CN107188555A - 一种陶瓷靶材的制备方法 - Google Patents

一种陶瓷靶材的制备方法 Download PDF

Info

Publication number
CN107188555A
CN107188555A CN201710481516.6A CN201710481516A CN107188555A CN 107188555 A CN107188555 A CN 107188555A CN 201710481516 A CN201710481516 A CN 201710481516A CN 107188555 A CN107188555 A CN 107188555A
Authority
CN
China
Prior art keywords
powder
ceramic
ceramic target
hours
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710481516.6A
Other languages
English (en)
Inventor
彭彪林
徐梦星
李路成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201710481516.6A priority Critical patent/CN107188555A/zh
Publication of CN107188555A publication Critical patent/CN107188555A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种陶瓷靶材的制备方法,[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3,其中M为Hf、Zr和Sn中的一种;具体步骤为(1)烘料,将起始原料Bi2O3、Na2CO3、BaCO3、TiO2、La2O3、MO2置于烘箱中烘料;(2)配料,将步骤(1)烘干的原料按照[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3相应的化学计量比称量;(3)球磨,将步骤(2)称量好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料;(4)干燥,将步骤(3)制得的均匀浆料烘干;(5)煅烧,将步骤(4)烘干的粉料过筛并轻压成块状坯体置于马弗炉中;(6)球磨,将步骤(5)煅烧后的粉料研磨成细粉;(7)制坯,将步骤(6)制成的陶瓷粉料采用钢模手压成样片;(8)烧结,将步骤(7)制成的陶瓷坯体置于马弗炉中;(9)冷却,自然冷却至室温。本发明制备方法相对简单,整个过程没有使用含铅的原料,是一种绿色制备技术。

