CN106045499A - 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法 - Google Patents

掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法 Download PDF

Info

Publication number
CN106045499A
CN106045499A CN201610363715.2A CN201610363715A CN106045499A CN 106045499 A CN106045499 A CN 106045499A CN 201610363715 A CN201610363715 A CN 201610363715A CN 106045499 A CN106045499 A CN 106045499A
Authority
CN
China
Prior art keywords
ceramics
doped
zirconium
preparation
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610363715.2A
Other languages
English (en)
Inventor
樊慧庆
赵扬
董广志
彭彪林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610363715.2A priority Critical patent/CN106045499A/zh
Publication of CN106045499A publication Critical patent/CN106045499A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法,用于解决现有制备的钛酸钠铋‑钛酸钡陶瓷储能密度低的技术问题。技术方案是采用高温固相合成法,以碳酸钡、碳酸镧、碳酸钠、氧化铋、氧化钛和氧化锆为原料,按化学计量比称量,以酒精为介质、氧化锆球为磨球进行混料,待浆料干燥后将其过筛并轻压成块状坯体高温煅烧。煅烧后的块料研磨成细粉,压制成型后经过高温烧结,制得掺锆掺镧钛酸钠铋‑钛酸钡陶瓷。该材料弛豫弥散度得到增加,抗击穿强度高,获得了较高的储能密度。经测试,在56kV/cm的电场下,储能密度由背景技术的0.59J/cm3提高到0.77J/cm3,提高了31%。

