于工业化生产的当属于传统固相法,传统固相法的优点在于其产量大,能满足工业大批量生产的需求,成本低。
本实施例中合成BF-BT-BZS粉体的方法采用传统固相烧结法,具体包括以下工序:
S201:一次球磨,将步骤S1中称量好的制备原料放入尼龙球磨罐中,然后加入乙醇和直径不同的氧化锆磨球得到混合料,控制球磨机的转速为418转/分钟,设置一次球磨时间为12-24小时,球磨结束后将混合料在80℃干燥。
其中,氧化锆作为研磨介质,乙醇作为研磨溶剂,制备原料的总质量:氧化锆总质量总质量比为1:1;氧化锆磨球的直径范围为3-6mm,氧化锆磨球的个数比控制在6mm磨球:4-5mm磨球:3mm小磨球=1:2:3。
S202:高温预烧,将步骤S201一次球磨并干燥后的混合料倒入玛瑙研钵中,用玛瑙杆研磨15-45分钟,再将研磨后的混合料倒入氧化铝坩埚中,在马弗炉里空气气氛下800℃煅烧2-4小时,升温速率控制为6℃/min,煅烧结束后随炉自然降温到室温。
S203:二次球磨,将步骤S202高温预烧后的混合料放入尼龙球磨罐中,然后加入乙醇和直径不同的氧化锆磨球得到混合料,控制球磨机的转速为418转/分钟,设置一次球磨时间为12-24小时,球磨结束后将混合料在80℃干燥。
其中,氧化锆作为研磨介质,乙醇作为研磨溶剂,制备原料的总质量:氧化锆总质量总质量比为1:1;氧化锆磨球的直径范围为3-6mm,氧化锆磨球的个数比控制在6mm磨球:4-5mm磨球:3mm小磨球=1:2:3。
S204:高温煅烧,将步骤S203二次球磨并干燥后的混合料倒入倒入玛瑙研钵中,用玛瑙杆研磨15-45分钟,再将研磨后的混合料倒入氧化铝坩埚中,在马弗炉里空气气氛下800℃煅烧3小时后,随炉自然降温到室温,制得BF-BT-BZS粉料。
步骤S3:成型压片;
目前陶瓷的成型方法主要包括冷等静压成型、超高压成型、干压成型等。冷静压成型是在高压容器中以液体为压力传递介质,从而得到的密度高,均匀性好的陶瓷胚体。超高压成型是发展很快的成型方法,由于高压导致受力不均,得到的样品较小。干压成型操作简单、成本低,适用于形状简单尺寸小的坯体。本实施例采用干压成型。
具体地,本实施例的操作为将0.5g步骤2中制得的BF-BT-BZS粉料装于压片的模具中,用粉末压片机单轴加压成型,压力控制为9MPa,保压60秒,制得直径为11.5mm,,厚度为1.1mm的BF-BT-BZS陶瓷胚体。
步骤S4:烧结。
将步骤S3中制得的BF-BT-BZS陶瓷胚体放入马弗炉中,升温速率控制在8℃/分钟,缓慢升温至1000℃,保温3小时。保温完成后,使BF-BT-BZS陶瓷胚体随炉自然降温到室温,即制得厚度为1.1mm的BF-BT-BZS陶瓷。
相对于现有技术,本发明的BF-BT-BZS粉料由铁电材料BiFeO3和BaTiO3通过掺Zn和Sn固相烧结制成,通过Zn、Sn离子共掺杂BiFeO3-BaTiO3陶瓷,使BiFeO3-BaTiO3陶瓷慢慢由明显的铁电性向接近于顺电相转变,提高了其抗击穿强度。且Zn、Sn离子的共掺杂,可减少Fe2+和氧空位的生成,极大的改善了BiFeO3-BaTiO3陶瓷的电绝缘性能。再次,相比于热压烧结和快速液相烧结,本发明通过固相烧结方法烧结的陶瓷,基本无杂相生成,结构更致密、组分更均一,弛豫铁电性能和耐压性质更优异,能储密度更大,且该制备方法工艺简单、生产效率高、更易于控制陶瓷结构的生成。
本发明的另一个目的是提供上述制备方法制备的高储能密度陶瓷电容器电介质,由铁电材料固相烧结制成,所述铁电材料为锌、锡共掺杂铁酸铋-钛酸钡,其化学通式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3],其中x为摩尔分数,所述x的取值范围为0.325≤x≤0.375。
相对于现有技术,本发明的高储能密度陶瓷电容器电介质是由铁电材料BiFeO3和BaTiO3通过掺Zn和Sn固相烧结制成。利用Zn和Sn掺杂改性纯铁酸铋,使之随着锌元素和锡元素含量的增加,慢慢由明显的铁电性向接近于顺电相转变,而顺电材料具有耐高压的性能,且顺电层起到隔离电荷的作用,从而能获得大的击穿强度。本发明的高储能密度陶瓷电容器电介质,有效地改善了纯BiFeO3耐压性差,漏电流大的缺点,大大提升了电容器电介质的能储密度和能储效率,其能储密度和能储效率分别为3.23J/cm3,84%,性能优于其他无铅BiFeO3-BaTiO3基储能材料。
下面通过具体的实施例对本发明的高储能密度陶瓷电容器电介质及其制备方法作进一步解释说明。
实施例1
请参阅图1,其是本发明高储能密度陶瓷电容器电介质制备方法的流程图,该方法有以下步骤:
步骤S1:配料,以纯的Bi2O3、BaCO3、TiO2、ZnO、SnO2和Fe2O3为原料,按制备制备化学式为0.35BiFeO3-0.65[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料所需化学计量比称取上述原料。
表1实施例1中BF-BT-BZS粉体的制备原料
