CN110047972A - 一种新型多晶硅掺杂p扩散制备工艺方法 - Google Patents

一种新型多晶硅掺杂p扩散制备工艺方法 Download PDF

Info

Publication number
CN110047972A
CN110047972A CN201910301512.4A CN201910301512A CN110047972A CN 110047972 A CN110047972 A CN 110047972A CN 201910301512 A CN201910301512 A CN 201910301512A CN 110047972 A CN110047972 A CN 110047972A
Authority
CN
China
Prior art keywords
time
temperature
pressure
nitrogen flow
3000sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910301512.4A
Other languages
English (en)
Inventor
吴王平
张屹
王翔
袁宁一
丁建宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910301512.4A priority Critical patent/CN110047972A/zh
Publication of CN110047972A publication Critical patent/CN110047972A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种新型多晶硅掺杂P扩散制备工艺方法,该扩散工艺制备方法为1)进炉;2)抽真空;3)检漏;4)恒温稳定;5)低温气体反应淀积;6)升温杂质再分布;7)高温推进;8)降温氧化;9)释放真空;10)出炉;11)清洗。本发明采用低温长时间沉积、高温长时间推结、降温氧化的方式,获得>1e20的恒定表面浓度且在遂穿氧化层处出现陡降拐点的ECV曲线,其>1e20的恒定表面浓度可有效减低Rs,提升FF,陡降的拐点表明遂穿氧化层未被击穿可具有较优的钝化性能进而提升开路电压VOC,进而提升电池效率。

Description

一种新型多晶硅掺杂P扩散制备工艺方法
技术领域
本发明属于太阳能光伏行业领域,尤其涉及一种多晶硅掺杂P扩散制备工艺方法。
背景技术
清洁能源成为了当前时代发展的必然趋势。对于太阳能电池行业,目前已大批量量产的技术是高效晶硅钝化发射极和背面电池,即PERC(Passivated Emitterand RearCell)电池。可量产达到的效率22%,遇到了效率的瓶颈阶段。追求高效电池是各企业的发展趋势,兼具到成本及工艺的方案,TOPCon太阳能光伏电池已成为目前市场上的主流产品。而对于原位掺杂型的多晶硅工艺其成膜速率慢约1nm/min,且PH3气体昂贵不利于量产化。最终本征多晶硅工艺成为主流,其成膜速率快约10nm/min,利于产业化生产。常规的LPCVD工艺仅能长出微晶硅结构,需经过高温P扩散工艺才能转化成多晶硅结构。目前的传统电池P扩散工艺为1)进炉——温度维持在750-850℃,氮气流量为2000-4000sccm,时间约8-10min;2) 恒温氧化——温度维持在750-850℃,氮气流量为2000-3000sccm,干氧流量1000-1500 sccm,时间约5-10min;3)恒温气体反应淀积——温度维持在750-850℃,通入氮气流量 2000-3000sccm,干氧流量1000-1500sccm,小氮携带POCl3流量1000-1500sccm,时间约 10-20min;4)恒温杂质再分布——温度维持在750-850℃,通入氮气流量2000-3000sccm,干氧流量1000-1500sccm,时间约15-25min;5)吸杂——温度维持在700-750℃,通入氮气流量1500-2000sccm,时间约30-50min;6)升温杂质再分布——温度升到850-900℃,通入氮气流量1500-3000sccm,时间约10-20min,压力为200-300Pa;7)出炉——温度维持在 700-750℃,通入氮气流量1500-3000sccm,时间约8-10min。传统电池P扩散工艺在800℃左右10-20min恒温淀积及15-25min杂质再分布,无法获取多晶硅P掺杂的特有曲线。现有的扩散工艺无法满足此多晶硅结构。
本发明采用低温短时间沉积、高温长时间推结、降温氧化的工艺方法,可形成多晶硅的恒源ECV曲线,提升VOC,整体提升了电池效率。
发明内容
本发明公开了一种新型多晶硅掺杂P扩散制备工艺方法,其具体多晶硅掺杂P扩散制备工艺步骤如下所示:
1)进炉——温度维持在700-780℃,氮气流量为1500-3000sccm,时间约8-10min;
2)抽真空——温度维持在700-780℃,氮气流量为 1500-3000sccm,压力为400-500Pa,时间约3-5min;
3)检漏——时间约30-60s;压力为400-500Pa;
4)恒温稳定——温度维持在750-780℃,时间约2-3min,压力为400-500Pa;
5)低温气体反应淀积——温度维持在750-780℃,通入氮气流量1500-2000sccm,干氧流量500-1000 sccm,以及高浓度的小氮携带POCl3流量1000-1500sccm,时间约30-50min;压力为175-200Pa;
6)升温杂质再分布——温度升到850-900℃,通入氮气流量 1500-3000sccm,时间约10-20min,压力为200-300Pa;
7)高温推进——温度维持在850-900℃,通入氮气流量 1500-3000sccm,时间约30-60min,压力为200-300Pa;
8)降温氧化——温度降至700-750℃,通入氮气流量 1500-3000sccm,时间约30-60min,压力为400-500Pa,干氧流量500-1000 sccm;
9)释放真空——时间约5min;
10)出炉——温度维持在700-750℃,通入氮气流量1500-3000sccm,时间约8-10min;
11)清洗——时间约15s。
本发明主要目的是制作多晶硅掺杂P扩散工艺,采用低温长时间沉积、高温长时间推结、降温氧化的方式,获得>1e20的恒定表面浓度且在遂穿氧化层处出现陡降拐点的ECV 曲线,其>1e20的恒定表面浓度可有效减低Rs,提升FF,陡降的拐点表明遂穿氧化层未被击穿可具有较优的钝化性能进而提升开路电压VOC,进而提升电池效率。本发明有以下效果:
1)多晶硅掺杂P扩散工艺的ECV 曲线具有>1e20的恒定表面浓度且在遂穿氧化层处出现陡降拐点,其拐点的位置直接取决于多晶硅的厚度;
2)多晶硅掺杂P扩散工艺的可将光电转换效率较N-PERT提高0.3-0.5%,其中开路电压VOC提升10-20mV,FF保证不下降。
附图说明
图1多晶硅掺杂P扩散的ECV曲线。X轴-结深(um);Y轴-表面浓度(atoms/cm3);1-恒定表面浓度;2-拐点。
具体实施方式
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
实施例1
采用本发明新型多晶硅掺杂P扩散制作工艺方法,1)进炉——温度维持在780℃,氮气流量为1900sccm,时间10min;2)抽真空——温度为750℃,氮气流量为 1900sccm,压力为400Pa,时间约4min;3)检漏——时间约60s;压力为500Pa;4)恒温稳定——温度为750℃,时间约3min,压力为500Pa;5)低温气体反应淀积——温度为750℃,通入氮气流量1700sccm,干氧流量880 sccm,以及高浓度的小氮携带POCl3流量1350sccm,时间约33min;压力为185Pa; 6)升温杂质再分布——温度升到870℃,通入氮气流量 1590sccm,时间约12min,压力为300Pa;7)高温推进——温度维持在870℃,通入氮气流量 1590sccm,时间约50min,压力为300Pa;8)降温氧化——温度降至700℃,通入氮气流量 1500sccm,时间约30min,压力为400Pa,干氧流量800 sccm;9)释放真空——时间约5min;10)出炉——温度维持在700℃,通入氮气流量1500sccm,时间约10min;11)清洗——时间约15s。经过本发明工艺方法最终获得的多晶硅掺杂P扩散的ECV曲线如附图1所示。多晶硅掺杂P扩散工艺的ECV 曲线具有>1e20的恒定表面浓度且在遂穿氧化层处出现陡降拐点,其拐点的位置直接取决于多晶硅的厚度。另外,多晶硅掺杂P扩散工艺的可将光电转换效率较N-PERT提高0.5%;其中VOC提升15mV,FF保持稳定不变。

