CN106531834A - 一种hit太阳能电池及其制备方法 - Google Patents

一种hit太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106531834A
CN106531834A CN201611090552.1A CN201611090552A CN106531834A CN 106531834 A CN106531834 A CN 106531834A CN 201611090552 A CN201611090552 A CN 201611090552A CN 106531834 A CN106531834 A CN 106531834A
Authority
CN
China
Prior art keywords
silicon
type
layer
silicon layer
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611090552.1A
Other languages
English (en)
Other versions
CN106531834B (zh
Inventor
曾祥斌
郭富城
徐素娥
李寒剑
丁佳
王文照
王硕
付永胜
胡说
胡一说
周广通
吴少雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611090552.1A priority Critical patent/CN106531834B/zh
Publication of CN106531834A publication Critical patent/CN106531834A/zh
Application granted granted Critical
Publication of CN106531834B publication Critical patent/CN106531834B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种HIT(Heterojunction with Intrinsic Thin‑layer)太阳能电池及其制备方法,该电池的组成包括N型单晶硅衬底(N‑c‑Si)、本征氢化非晶硅层(a‑Si:H)、低氢气稀释比(RH)的P型微晶硅层、高RH的P型微晶硅层、ITO(indium tin oxide)透明导电薄膜、正面栅线电极、DBRs(Distributed Bragg reflectors)、背电极。DBRs是由三层重掺杂N型非晶硅薄膜和氮化硅薄膜构成。本发明优化了HIT太阳能电池窗口层和背反射层的结构,能够大大提升电池对近红外光的吸收,降低串联电阻,提升开路电压和短路电流,进而提升太阳能电池效率。

Description

一种HIT太阳能电池及其制备方法
技术领域
本发明属于微电子制造技术领域,也属于新能源领域,更具体地,涉及一种带DBRs(Distributed Bragg reflectors,分布式布拉格反射器)的HIT(Heterojunction withIntrinsic Thin-layer,带有本征薄层的异质结)太阳电池及其制备方法。
背景技术
能源是人类社会经济发展的动力,是社会发展之本。本世纪人类面临着实现经济和社会可持续发展的重大挑战,在有限资源和环境保护的严峻形势下人类如何进行可持续发展已成为全球热点问题。人类一切活动均离不开能源,社会发展依赖能源。常规能源如煤、石油和天然气匮乏不足,可支撑全球发展时间不多,更重要的是化石能源的开发利用带来了如土地资源被毁、环境污染和温室效应等问题,对人类生活环境造成不可恢复的损伤。太阳能清洁污染、取之不尽用之不竭,既可免费使用,又无需运输,符合未来新能源的发展要求。
目前,占主流的太阳能电池仍是晶体硅太阳能电池。虽然晶体硅太阳能电池的转换效率目前已达到25%左右,但是成本还是太贵,原因是晶体硅太阳能电池需要经过高温扩散工艺形成PN结,还需要许多复杂工艺来获得高转换效率。为了降低成本,同时保持高转换效率,采用非晶硅/单晶硅异质结是很好的选择。HIT太阳能电池采用非晶硅薄膜/单晶硅衬底异质结结构,综合了单晶硅和非晶硅太阳能电池的优点,是充分发挥各自长处的最佳设计。