请参阅表1,其为实施例1中BF-BT-BZS粉体的制备原料表,使用精度为0.0001的电子电平按照表1的称量质量称取各原料,以制备化学式为0.35BiFeO3-0.65[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料。
步骤S2:合成BF-BT-BZS粉料;
S201:一次球磨,将步骤S1中称量好的制备原料放入尼龙球磨罐中,然后加入乙醇和直径不同的氧化锆磨球得到混合料,控制球磨机的转速为418转/分钟,设置一次球磨时间为12-24小时,球磨结束后将混合料在80℃干燥。
其中,氧化锆作为研磨介质,乙醇作为研究溶剂,制备原料的总质量:氧化锆总质量总质量比为1:1;氧化锆磨球的直径范围为3-6mm,氧化锆磨球的个数比控制在6mm磨球:4-5mm磨球:3mm小磨球=1:2:3。
S202:高温预烧,将步骤S201一次球磨并干燥后的混合料倒入玛瑙研钵中,用玛瑙杆研磨15-45分钟,再将研磨后的混合料倒入氧化铝坩埚中,在马弗炉里空气气氛下800℃煅烧2-4小时,升温速率控制为6℃/min,煅烧结束后随炉自然降温到室温。
S203:二次球磨,将步骤S202高温预烧后的混合料放入尼龙球磨罐中,然后加入乙醇和直径不同的氧化锆磨球得到混合料,控制球磨机的转速为418转/分钟,设置一次球磨时间为12-24小时,球磨结束后将混合料在80℃干燥。
其中,氧化锆作为研磨介质,乙醇作为研究溶剂,制备原料的总质量:氧化锆总质量总质量比为1:1;氧化锆磨球的直径范围为3-6mm,氧化锆磨球的个数比控制在6mm磨球:4-5mm磨球:3mm小磨球=1:2:3。
S204:高温煅烧,将步骤S203二次球磨并干燥后的混合料倒入倒入玛瑙研钵中,用玛瑙杆研磨15-45分钟,再将研磨后的混合料倒入氧化铝坩埚中,在马弗炉里空气气氛下800℃煅烧3小时后,随炉自然降温到室温,制得BF-BT-BZS粉料。
步骤S3:成型压片;
将0.5g步骤2中制得的BF-BT-BZS粉料装于压片的模具中,用粉末压片机单轴加压成型,压力控制为9MPa,保压60秒,制得直径为11.5mm,,厚度为1.1mm的BF-BT-BZS陶瓷胚体。
步骤S4:烧结。
将步骤S3中制得的BF-BT-BZS陶瓷胚体放入马弗炉中,升温速率控制在8℃/分钟,缓慢升温至1000℃,保温3小时。保温完成后,使BF-BT-BZS陶瓷胚体随炉自然降温到室温,即制得厚度为1.1mm的BF-BT-BZS陶瓷。
为了便于对上述制备方法制得的BF-BT-BZS陶瓷进行性能测试,还需要将该BF-BT-BZS陶瓷进行处理,请参阅图2,其为BF-BT-BZS陶瓷性能测试准备工作流程图。所述处理为在BF-BT-BZS陶瓷的制备工序后增加以下步骤:
步骤S5:打磨抛光,先将步骤S4中制得的BF-BT-BZS陶瓷用砂纸打磨至0.1-0.2mm的薄片,再用金相砂纸对薄片打磨抛光至0.17mm厚的BF-BT-BZS陶瓷薄片。
本实施例中的打磨抛光具体操作为先在100目的砂纸上进行抛磨,直至陶瓷胚体抛磨表面没有明显变化,更换至200目、400目、800目、1200目进行相同操作;在1200目砂纸上操作完成后,再使用金相砂纸进行打磨抛光。
步骤S6:镀电极。
陶瓷的电极制作目的是为了使样品导电,一般是在陶瓷片的两个面均匀的涂上一层金属层,其中,金(Au)、银(Ag)、铜(Cu)、镍(Ni)等都能做金属电极,本实施例中优选为Au电极。
可用离子溅射法、磁控溅射法、电子束蒸镀法、脉冲激光沉积法、离子束沉积法、化学气相沉积法等镀上下两层Au电极。本实施例采用离子溅射法镀电极,在真空容器内,高压1500V的作用下,残留的气体分子被电离,形成等离子体,阳离子在电场加速下轰击金属靶,使金属原子溅射到样品的表面,形成导电膜。离子溅射法的优点是得到的镀膜与基板间有极强的附着力,有较高的沉积速率,膜的密度高。
S601:镀底电极
将BF-BT-BZS陶瓷薄片放入小型离子溅射仪中,Au作为靶材在2×10-3Pa的真空下生长Au电极薄膜,控制溅射电流为6~8mA,在氩气(Ar)氛围下对靶材进行溅射,溅射时间为40秒,重复上述溅射操作4次,每次间隔20秒。溅射结束后取出样品,将其在加热台上90℃烘烤6分钟,即完成在BF-BT-BZS陶瓷薄片镀上Au电极。
S602:镀顶电极
将一块带孔的掩膜版放在BF-BT-BZS陶瓷薄片未镀电极的一面,再将BF-BT-BZS陶瓷薄片放入小型离子溅射仪中,Au作为靶材在2×10-3Pa的真空下生长点状Au电极,控制溅射电流为6~8mA,在氩气(Ar)氛围下对靶材进行溅射,溅射时间为40秒,重复上述溅射操作4次,每次间隔20秒。溅射结束后取出样品,将其在加热台上90℃烘烤6分钟本实施例中,掩膜版上孔的直径为1.5mm。
实施例2
请参阅图1,其是本发明高储能密度陶瓷电容器电介质制备方法的流程图,该方法有以下步骤:
步骤S1:配料,以纯的Bi2O3、BaCO3、TiO2、ZnO、SnO2和Fe2O3为原料,按制备制备化学式为0.325BiFeO3-0.675[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料所需化学计量比称取上述原料。
表2实施例2中BF-BT-BZS粉体的制备原料