Description

掺锆掺镧钛酸钠铋-钛酸钡陶瓷的制备方法
技术领域
本发明涉及一种钛酸钠铋-钛酸钡陶瓷的制备方法,特别是涉及一种掺锆掺镧钛酸钠铋-钛酸钡陶瓷的制备方法。
背景技术
对反铁电材料储能效应的研究主要集中在锆钛酸铅为基的含铅材料体系中,为响应欧盟ROHS/WEEE指令对电子产品中有害物质使用的限制,无铅反铁电储能材料的研究开始得到重视。但报道的该类材料存在储能密度较低的缺陷,难以满足应用需求。
文献“Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3- 0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics.J.Am.Ceram.Soc.2011,94(12):4382-4386”公开了一种钛酸钠铋-钛酸钡-铌酸钾钠陶瓷的制备方法。该方法采用氧化铋、碳酸钠、氧化钛、碳酸钡、碳酸钾和五氧化二铌为原料,混料之后经高温加热烧成陶瓷。该材料在56kV/cm的电场下,储能密度约为0.59J/cm3,并不理想。
发明内容
为了克服现有方法制备的钛酸钠铋-钛酸钡陶瓷储能密度低的不足,本发明提供一种掺锆掺镧钛酸钠铋-钛酸钡陶瓷的制备方法。该方法采用高温固相合成法,以碳酸钡、碳酸镧、碳酸钠、氧化铋、氧化钛和氧化锆为原料,按化学计量比称量,以酒精为介质、氧化锆球为磨球进行混料,待浆料干燥后将其过筛并轻压成块状坯体高温煅烧。煅烧后的块料研磨成细粉,压制成型后经过高温烧结,制得掺锆掺镧钛酸钠铋-钛酸钡陶瓷。该材料弛豫弥散度得到增加,抗击穿强度高,可获得较高的储能密度。
本发明解决其技术问题所采用的技术方案是:一种掺锆掺镧钛酸钠铋-钛酸钡陶瓷的制备方法,其特点是包括以下步骤:
步骤一、将分析纯的BaCO3、La2O3、Na2CO3、Bi2O3、TiO2和ZrO2置于烘箱中烘料2~5小时,烘料温度为100~120℃,随后按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)ZrxO3(0≤x≤0.06)称量并配料;
步骤二、将配好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,制成浆料,混料时间为3~4小时;
步骤三、待浆料干燥后过筛并轻压成块状坯体在800~1100℃煅烧4~6小时。此后将煅烧后的块料研磨成细粉,再次球磨、烘干得到陶瓷粉料;
步骤四、将陶瓷粉料采用钢模手压成直径10~11mm、厚度约0.9~1.2mm的薄片,在300~350MPa下冷等静压成型后,以3~4℃/min的升温速率升至1100~1200℃保温4~6小时,随炉冷却至室温;
步骤五、将烧成的陶瓷薄片打磨抛光后涂覆银浆,在500~550℃保温20~40分钟,烧制银电极。
本发明的有益效果是:该方法采用高温固相合成法,以碳酸钡、碳酸镧、碳酸钠、氧化铋、氧化钛和氧化锆为原料,按化学计量比称量,以酒精为介质、氧化锆球为磨球进行混料,待浆料干燥后将其过筛并轻压成块状坯体高温煅烧。煅烧后的块料研磨成细粉,压制成型后经过高温烧结,制得掺锆掺镧钛酸钠铋-钛酸钡陶瓷。该材料弛豫弥散度得到增加,抗击穿强度高,获得了较高的储能密度。经测试,在56kV/cm的电场下,储能密度由背景技术的0.59J/cm3提高到0.77J/cm3,提高了31%。
下面结合具体实施方式对本发明作详细说明。
具体实施方式
实施例1。按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)ZrxO3(0≤x≤0.06)称量并配料。当x=0时,将分析纯的各原料置于烘箱中烘料5小时,烘料温度为100℃,之后按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]TiO3称量氧化铋10.6215g,碳酸钠2.4160g,碳酸钡1.1485g,氧化镧0.3258g,氧化钛7.9870g,氧化锆0g,置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为4小时;待浆料干燥后将其过筛并轻压成块状坯体在1000℃煅烧5小时,此后将煅烧后的块料研磨成细粉,再次球磨、烘干得到陶瓷粉料;最后将陶瓷粉料采用钢模手压成直径10mm、厚度约1.2mm的样片,在300MPa下冷等静压成型后,以3℃/min的升温速率升至1100℃保温6小时,随炉冷却至室温,烧制成瓷。
实施例2。按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)ZrxO3(0≤x≤0.06)称量并配料。当x=0.02时,将分析纯的各原料置于烘箱中烘料4小时,烘料温度为110℃,之后按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.98Zr0.02O3称量氧化铋10.6215g,碳酸钠2.4160g,碳酸钡1.1485g,氧化镧0.3258g,氧化钛7.8272g,氧化锆0.2464g,置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为3小时;待浆料干燥后将其过筛并轻压成块状坯体在900℃煅烧6小时,此后将煅烧后的块料研磨成细粉,再次球磨、烘干得到陶瓷粉料;最后将陶瓷粉料采用钢模手压成直径10.5mm、厚度约1.1mm的样片,在350MPa下冷等静压成型后,以3℃/min的升温速率升至1150℃保温6小时,随炉冷却至室温,烧制成瓷。
实施例3。按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)ZrxO3(0≤x≤0.06)称量并配料。当x=0.04时,将分析纯的各原料置于烘箱中烘料2小时,烘料温度为120℃,之后按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.96Zr0.04O3称量氧化铋10.6215g,碳酸钠2.4160g,碳酸钡1.1485g,氧化镧0.3258g,氧化钛7.6675g,氧化锆0.4928g,置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为3小时;待浆料干燥后将其过筛并轻压成块状坯体在1100℃煅烧4小时,此后将煅烧后的块料研磨成细粉,再次球磨、烘干得到陶瓷粉料;最后将陶瓷粉料采用钢模手压成直径11mm、厚度约1mm的样片,在350MPa下冷等静压成型后,以3℃/min的升温速率升至1150℃保温5小时,随炉冷却至室温,烧制成瓷。
实施例4。按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)ZrxO3(0≤x≤0.06)称量并配料。当x=0.06时,将分析纯的各原料置于烘箱中烘料3小时,烘料温度为120℃,之后按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti0.94Zr0.06O3称量氧化铋10.6215g,碳酸钠2.4160g,碳酸钡1.1485g,氧化镧0.3258g,氧化钛7.5077g,氧化锆0.7393g,置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,混料时间为4小时;待浆料干燥后将其过筛并轻压成块状坯体在800℃煅烧6小时,此后将煅烧后的块料研磨成细粉,再次球磨、烘干得到陶瓷粉料;最后将陶瓷粉料采用钢模手压成直径10.5mm、厚度约0.9mm的样片,在300MPa下冷等静压成型后,以3℃/min的升温速率升至1200℃保温4小时,随炉冷却至室温,烧制成瓷。
经测试,本实施例制备的钛酸钠铋-钛酸钡陶瓷,在56kV/cm的电场下,储能密度为0.77J/cm3

Claims (1)

1.一种掺锆掺镧钛酸钠铋-钛酸钡陶瓷的制备方法,其特征在于包括以下步骤:
步骤一、将分析纯的BaCO3、La2O3、Na2CO3、Bi2O3、TiO2和ZrO2置于烘箱中烘料2~5小时,烘料温度为100~120℃,随后按化学计量比[(Bi1/2Na1/2)0.9118Ba0.0582La0.02]Ti(1-x)ZrxO3(0≤x≤0.06)称量并配料;
步骤二、将配好的原料置于以酒精为介质、氧化锆球为磨球的尼龙罐中进行混料,制成浆料,混料时间为3~4小时;
步骤三、待浆料干燥后过筛并轻压成块状坯体在800~1100℃煅烧4~6小时;此后将煅烧后的块料研磨成细粉,再次球磨、烘干得到陶瓷粉料;
步骤四、将陶瓷粉料采用钢模手压成直径10~11mm、厚度约0.9~1.2mm的薄片,在300~350MPa下冷等静压成型后,以3~4℃/min的升温速率升至1100~1200℃保温4~6小时,随炉冷却至室温;
步骤五、将烧成的陶瓷薄片打磨抛光后涂覆银浆,在500~550℃保温20~40分钟,烧制银电极。
CN201610363715.2A 2016-05-27 2016-05-27 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法 Pending CN106045499A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610363715.2A CN106045499A (zh) 2016-05-27 2016-05-27 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610363715.2A CN106045499A (zh) 2016-05-27 2016-05-27 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106045499A true CN106045499A (zh) 2016-10-26