Description

一种陶瓷靶材的制备方法
技术领域
本发明属于功能材料领域,涉及[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷靶材的制备方法。
背景技术
随着电子、信息和控制技术朝着微型化、高集成化方向的发展,以及可再生动力能源设备(如电动汽车、电网中的大型能量调节器等移动能源设备)的发展和使用,高密度储能电容器的发展已经被提上日程。作为铁电体材料的一类分支,反铁电体材料因其具有更高的储能密度而使得其逐渐成为高密度储能电容器的优秀候选材料。目前对反铁电材料储能效应的研究主要集中在锆钛酸铅(PZT)为基的含铅材料体系中,如Sn掺杂的Pb(Zr,Sn,Ti)O3(PZST)陶瓷材料以及La掺杂的Pb0.97La0.02(Zr0.65Sn0.24Ti0.11)O3薄膜材料。
材料一般以两种形态应用于电荷的存储,即体相及薄膜。体相陶瓷材料由于耐击穿电场强度不高,且操作电压过高,不易控制,难以获得大的电场强度用来提高体系的储能密度。材料薄膜化后,在较低的操作电压下,可获得高于体相材料击穿场强几十倍甚至上百倍的电场强度,从而能够获得高的储能密度。
[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3是一种无铅环保的反铁电体材料,以高温固相合成法制备出的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷为靶材,利用磁控溅射或脉冲沉积法轰击陶瓷靶材从而制备出具有击穿场强高、极化强度大的高储能密度反铁电薄膜。本实验制备出的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)MxO3陶瓷靶材将可以作为生长[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)MxO3薄膜所用的靶材,有利于击穿场强高、极化强度大、剩余极化强度低的高储能密度[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3反铁电薄膜的制备。
发明内容
本申请在现有技术的基础上,通过不断研究和改进,得到一种全新的陶瓷靶材制备工艺。
本发明的目的是提供一种[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷靶材的制备方法,其中M为Hf、Zr和Sn中的一种;具体步骤为:
(1)烘料:称量前将起始原料Bi2O3、Na2CO3、BaCO3、TiO2、La2O3、MO2置于烘箱中烘料3~6小时,烘料温度为100~120℃;
(2)配料:将步骤(1)烘干的原料按照[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3相应的化学计量比称量;
(3)球磨:将步骤(2)称量好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为4~12小时,制成均匀浆料;
(4)干燥:将步骤(3)制得的均匀浆料烘干;
(5)煅烧:将步骤(4)烘干的粉料过筛并轻压成块状坯体置于马弗炉中,在800~950℃煅烧4~8小时,制成煅烧粉料;
(6)球磨:将步骤(5)煅烧后的粉料研磨成细粉,再次球磨、烘干得到陶瓷粉料;
(7)制坯:将步骤(6)制成的陶瓷粉料采用钢模手压成直径5~20mm、厚度约0.5~1.2mm的样片,将样片放入冷等静压机中,施加200~350MPa的压力,保压60~180s,制得[(Bi1/ 2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷坯体,其中M为Hf、Zr和Sn中的一种;
(8)烧结:将步骤(7)制成的陶瓷坯体置于马弗炉中,在1100~1200℃烧结4~6小时;
(9)冷却:自然冷却至室温,即制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷靶材。
进一步,步骤(1)中所述的起始原料的重量份数配比为:Bi2O3:40~50份,Na2CO3:5~15份,BaCO3:4~7份,TiO2:30~35份,La2O3:1~2份,MO2:1~3份。
进一步,步骤(5)中所述的煅烧温度为900℃。
进一步,步骤(5)中所述的煅烧时间为6小时。
进一步,步骤(8)中所述的烧结时间为5小时。
本发明的有益效果是:通过上述制备方法参数的限制,获得一种具有无铅、纯度高、致密性好、平均晶粒尺寸小、高介电常数、电场击穿强度大、储能密度高等优点的陶瓷;本发明制备方法相对简单,整个过程没有使用含铅的原料,是一种绿色制备技术。
附图说明
图1(a)、(b)、(c)分别为本发明实施例1、2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Hf0.04O3、[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3和[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Sn0.04O3陶瓷靶材的SEM图谱;
图2为本发明实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的XRD图谱;
图3为本发明实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的介电温谱;
图4为本发明实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的电滞回线。
具体实施方式
实施例1
(1)烘料:称量前将起始原料Bi2O3、Na2CO3、BaCO3、TiO2、La2O3、HfO2置于烘箱中烘料3小时,烘料温度为120℃。
(2)配料:步骤(1)烘干的原料按照[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Hf0.04O3相应的化学计量比称量。
(3)球磨:将步骤(2)称量好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为8小时,制成均匀浆料。
(4)干燥:将步骤(3)制得的均匀浆料烘干。
(5)煅烧:将步骤(4)烘干的粉料过筛并轻压成块状坯体,在800℃煅烧4小时,制成煅烧粉料。
(6)球磨:将步骤(5)煅烧后的粉料研磨成细粉,再次球磨、烘干得到陶瓷粉料。
(7)制坯:将步骤(6)制成的陶瓷粉料采用钢模手压成直径12mm、厚度约0.5mm的样片,将样片放入冷等静压机中,施加200MPa的压力,保压120s,制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Hf0.04O3陶瓷坯体。
(8)烧结:将步骤(7)制成的陶瓷坯体置于马弗炉中,在1100摄氏度烧结5小时。
(9)冷却:自然冷却至室温,即制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Hf0.04O3陶瓷靶材。
附图1(a)为实施例1制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Hf0.04O3陶瓷靶材的SEM图谱,从SEM照片中可以看出,样品呈现出致密的显微结构,没有明显的孔洞,且样品平均粒径为4μm。
实施例2
(1)烘料:称量前将起始原料Bi2O3、Na2CO3、BaCO3、TiO2、La2O3、ZrO2置于烘箱中烘料4小时,烘料温度为110℃。
(2)配料:步骤(1)烘干的原料按照[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3相应的化学计量比称量。
(3)球磨:将步骤(2)称量好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为4小时,制成均匀浆料。
(4)干燥:将步骤(3)制得的均匀浆料烘干。
(5)煅烧:将步骤(4)烘干的粉料过筛并轻压成块状坯体,在900℃煅烧6小时,制成煅烧粉料。
(6)球磨:将步骤(5)煅烧后的粉料研磨成细粉,再次球磨、烘干得到陶瓷粉料。
(7)制坯:将步骤(6)制成的陶瓷粉料采用钢模手压成直径10mm、厚度约1mm的样片,将样片放入冷等静压机中,施加300MPa的压力,保压60s,制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷坯体。
(8)烧结:将步骤(7)制成的陶瓷坯体置于马弗炉中,在1150摄氏度烧结6小时。
(9)冷却:自然冷却至室温,即制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材。
附图1(b)为实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的SEM图谱,从SEM照片中可以看出,样品呈现出致密的显微结构,没有明显的孔洞,且样品平均粒径为4μm。
附图2为实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的XRD图谱,从图中可以看出,通过本方法烧结制备出的陶瓷靶材为纯的钙钛矿相结构,无焦绿石相等杂相存在。
附图3为实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的介电温谱,从介电温谱中可以得到样品的介电常数为3068,较其它的陶瓷的介电常数高,低温段的介电常数峰有明显的频率色散特征,而其高温段介电常数峰的频率色散特征却很弱。
附图4为实施例2制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3陶瓷靶材的电滞回线,从图中可以看出,回线包围的面积很小,代表着样品的能量损耗很小。最大电场击穿强度为90kv/cm,通过根据能量密度计算公式得到样品的储能密度为0.9627(J/cm3)。
实施例3
(1)烘料:称量前将起始原料Bi2O3、Na2CO3、BaCO3、TiO2、La2O3、SnO2置于烘箱中烘料6小时,烘料温度为100℃。
(2)配料:步骤(1)烘干的原料按照[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Sn0.04O3相应的化学计量比称量。
(3)球磨:将步骤(2)称量好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为12小时,制成均匀浆料。
(4)干燥:将步骤(3)制得的均匀浆料烘干。
(5)煅烧:将步骤(4)烘干的粉料过筛并轻压成块状坯体,在950℃煅烧8小时,制成煅烧粉料。
(6)球磨:将步骤(5)煅烧后的粉料研磨成细粉,再次球磨、烘干得到陶瓷粉料。
(7)制坯:将步骤(6)制成的陶瓷粉料采用钢模手压成直径20mm、厚度约1.2mm的样片,将样片放入冷等静压机中,施加350MPa的压力,保压180s,制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Sn0.04O3陶瓷坯体。
(8)烧结:将步骤(7)制成的陶瓷坯体置于马弗炉中,在1200摄氏度烧结4小时。
(9)冷却:自然冷却至室温,即制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Sn0.04O3陶瓷靶材。
附图1(c)为实施例3制得的[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Sn0.04O3陶瓷靶材的SEM图谱,从SEM照片中可以看出,样品呈现出致密的显微结构,没有明显的孔洞,且样品平均粒径为4μm。