请参阅表2,其为实施例2中BF-BT-BZS粉体的制备原料表,使用精度为0.0001的电子电平按照表2的称量质量称取各原料,以制备化学式为0.325BiFeO3-0.675[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料。
步骤S2~S7:该实施例中的步骤S2~S7与实施例1中的S2~S7完全一样,在此不做赘述。
实施例3
请参阅图1,其是本发明高储能密度陶瓷电容器电介质制备方法的流程图,该方法有以下步骤:
步骤S1:配料,以纯的Bi2O3、BaCO3、TiO2、ZnO、SnO2和Fe2O3为原料,按制备制备化学式为0.375BiFeO3-0.625[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料所需化学计量比称取上述原料。
表3实施例3中BF-BT-BZS粉体的制备原料
请参阅表3,其为实施例3中BF-BT-BZS粉体的制备原料表,使用精度为0.0001的电子电平按照表3的称量质量称取各原料,以制备化学式为0.325BiFeO3-0.675[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]的粉料。
步骤S2~S7:该实施例中的步骤S2~S7与实施例1中的S2~S7完全一样,在此不做赘述。
以下是对实施例一中的高储能密度陶瓷电容器电介质所做的相关性能测试
(一)XRD衍射测试
请参阅图3,其为本发明制备方法制备的BF-BT-BZS陶瓷和BT-BZS陶瓷样品的XRD衍射对比图。该测试结果通过射线衍射仪(X’Pert PRO,PANalytical X)测试得到,图中,上方的曲线为BT-BZS陶瓷的XRD衍射图,下方的曲线为BF-BT-BZS陶瓷的XRD衍射图,从图中可以看出,随着Zn、Sn离子的共掺杂,在2θ为31-33°处的衍射峰出现最大值,并且在2θ为40°的衍射峰逐渐变弱,这些现象表明BF-BT-BZS陶瓷能独立成相,无其它杂相产生,且由于Zn、Sn离子的掺杂,BF-BT-BZS陶瓷的结构从扭曲的菱形体钙钛矿结构转变为正交的钙钛矿结构。
(二)SEM表征图
请参阅图4,其为是本发明制备方法制备的BF-BT-BZS陶瓷的SEM截面表征图。该测试结果通过扫描电子显微镜(ZEISS Gemini500)对实施例一中步骤S4制得的BF-BT-BZS陶瓷测试得到。从图中可以看出,BF-BT-BZS陶瓷样品的表面围观组织呈现出一定的颗粒间孔隙度,同时具有明确的晶界,表明陶瓷样的结晶度良好。且从SEM图中还可以看出BF-BT-BZS陶瓷均比比较致密、没有孔隙、晶粒大小比较均匀并且没有孔洞、缺陷存在及杂质产生。
(三)电滞回线图
请同时参阅图5、图7和图9,图5为本发明制备方法制备的BF-BT-BZS陶瓷在不同电压下的电滞回线图,图7为本发明制备方法制备的BF-BT-BZS陶瓷在不同频率下的电滞回线图,图9是本发明不同烧结温度得到的BF-BT-BZS陶瓷的电滞回线图。该测试结果通过铁电测试仪(Radiant Technology Ferroelectric Tester)对实施例1中步骤S6后镀上电极的BF-BT-BZS陶瓷进行电学测试得到。从图中可以看出,BF-BT-BZS陶瓷的电滞回线的形状比较细长,具有优异的的频率稳定性,在1Hz时获得最优性能,且该陶瓷的耐电场强度高达175kV/cm,剩余极化值和矫顽场分别为45μC/cm2和8kV/cm。从图9中可以看出,BF-BT-BZS陶瓷在1000℃温度条件下具有最好性能。
(四)能储性能分析
请同时参阅图6、图8和图10,图6为本发明制备方法制备的BF-BT-BZS陶瓷在不同电压下的能储性能图,图8为本发明制备方法制备的BF-BT-BZS陶瓷在不同频率下的能储性能图,图10是本发明不同烧结温度得到的BF-BT-BZS陶瓷的能储性能图。该测试结果通过铁电测试仪(Radiant Technology Ferroelectric Tester)对实施例1中步骤S6后镀上电极的BF-BT-BZS陶瓷进行电学测试得到。从图中可以看出,本发明BF-BT-BZS陶瓷的储能值和效率分别为3.23J/cm3和84%,目前报道的2.21J/cm3的最高能储密度和91.6%的能储效率,储能密度比目前报道的高将近1J/cm3
(五)介电性能测试
请参阅图11,图11是本发明制备方法制备的BF-BT-BZS陶瓷不同频率下的介电常数-介电损耗图,该测试结果通过铁电测试仪(Radiant Technology FerroelectricTester)对实施例1制得的BF-BT-BZS陶瓷测试得到。图11中的频率范围为可以看出,BF-BT-BZS陶瓷介电常数随着测试频率的增加而减少,数值在120到290之间,说明BF-BT-BZS陶瓷样品性质优良,同时可以看到,其介电损耗很小,说明样品的绝缘性非常好。
通过上述性能表征分析可得,本发明实施例1制备的BF-BT-BZS陶瓷基本无杂相生成,结构更致密、组分更均一,弛豫铁电性能和耐压性质更优异,能储密度更大,Zn、Sn离子的共掺杂极大的改善了BiFeO3-BaTiO3陶瓷的电绝缘性能,使其耐压性好、漏电流小、且大大提升了电容器电介质的能储密度和能储效率,其能储密度和能储效率分别为3.23J/cm3,84%,性能优于其他无铅BiFeO3-BaTiO3基储能材料。