Claims (8)

1.一种新型多晶硅掺杂P扩散制备工艺方法,其特征在于扩散制备工艺步骤为1)进炉;2)抽真空;3)检漏;4)恒温稳定;5)低温气体反应淀积;6)升温杂质再分布;7)高温推进;8)降温氧化;9)释放真空;10)出炉;11)清洗。
2.依据权利要求1所述的扩散制备工艺方法,其特征在于1)进炉步骤为温度维持在700-800℃,氮气流量为1500-3000sccm,时间约8-10min。
3.依据权利要求1所述的扩散制备工艺方法,其特征在于2)抽真空步骤为温度维持在700-800℃,氮气流量为 1500-3000sccm,压力为400-500Pa,时间约3-5min。
4.依据权利要求1所述的扩散制备工艺方法,其特征在于3)检漏步骤为时间约30-60s,压力为400-500Pa;4)恒温稳定步骤为温度维持在750-780℃,时间约2-3min,压力为400-500Pa。
5.依据权利要求1所述的扩散制备工艺方法,其特征在于5)低温气体反应淀积步骤为温度维持在750-780℃,通入氮气流量1500-2000sccm,干氧流量500-1000 sccm,以及高浓度的小氮携带POCl3流量1000-1500sccm,时间约30-50min;压力为175-200Pa。
6.依据权利要求1所述的扩散制备工艺方法,其特征在于6)升温杂质再分布步骤为温度升到850-900℃,通入氮气流量 1500-3000sccm,时间约10-20min,压力为200-300Pa。
7.依据权利要求1所述的扩散制备工艺方法,其特征在于7)高温推进步骤为温度维持在850-900℃,通入氮气流量 1500-3000sccm,时间约30-60min,压力为200-300Pa;8)降温氧化步骤为温度降至700-750℃,通入氮气流量 1500-3000sccm,时间约30-60min,压力为400-500Pa,干氧流量500-1000 sccm。
8.依据权利要求1所述的扩散制备工艺方法,其特征在于9)释放真空步骤为时间约5min, 10)出炉步骤为温度维持在700-750℃,通入氮气流量1500-3000sccm,时间约8-10min,11)清洗步骤为去离子水清洗,时间约15s。
CN201910301512.4A 2019-04-12 2019-04-12 一种新型多晶硅掺杂p扩散制备工艺方法 Pending CN110047972A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910301512.4A CN110047972A (zh) 2019-04-12 2019-04-12 一种新型多晶硅掺杂p扩散制备工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910301512.4A CN110047972A (zh) 2019-04-12 2019-04-12 一种新型多晶硅掺杂p扩散制备工艺方法