Claims (5)

1.一种陶瓷靶材的制备方法,具体为[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷靶材,其中M为Hf、Zr和Sn中的一种,其特征在于具体步骤为:
(1)烘料:称量前将起始原料Bi2O3、Na2CO3、BaCO3、TiO2、La2O3、MO2置于烘箱中烘料3~6小时,烘料温度为100~120℃;
(2)配料:将步骤(1)烘干的原料按照[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3相应的化学计量比称量;
(3)球磨:将步骤(2)称量好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为4~12小时,制成均匀浆料;
(4)干燥:将步骤(3)制得的均匀浆料烘干;
(5)煅烧:将步骤(4)烘干的粉料过筛并轻压成块状坯体置于马弗炉中,在800~950℃煅烧4~8小时,制成煅烧粉料;
(6)球磨:将步骤(5)煅烧后的粉料研磨成细粉,再次球磨、烘干得到陶瓷粉料;
(7)制坯:将步骤(6)制成的陶瓷粉料采用钢模手压成直径5~20mm、厚度约0.5~1.2mm的样片,将样片放入冷等静压机中,施加200~350MPa的压力,保压60~180s,制得[(Bi1/ 2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷坯体,其中M为Hf、Zr和Sn中的一种;(样片厚度0.5mm的端点值在具体实施例中并未有体现)
(8)烧结:将步骤(7)制成的陶瓷坯体置于马弗炉中,在1100~1200℃烧结4~6小时;
(9)冷却:自然冷却至室温,即制得[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96M0.04O3陶瓷靶材。
2.根据权利要求1所述的一种陶瓷靶材制备方法,其特征在于,步骤(1)中所述的起始原料的重量份数配比为:Bi2O3:40~50份,Na2CO3:5~15份,BaCO3:4~7份,TiO2:30~35份,La2O3:1~2份,MO2:1~3份。
3.根据权利要求1所述的一种陶瓷靶材制备方法,其特征在于,步骤(5)中所述的煅烧温度为900℃。
4.根据权利要求1所述的一种陶瓷靶材制备方法,其特征在于,步骤(5)中所述的煅烧时间为6小时。
5.根据权利要求1所述的一种陶瓷靶材制备方法,其特征在于,步骤(8)中所述的烧结时间为5小时。
CN201710481516.6A 2017-06-22 2017-06-22 一种陶瓷靶材的制备方法 Pending CN107188555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710481516.6A CN107188555A (zh) 2017-06-22 2017-06-22 一种陶瓷靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710481516.6A CN107188555A (zh) 2017-06-22 2017-06-22 一种陶瓷靶材的制备方法

Publications (1)

Publication Number Publication Date
CN107188555A true CN107188555A (zh) 2017-09-22

Family

ID=59878803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710481516.6A Pending CN107188555A (zh) 2017-06-22 2017-06-22 一种陶瓷靶材的制备方法

Country Status (1)