相对于现有技术,本发明通过固相烧结法制备Zn、Sn离子共掺杂BiFeO3-BaTiO3陶瓷,相比于热压烧结和快速液相烧结,本发明通过固相烧结方法烧结的陶瓷,基本无杂相生成,结构更致密、组分更均一,弛豫铁电性能和耐压性质更优异,能储密度更大,且该制备方法工艺简单、生产效率高、更易于控制陶瓷结构的生成。本发明的高储能密度陶瓷电容器电介质利用Zn和Sn掺杂改性纯铁酸铋,使之随着锌元素和锡元素含量的增加,慢慢由明显的铁电性向接近于顺电相转变,而顺电材料具有耐高压的性能,且顺电层起到隔离电荷的作用,从而能获得大的击穿强度。本发明的高储能密度陶瓷电容器电介质,有效地改善了纯BiFeO3耐压性差,漏电流大的缺点,大大提升了电容器电介质的能储密度和能储效率,其能储密度和能储效率分别为3.23J/cm3,84%,性能优于其他无铅BiFeO3-BaTiO3基储能材料。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种高储能密度陶瓷电容器电介质,其特征在于:由铁电材料固相烧结制成,所述铁电材料为锌、锡共掺杂铁酸铋-钛酸钡,其化学通式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3],其中x为摩尔分数,所述x的取值范围为0.325≤x≤0.375。
2.根据权利要求1所述的高储能密度陶瓷电容器电介质,其特征在于:所述锌、锡共掺杂铁酸铋-钛酸钡铁电材料的化学通式为0.35BiFeO3-0.65[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]。
3.根据权利要求1或2所述的任意一种高储能密度陶瓷电容器电介质的制备方法,包括合成BF-BT-BZS粉体工序,压片成型工序、烧结工序和打磨抛光工序,其特征在于,所述合成BF-BT-BZS粉体工序包括以下步骤:
步骤S1:配料,以分析纯Bi2O3、BaCO3、TiO2、ZnO、SnO2和Fe2O3为原料,按制备化学式为xBiFeO3-(1-x)[0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3]体系所需化学计量比称取上述原料;
步骤S2:BF-BT-BZS粉体的制备。
4.根据权利要求3所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述步骤S2中所述BF-BT-BZS粉体的制备工序包括一次球磨、高温预烧、二次球磨和高温煅烧工序。
5.根据权利要求4所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述步骤S2中的一次球磨与二次球磨工序相同,具体操作为在混合原料中加入乙醇和氧化锆磨球,其中,所述混合原料的总质量:氧化锆磨球的总质量=1:1。
6.根据权利要求5所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述步骤S2中氧化锆磨球的直径为3-6mm,其中,6mm的磨球数量:4~5mm的磨球数量:3mm的磨球数量=1:2:3。
7.根据权利要求6所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述步骤S2还包括研磨工序,所述研磨工序具体操作为将烘干不含乙醇的混合料放入研钵,用玛瑙杆研磨,所述研磨工序分别设置于一次球磨后、高温预烧后及二次球磨后。
8.根据权利要求7所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述步骤S2中的高温预烧与高温煅烧工序相同,具体操作为先将球磨并干燥的混合料放入氧化铝坩埚A内,将氧化铝坩埚A正放置于氧化铝烧结板上后,再将氧化铝坩埚B倒扣套设在氧化铝坩埚A外,在氧化铝坩埚B口径的边缘覆盖一圈氧化铝粉末进行密封,恒温煅烧后随炉冷却至室温。
9.根据权利要求3所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述压片成型工序具体为将步骤S2合成的BF-BT-BZS粉料装入压片模具中,用压片机进行压片成型。
10.根据权利要求3所述的高储能密度陶瓷电容器电介质的制备方法,其特征在于:所述烧结工序具体为将所述压片成型的片子置于氧化铝烧结板上,在压片成型的片子上面覆盖所述合成BF-BT-BZS粉体工序中制得的BF-BT-BZS粉末,然后将氧化铝坩埚倒扣罩住所述覆盖了BF-BT-BZS粉末的片子,并在氧化铝坩埚口径的边缘覆盖一圈氧化铝粉末进行密封,恒温煅烧后随炉冷却至室温。