Family

ID=57174915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610363715.2A Pending CN106045499A (zh) 2016-05-27 2016-05-27 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106045499A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188555A (zh) * 2017-06-22 2017-09-22 广西大学 一种陶瓷靶材的制备方法
CN107935589A (zh) * 2017-12-14 2018-04-20 陕西科技大学 一种微量二氧化锆添加st‑nbt储能陶瓷及其制备方法
CN112225559A (zh) * 2020-09-25 2021-01-15 陕西科技大学 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
CN114671681A (zh) * 2022-04-11 2022-06-28 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051315A1 (en) * 2009-08-29 2011-03-03 Fatih Dogan Nanostructured dielectric materials for high energy density multi layer ceramic capacitors
CN102910902A (zh) * 2012-10-22 2013-02-06 天津大学 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN103979961A (zh) * 2014-05-19 2014-08-13 王永锋 Zr掺杂对反铁电陶瓷的储能作用及制备方法
CN104193333A (zh) * 2014-08-18 2014-12-10 曹静 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法
CN104370539A (zh) * 2013-09-12 2015-02-25 铜仁学院 一种高使用温度无铅ptcr陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051315A1 (en) * 2009-08-29 2011-03-03 Fatih Dogan Nanostructured dielectric materials for high energy density multi layer ceramic capacitors
CN102910902A (zh) * 2012-10-22 2013-02-06 天津大学 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN104370539A (zh) * 2013-09-12 2015-02-25 铜仁学院 一种高使用温度无铅ptcr陶瓷及其制备方法
CN103979961A (zh) * 2014-05-19 2014-08-13 王永锋 Zr掺杂对反铁电陶瓷的储能作用及制备方法
CN104193333A (zh) * 2014-08-18 2014-12-10 曹静 一种(Bi0.46Na0.46Ba0.06La0.02)ZrxTi(1-x)O3反铁电陶瓷的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188555A (zh) * 2017-06-22 2017-09-22 广西大学 一种陶瓷靶材的制备方法
CN107935589A (zh) * 2017-12-14 2018-04-20 陕西科技大学 一种微量二氧化锆添加st‑nbt储能陶瓷及其制备方法
CN107935589B (zh) * 2017-12-14 2021-06-25 陕西科技大学 一种微量二氧化锆添加st-nbt储能陶瓷及其制备方法
CN112225559A (zh) * 2020-09-25 2021-01-15 陕西科技大学 一种高储能高效率的Zr掺杂高熵钙钛矿氧化物陶瓷材料、制备方法及应用
CN114671681A (zh) * 2022-04-11 2022-06-28 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸钡基弛豫铁电陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107244898B (zh) 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法
CN106045499A (zh) 掺锆掺镧钛酸钠铋‑钛酸钡陶瓷的制备方法
CN112919908A (zh) 一种新型钙钛矿结构高熵陶瓷及其制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN110128127B (zh) 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN110467457A (zh) 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用
CN102910905A (zh) 一种低温烧结的锆钛酸钡钙基无铅压电陶瓷及其制备方法
CN108275999A (zh) 一种铌酸钾钠基无铅压电陶瓷的制备方法
CN101838144B (zh) BaTiO3基PTC热敏陶瓷材料及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN105669193A (zh) 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN101337814A (zh) 低温烧结锑酸锂掺杂的五元系压电陶瓷材料及其制备方法
JP2016175824A (ja) 圧電デバイス
CN108774060A (zh) 一种钛酸铋钠基高储能密度陶瓷材料及其制备方法
CN115376825B (zh) 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
CN107056316A (zh) 一种高长径比氧化铝晶须强韧化Ce‑TZP复相陶瓷的制备方法
CN109180185B (zh) 一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法
CN1331803C (zh) (Ba1-x-ySrxYy)TiO3基电介质陶瓷材料及其制备方法
RU2569113C1 (ru) Композиционный керамический материал и способ его получения
CN110550953A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN105384436B (zh) 一种富钛型钛酸锶钡基电介质陶瓷材料及其制备方法
CN110498683A (zh) 一种低温烧结制备铪钛酸铅-铌镍酸铅压电陶瓷的方法
CN105461298B (zh) 一种锰离子部分置换钛离子高储能密度钛酸锶钡基陶瓷及其制备方法
CN105906340B (zh) 采用固相氮气烧结法制备二氧化钛基巨介电陶瓷材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161026

WD01 Invention patent application deemed withdrawn after publication