Country Link
CN (1) CN107188555A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845229A (zh) * 2019-11-27 2020-02-28 中国科学技术大学 LaBiO3薄膜、LaBiO3陶瓷靶材及其制备方法
CN116874297A (zh) * 2023-07-10 2023-10-13 石河子大学 一种钛酸铋钠基储能陶瓷材料
CN116884724A (zh) * 2023-08-23 2023-10-13 西安天工电气有限公司 一种交流高稳定性避雷器用电阻片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050876A1 (fr) * 2006-10-27 2008-05-02 Hitachi Metals, Ltd. Composition de céramique semi-conductrice et procédé de production de cette composition
CN103979961A (zh) * 2014-05-19 2014-08-13 王永锋 Zr掺杂对反铁电陶瓷的储能作用及制备方法
CN104045340A (zh) * 2014-06-04 2014-09-17 同济大学 钛酸铋钠基和钛酸钡基多层复合压电薄膜及其制备方法
CN104193333A (zh) * 2014-08-18 2014-12-10 曹静 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法
CN106045499A (zh) * 2016-05-27 2016-10-26 西北工业大学 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法
EP3127889A1 (en) * 2015-08-04 2017-02-08 TDK Corporation Semiconductor ceramic composition and ptc thermistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050876A1 (fr) * 2006-10-27 2008-05-02 Hitachi Metals, Ltd. Composition de céramique semi-conductrice et procédé de production de cette composition
CN103979961A (zh) * 2014-05-19 2014-08-13 王永锋 Zr掺杂对反铁电陶瓷的储能作用及制备方法
CN104045340A (zh) * 2014-06-04 2014-09-17 同济大学 钛酸铋钠基和钛酸钡基多层复合压电薄膜及其制备方法
CN104193333A (zh) * 2014-08-18 2014-12-10 曹静 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法
EP3127889A1 (en) * 2015-08-04 2017-02-08 TDK Corporation Semiconductor ceramic composition and ptc thermistor
CN106045499A (zh) * 2016-05-27 2016-10-26 西北工业大学 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALI HUSSAIN ET AL.: "Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics", 《KOREAN JOURNAL OF MATERIALS RESEARCH》 *
KLAUS REICHMANN ET AL.: "Effect of Isovalent B-Site Doping on Structural and Electrical Properties of Bismuth-Sodium-Titanate", 《ADVANCES IN SCIENCE AND TECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845229A (zh) * 2019-11-27 2020-02-28 中国科学技术大学 LaBiO3薄膜、LaBiO3陶瓷靶材及其制备方法
CN116874297A (zh) * 2023-07-10 2023-10-13 石河子大学 一种钛酸铋钠基储能陶瓷材料
CN116884724A (zh) * 2023-08-23 2023-10-13 西安天工电气有限公司 一种交流高稳定性避雷器用电阻片及其制备方法
CN116884724B (zh) * 2023-08-23 2024-02-27 西安天工电气有限公司 一种交流高稳定性避雷器用电阻片及其制备方法

Similar Documents

Publication Publication Date Title
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
Zhang et al. Microstructure and electrical properties of (Pb0. 87Ba0. 1La0. 02)(Zr0. 68Sn0. 24Ti0. 08) O3 anti-ferroelectric ceramics fabricated by the hot-press sintering method
Chou et al. Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications
CN102850050B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN106588006B (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN104193333A (zh) 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法
Zeng et al. Effects of Bi2O3–Li2CO3 additions on dielectric and pyroelectric properties of Mn doped Pb (Zr0. 9Ti0. 1) O3 thick films
CN107188555A (zh) 一种陶瓷靶材的制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
Mudinepalli et al. Effect of grain size on the electrical properties of high dense BPT nanocrystalline ferroelectric ceramics
CN104591729B (zh) 一种采用磁控溅射法制备pbz薄膜用的pbz靶材的制备方法
Jarupoom et al. Development of electrical properties in lead-free bismuth sodium lanthanum titanate–barium titanate ceramic near the morphotropic phase boundary
Shiratsuyu et al. Piezoelectric Characterization of Low-Temperature-Fired Pb (Zr, Ti) O3–Pb (Ni, Nb) O3 Ceramics
CN108409319B (zh) 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
Joseph et al. Low temperature sintering lead‐free dielectric x BiScO3‐(1‐x) BaTiO3 for energy storage applications
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
CN106396668B (zh) 一种bnt-blt-bmnt反铁电储能陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN115376825B (zh) 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
Han et al. Study of sintering behavior of PAN–PZT using dilatometry and co-relation with piezoelectric properties
Yang et al. Low temperature sintering of PMN ceramics by doping with SrO
Fang et al. Preparation and electrical properties of high-Curie temperature ferroelectrics
Feng et al. Large piezoelectric effect in lead-free Ba (Zr0. 2Ti0. 8) O3–(Ba0. 7Ca0. 3) TiO3 films prepared by screen printing with solution infiltration process
Hu et al. Low temperature sintering of high permittivity BaTiO3 based X8R ceramics doped with Li2O–Bi2O3–B2O3 frit
CN105036740B (zh) 一种磁控溅射用bzt靶材的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170922

RJ01 Rejection of invention patent application after publication