CN201910743464.4A 2019-08-13 2019-08-13 一种高储能密度陶瓷电容器电介质及其制备方法 Expired - Fee Related CN110511018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910743464.4A CN110511018B (zh) 2019-08-13 2019-08-13 一种高储能密度陶瓷电容器电介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910743464.4A CN110511018B (zh) 2019-08-13 2019-08-13 一种高储能密度陶瓷电容器电介质及其制备方法

Publications (2)

Publication Number Publication Date
CN110511018A true CN110511018A (zh) 2019-11-29
CN110511018B CN110511018B (zh) 2022-02-01

Family

ID=68625572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910743464.4A Expired - Fee Related CN110511018B (zh) 2019-08-13 2019-08-13 一种高储能密度陶瓷电容器电介质及其制备方法

Country Status (1)

Country Link
CN (1) CN110511018B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333413A (zh) * 2020-03-06 2020-06-26 中国科学院上海硅酸盐研究所 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN111499374A (zh) * 2020-04-17 2020-08-07 上海工程技术大学 一种电容器用陶瓷介电材料及其制备方法
CN112552048A (zh) * 2020-12-25 2021-03-26 广东奥迪威传感科技股份有限公司 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN114292102A (zh) * 2021-12-20 2022-04-08 中国科学院上海硅酸盐研究所 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN115385675A (zh) * 2022-08-12 2022-11-25 陕西师范大学 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN115724660A (zh) * 2022-12-14 2023-03-03 天津师范大学 一种钛酸钡/正二钛酸钙复合陶瓷及其制备方法和应用
CN116444267A (zh) * 2023-05-08 2023-07-18 四川大学 一种高温强场高介低损的储能陶瓷及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075782A1 (en) * 2004-05-06 2006-04-13 Asahi Glass Company, Limited Method for producing laminated dielectric
CN1803584A (zh) * 2000-10-17 2006-07-19 夏普株式会社 氧化物材料、其制造方法以及使用该氧化物材料的半导体元件
JP2009298621A (ja) * 2008-06-11 2009-12-24 Osaka Prefecture Univ 圧電材料、圧電素子
CN101786864A (zh) * 2009-12-22 2010-07-28 广东风华高新科技股份有限公司 一种与镍内电极匹配的陶瓷介质材料及所得电容器的制备方法
CN102424572A (zh) * 2011-09-02 2012-04-25 西安交通大学 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN102584195A (zh) * 2012-02-14 2012-07-18 桂林电子科技大学 一种铋基钙钛矿型无铅压电陶瓷及其低温制备方法
WO2013146303A1 (ja) * 2012-03-26 2013-10-03 国立大学法人山梨大学 誘電材料、誘電素子、コンデンサ、積層コンデンサ及び蓄電装置
CN103864415A (zh) * 2014-01-29 2014-06-18 河南科技大学 一种锡酸锌掺杂的钛酸钡高介电陶瓷及其制备方法
CN106631021A (zh) * 2017-01-11 2017-05-10 中国人民解放军空军工程大学 一种具有高储能密度和储能效率的陶瓷材料及其制备方法
EP3367453A1 (en) * 2017-02-27 2018-08-29 TDK Corporation Piezoelectric composition and piezoelectric device
CN109020541A (zh) * 2018-07-19 2018-12-18 华南师范大学 一种高性能环保电容器电介质及其制备方法