HIT太阳能电池一般通过PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积)系统制备。其P型窗口层在低氢气稀释比(RH)下制备,其光透过率和电导率都比较低;而在高RH下制备,高能氢等离子会对本征非晶硅层造成损伤,使得界面复合增加。
发明内容
针对现有技术的缺陷,本发明的目的在于提高HIT太阳能电池效率,旨在解决P型窗口层性能不佳的问题。
本发明提供了一种HIT太阳能电池,包括:N型单晶硅衬底、本征氢化非晶硅层、第一P型微晶硅层、第二P型微晶硅层、第一ITO透明导电薄膜、正面栅线电极、第二ITO透明导电薄膜和背电极;在N型单晶硅衬底的一面依次附着有本征氢化非晶硅层、第一P型微晶硅层、第二P型微晶硅层和第一ITO透明导电薄膜,在N型单晶硅衬底的另一面附着有第二ITO透明导电薄膜,在第二ITO透明导电薄膜上设置有背电极;正面栅线电极设置在第一ITO透明导电薄膜上;所述第二P型微晶硅层的氢气稀释比RH大于所述第一P型微晶硅层的氢气稀释比RH
更进一步地,HIT太阳能电池还包括设置在第二ITO透明导电薄膜上的DBRs,所述DBRs包括:依次附着在第二ITO透明导电薄膜上的第一N型非晶硅薄膜、第一氮化硅薄膜,第二N型非晶硅薄膜、第二氮化硅薄膜,第三N型非晶硅薄膜和第三氮化硅薄膜。
更进一步地,第一P型微晶硅层的厚度为4nm~10nm;第二P型微晶硅层的厚度为15nm~40nm。
更进一步地,在所述DBRs中,第一N型非晶硅薄膜、第二N型非晶硅薄膜和第三N型非晶硅薄膜的厚度da-Si=λ/4na-si,第一氮化硅薄膜、第二氮化硅薄膜和第三氮化硅薄膜的厚度其中λ为波长,na‐Si为N+非晶硅层的折射率,为氮化硅层的折射率。
更进一步地,第一N型非晶硅薄膜、第二N型非晶硅薄膜和第三N型非晶硅薄膜的厚度为57nm~78nm,第一氮化硅薄膜、第二氮化硅薄膜和第三氮化硅薄膜的厚度为99nm~136nm。
本发明还提供了一种HIT太阳能电池的制备方法,包括下述步骤:
(1)清洗硅片并制备绒面,得到洁净并具有绒面的单晶硅片A;
(2)采用H等离子钝化A的上表面、并用PECVD在A的上表面制备本征非晶硅层,得到带有本征非晶硅薄膜的硅片B;
(3)在PECVD系统中通入SiH4、H2和BH3,并在B的上表面制备低RH的P型微晶硅层,得到的硅片C;
(4)在PECVD系统中通入SiH4、H2和BH3,在C的上表面制备高RH的P型微晶硅层,得到的硅片D;
(5)在D的上表面和下表面分别制备ITO透明导电薄膜后获得硅片E;
(6)用掩膜板遮住E的部分下表面,采用PECVD的方法,在E的下表面依次沉积厚度为57nm~78nm重掺杂的N型非晶硅和厚度为99nm~136nm氮化硅;并重复两次后获得带DBRs的硅片F;
(7)在F的上表面制备铝栅电极后获得H;
(8)用掩模板遮住H的下表面制备了DBRs的区域,在H的下表面制备金属铝背电极,获得带DBRs的HIT太阳能电池。
更进一步地,在步骤(3)中,BH3/SiH4=0.01~0.03,SiH4/(H2+SiH4)=0.7%~1.5%,时间30s~60s,功率80W~120W,温度150℃~200℃,真空室压强保持在80Pa~150Pa,流量控制在30sccm~60sccm。
更进一步地,在步骤(4)中,BH3/SiH4=0.01~0.03,SiH4/(H2+SiH4)=0.3%~0.5%,时间150s~300s,功率80W~120W,温度150℃~200℃,真空室压强保持在80Pa~150Pa,流量控制在30sccm~60sccm。
本发明通过优化P型窗口层既能减小对本征层的损伤,又能减少P型窗口层对光的吸收和提高导电性。并在电池的背表面设计一个DBRs,可以提高HIT太阳能电池对800nm~1100nm波段范围的光的吸收,进而能有更高的量子效率,提高开路电压和短路电流,使电池的转换效率有明显的提升。从而HIT太阳能电池光电转换效率更加接近传统晶体硅太阳能电池。
附图说明