Publications (1)

Publication Number Publication Date
CN110047972A true CN110047972A (zh) 2019-07-23

Family

ID=67277321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910301512.4A Pending CN110047972A (zh) 2019-04-12 2019-04-12 一种新型多晶硅掺杂p扩散制备工艺方法

Country Status (1)

Country Link
CN (1) CN110047972A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114664979A (zh) * 2022-05-26 2022-06-24 横店集团东磁股份有限公司 一种TOPCon钝化结构及其制备方法
WO2023216628A1 (zh) * 2022-05-07 2023-11-16 通威太阳能(成都)有限公司 异质结太阳电池、其制备方法及发电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916799A (zh) * 2010-07-22 2010-12-15 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池选择性发射结的制备方法
CN103606596A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN104743559A (zh) * 2015-03-23 2015-07-01 常州大学 一种冶金级多晶硅掺磷吸杂的方法
CN106299021A (zh) * 2016-08-17 2017-01-04 横店集团东磁股份有限公司 一种高开路电压的单晶电池扩散工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916799A (zh) * 2010-07-22 2010-12-15 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池选择性发射结的制备方法
CN103606596A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN104743559A (zh) * 2015-03-23 2015-07-01 常州大学 一种冶金级多晶硅掺磷吸杂的方法
CN106299021A (zh) * 2016-08-17 2017-01-04 横店集团东磁股份有限公司 一种高开路电压的单晶电池扩散工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姜婷婷: "太阳电池用晶体硅中金属杂质与缺陷的相互作用研究", 《中国博士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》 *
陈哲艮 等: "《晶体硅太阳电池制造工艺原理》", 31 March 2017, 电子工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216628A1 (zh) * 2022-05-07 2023-11-16 通威太阳能(成都)有限公司 异质结太阳电池、其制备方法及发电装置
CN114664979A (zh) * 2022-05-26 2022-06-24 横店集团东磁股份有限公司 一种TOPCon钝化结构及其制备方法

Similar Documents

Publication Publication Date Title
CN102856174B (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
CN109065643A (zh) 一种基于掺杂多晶硅锗薄膜的n型晶体硅太阳电池及其制备方法
Balaji et al. Surface passivation schemes for high-efficiency c-Si solar cells-A review
CN102446991A (zh) 基于晶硅的薄膜太阳能电池及其制造方法
CN110112226A (zh) 一种新型全钝化接触晶体硅太阳能电池及其制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN106531834A (zh) 一种hit太阳能电池及其制备方法
CN110047972A (zh) 一种新型多晶硅掺杂p扩散制备工艺方法
CN109545893A (zh) 一种n型太阳能电池多步硼扩散工艺
CN103258919B (zh) 非晶硅与多晶硅薄膜界面钝化及制备spa结构hit电池的方法
CN111816731A (zh) 一种制作hbc电池背面掺杂非晶硅的方法
CN100416863C (zh) 廉价多晶硅薄膜太阳电池
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
CN105244411B (zh) 一种硅基太阳能电池及其单晶硅片钝化方法
CN104752564A (zh) 一种提高多晶硅开路电压的新型扩散工艺
CN109873042B (zh) 一种适用于选择发射极太阳能电池扩散工艺
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN104505419B (zh) 具有过渡层的晶硅及碳化硅薄膜复合型单结pin太阳能电池及其制备方法
CN103367480B (zh) GaAs隧道结及其制备方法
CN101840941A (zh) 具有光伏和光电导效应的掺铁碳薄膜材料及其制备方法
CN110634995B (zh) 一种低光衰钝化接触太阳能电池的制备方法
CN104576801B (zh) 具有过渡层的晶硅及硅薄膜复合型单结pin太阳能电池及其制备方法
CN102820382A (zh) 一种制备p+掺杂层与n+前表面场的方法
CN112103368A (zh) 一种用于多晶硅薄膜的激光掺杂方法
CN217522018U (zh) 一种n型钝化接触太阳能电池片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190723