CN109912304A (zh) * 2019-03-21 2019-06-21 清华大学 一种铁酸铋基三元固溶体介电薄膜材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803584A (zh) * 2000-10-17 2006-07-19 夏普株式会社 氧化物材料、其制造方法以及使用该氧化物材料的半导体元件
US20060075782A1 (en) * 2004-05-06 2006-04-13 Asahi Glass Company, Limited Method for producing laminated dielectric
JP2009298621A (ja) * 2008-06-11 2009-12-24 Osaka Prefecture Univ 圧電材料、圧電素子
CN101786864A (zh) * 2009-12-22 2010-07-28 广东风华高新科技股份有限公司 一种与镍内电极匹配的陶瓷介质材料及所得电容器的制备方法
CN102424572A (zh) * 2011-09-02 2012-04-25 西安交通大学 高电阻率铁酸铋-钛酸钡固溶体磁电陶瓷材料的制备方法
CN102584195A (zh) * 2012-02-14 2012-07-18 桂林电子科技大学 一种铋基钙钛矿型无铅压电陶瓷及其低温制备方法
WO2013146303A1 (ja) * 2012-03-26 2013-10-03 国立大学法人山梨大学 誘電材料、誘電素子、コンデンサ、積層コンデンサ及び蓄電装置
CN103864415A (zh) * 2014-01-29 2014-06-18 河南科技大学 一种锡酸锌掺杂的钛酸钡高介电陶瓷及其制备方法
CN106631021A (zh) * 2017-01-11 2017-05-10 中国人民解放军空军工程大学 一种具有高储能密度和储能效率的陶瓷材料及其制备方法
EP3367453A1 (en) * 2017-02-27 2018-08-29 TDK Corporation Piezoelectric composition and piezoelectric device
CN109020541A (zh) * 2018-07-19 2018-12-18 华南师范大学 一种高性能环保电容器电介质及其制备方法
CN109912304A (zh) * 2019-03-21 2019-06-21 清华大学 一种铁酸铋基三元固溶体介电薄膜材料及其制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
KAI TONG等: "Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
LI FENGZHU等: "Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics", 《CERAMICS INTERNATIONAL》 *
SHUAISHUAI JI 等: "Enhanced energy storage performance and thermal stability in relaxor ferroelectric (1-x)BiFeO3-x(0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3) Ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
ZHOU MINGXING等: "A novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
内野研二著: "《国外名校最新教材精选 铁电器件 第2版》", 30 November 2017, 西安交通大学出版社 *
张琳玉: "掺杂BiFeO3-BaTiO3多铁陶瓷的性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
杜红亮 等: "无铅非线性介电储能陶瓷:现状与挑战", 《无机材料学报》 *
王亚茹: "BiMO_3(M=Y,Fe,Al)掺杂BaTiO3陶瓷弛豫行为的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333413A (zh) * 2020-03-06 2020-06-26 中国科学院上海硅酸盐研究所 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN111499374A (zh) * 2020-04-17 2020-08-07 上海工程技术大学 一种电容器用陶瓷介电材料及其制备方法