图1是本发明的带DBRs的HIT太阳电池结构示意图。其中,1为第一ITO透明导电薄膜,2为高RH的P型微晶硅层,3为低RH的P型微晶硅层,4为本征氢化非晶硅层,5为N型单晶硅衬底,6为背电极,7为重掺杂N型非晶硅薄膜,8为氮化硅薄膜,9为正面Al栅线电极,10为第二ITO透明导电薄膜。
图2带DBRs的HIT太阳电池工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的目的是针对当前HIT太阳能电池对近红外光的吸收不足,设计了一种DBRs背反射结构;以及对HIT太阳能电池窗口层进行优化,来降低界面缺陷,减小窗口层对光的吸收,并提高导电率,可以有效的提高电池的转换效率。
HIT太阳能电池对800nm~1100nm波段范围内的太阳光吸收系数较低。在电池的背表面设计一个DBRs,可以提高HIT太阳能电池对这个波段范围的光的吸收,进而能有更高的量子效率,提高开路电压和短路电流,使电池的转换效率有明显的提升。由N+-a-Si/Si3N4薄膜构成的DBRs结构,其中da-Si=λ/4na-si,da-Si为N+非晶硅层的厚度,λ为波长,na‐Si为N+非晶硅层的折射率(约为3.5),为氮化硅层的厚度,为氮化硅层的折射率(约为2.02)。该结构对800nm~1100nm的光的反射率达到70%~90%,使得N型晶硅衬底能够更好的吸收该波段范围内的光,从而其电池光电转换效率更加接近传统晶体硅太阳能电池。
HIT太阳能电池中N型单晶体硅衬底作为吸收层,因此要减少P型窗口层对光的吸收。P型窗口层的晶化率越高,其导电性越好,吸收系数越小。通过控制氢气稀释比可以控制P型窗口层的晶化率,且氢气稀释比越大,其晶化率越高。但是,过高的氢气稀释比会对底下的本征层造成损伤。因此,通过先制备一层低RH的P型微晶硅层,然后在其上制备高氢RH的P型微晶硅层。这样,既能减小对本征层的损伤,又能减少P型窗口层对光的吸收和提高导电性。
如图1所示,本发明提供了一种HIT太阳能电池,包括:N型单晶硅衬底(N-c-Si)5、本征氢化非晶硅层(a-Si:H)4、第一P型微晶硅层3、第二P型微晶硅层2、第一ITO(indiumtin oxide)透明导电薄膜1、正面栅线电极9、第二ITO透明导电薄膜10、背电极6;在N型单晶硅衬底5的一面依次附着有本征氢化非晶硅层4、第一P型微晶硅层3、第二P型微晶硅层2和第一ITO透明导电薄膜1,在N型单晶硅衬底5的另一面附着有第二ITO透明导电薄膜10,在第二ITO透明导电薄膜10上设置有背电极6;正面栅线电极9设置在第一ITO透明导电薄膜1上。其中,第二P型微晶硅层的RH大于第一P型微晶硅层的RH
HIT太阳能电池中N型单晶体硅衬底作为吸收层,因此要减少P型窗口层对光的吸收。P型窗口层的晶化率越高,其导电性越好,吸收系数越小。通过控制氢气稀释比可以控制P型窗口层的晶化率,且氢气稀释比越大,其晶化率越高。但是,过高的氢气稀释比会对底下的本征层造成损伤。因此先在本征层上制备低RH的第一P型微晶硅层,来减小对H等离子体对本征层的损伤;再制备高RH的第二P型微晶硅层,来提高窗口层的电导率和光透过率。
在本发明中,HIT太阳能电池还包括DBRs,设置在第二ITO透明导电薄膜10上;且DBRs是由三层重掺杂N型非晶硅薄膜7和氮化硅薄膜8相互交叠构成,即在第二ITO透明导电薄膜10上依次附着有第一N型非晶硅薄膜、第一氮化硅薄膜,第二N型非晶硅薄膜、第二氮化硅薄膜,第三N型非晶硅薄膜和第三氮化硅薄膜。
针对HIT太阳能电池对800nm~1100nm波段范围内的太阳光吸收系数较低。在电池的背表面设计一个DBRs,可以提高HIT太阳能电池对这个波段范围的光的吸收,进而能有更高的量子效率,提高开路电压和短路电流,使电池的转换效率得到提升。