CN112552048A (zh) * 2020-12-25 2021-03-26 广东奥迪威传感科技股份有限公司 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN112552048B (zh) * 2020-12-25 2021-10-26 广东奥迪威传感科技股份有限公司 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN114292102A (zh) * 2021-12-20 2022-04-08 中国科学院上海硅酸盐研究所 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN114292102B (zh) * 2021-12-20 2022-10-14 中国科学院上海硅酸盐研究所 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN115385675A (zh) * 2022-08-12 2022-11-25 陕西师范大学 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN115724660A (zh) * 2022-12-14 2023-03-03 天津师范大学 一种钛酸钡/正二钛酸钙复合陶瓷及其制备方法和应用
CN116444267A (zh) * 2023-05-08 2023-07-18 四川大学 一种高温强场高介低损的储能陶瓷及其制备方法

Also Published As

Publication number Publication date
CN110511018B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN110511018A (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN103636018A (zh) 压电材料
CN107140974A (zh) 一种微波烧结的无铅高储能密度st‑nbt陶瓷材料及其制备方法
Truong-Tho et al. Effect of sintering temperature on the dielectric, ferroelectric and energy storage properties of SnO2-doped Bi 0. 5 (Na 0. 8 K 0. 2) 0. 5 TiO3 lead-free ceramics
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN111170735B (zh) 一种高电能存储效率的陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN109020541B (zh) 一种高性能环保电容器电介质及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
CN116425536B (zh) 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法
CN106396668B (zh) 一种bnt-blt-bmnt反铁电储能陶瓷及其制备方法
CN112062556B (zh) 一种锆酸钙-锆酸锶-锆酸钡固溶体陶瓷材料及其制备方法
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN116813331A (zh) 钛酸锶陶瓷及其制备方法和应用
CN107188555A (zh) 一种陶瓷靶材的制备方法
Byeon et al. Effects of Zn substitution on dielectric and piezoelectric properties of (Na0. 54K0. 46) 0.96 Li0. 04 (Nb0. 90Ta0. 10) O3 ceramics
CN109516800A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN114751735B (zh) 一种电介质储能陶瓷粉末、制备方法及其在陶瓷膜中的应用
CN108610040A (zh) 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法
CN112457004B (zh) 可用于500℃以下振动测量的sbt基压电陶瓷及其制备方法与应用
CN115894021B (zh) 一种高机械品质因数硬性压电陶瓷材料及其制备方法
Li et al. Crystalline Structure and Electrical Conductivity of Bulk-Sintered and Plasma-Sprayed La1− xSrxMnO3− δ with 0≤ x≤ 0.9
Chu Doping effects on the dielectric properties of low temperature sintered lead-based ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220201