所述的HIT太阳能电池,从正面到背面,依次为正面Al栅线电极9、ITO透明导电薄膜1、高RH的P型微晶硅层2、低RH的P型微晶硅层3、本征氢化非晶硅层4、N型单晶硅衬底5、ITO透明导电薄膜10、第一N型非晶硅薄膜、第一氮化硅薄膜、第二N型非晶硅薄膜、第二氮化硅薄膜、第三N型非晶硅薄膜、第三氮化硅薄膜。HIT太阳能电池,低RH的P型微晶硅层的厚度为4nm~10nm;高RH的P型微晶硅层的厚度为15nm~40nm;N+非晶硅层的厚度为57nm~78nm,氮化硅的厚度为99nm~136nm。低RH的P型微晶硅层的作用主要是保护本征非晶硅层,太厚会增加电池的串联电阻和光学损失,太薄又起不到保护的作用;高RH的P型微晶硅层需要一定厚度来形成PN结的势垒区,太厚也会增加电池的串联电阻和光学损失。选择合适厚度的N+非晶硅层和氮化硅层,可以增加电池对800nm~1100nm波段范围内的太阳光的吸收。
如图2所示,HIT太阳能电池的制备方法包括以下步骤:
(1)清洗硅片并制备绒面,得到洁净并具有绒面的单晶硅片,记作A。
(2)采用H等离子钝化A的上表面、并用PECVD(Plasma Enhanced Chemical VaporDeposition)在A的上表面制备本征非晶硅层,得到带有本征非晶硅薄膜的硅片,记作B。
(3)在PECVD系统中通入SiH4、H2和BH3,在B的上表面制备低RH的P型微晶硅层,BH3/SiH4=0.01~0.03,SiH4/(H2+SiH4)=0.7%~1.5%,时间30s~60s,功率80W~120W,温度150℃~200℃,真空室压强保持在80Pa~150Pa,流量控制在30sccm~60sccm,得到的硅片记作C;
PECVD系统利用射频辉光放电在两电极间产生低温等离子体,样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜。
通过控制BH3掺杂浓度、沉积功率、温度、压强和气体流量可以制备高质量P型微晶硅薄膜,沉积时间主要是用来控制薄膜厚度,SiH4/(H2+SiH4)在0.7%~1.5%这个范围内为低RH
(4)在PECVD系统中通入SiH4、H2和BH3,在C的上表面制备高RH的P型微晶硅层,BH3/SiH4=0.01~0.03,SiH4/(H2+SiH4)=0.3%~0.5%,时间150s~300s,功率80W~120W,温度150℃~200℃,真空室压强保持在80Pa~150Pa,流量控制在30sccm~60sccm,得到的硅片记作D;
通过控制BH3掺杂浓度、沉积功率、温度、压强和气体流量可以制备高质量P型微晶硅薄膜,沉积时间主要是用来控制薄膜厚度,SiH4/(H2+SiH4)在0.3%~0.5%这个范围内为高RH
(5)在D的上表面和下表面分别制备ITO透明导电薄膜,得到的硅片记作E;
(6)用掩膜板遮住E的部分下表面,采用PECVD的方法,在E的下表面依次沉积厚度为57nm~78nm重掺杂的N型非晶硅和厚度为99nm~136nm氮化硅;
(7)重复步骤(6)两次,制备带DBRs的硅片,记作F;
(8)在F的上表面制备铝栅电极,得到H;
(9)用掩模板遮住H的下表面制备了DBRs的区域,在H的下表面制备金属铝背电极,从而最终得到带DBRs的HIT太阳能电池。
本发明通过优化P型窗口层既能减小对本征层的损伤,又能减少P型窗口层对光的吸收和提高导电性。并在电池的背表面设计一个DBRs,可以提高HIT太阳能电池对800nm~1100nm波段范围的光的吸收,进而能有更高的量子效率,提高开路电压和短路电流,使电池的转换效率有明显的提升。从而HIT太阳能电池光电转换效率更加接近传统晶体硅太阳能电池。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1是本发明实施例提供的带DBRs的HIT太阳电池示意图。低RH的P型微晶硅层的厚度为4nm~10nm;高RH的P型微晶硅层的厚度为15nm~40nm;N+非晶硅层的厚度为57nm~78nm,氮化硅的厚度为99nm~136nm。
现借助具体实例进一步详细说明本发明提供的带DBRs的HIT太阳电池制备技术:
实例1:
(1)采用标准RCA清洗工艺处理N型单晶硅衬底,去除表面的颗粒物、有机物和金属杂质,其中硅片厚度为250um;并采用1.1wt%NaOH、3vol%IPA和1.1wt%Na2SiO4的混合溶液在80℃条件下腐蚀N型单晶硅衬底25min,获得洁净并具有绒面的单晶硅片,记作A;
(2)在PECVD系统中通入NH3,用H等离子轰击A的上表面来达到钝化效果,流量控制在25sccm,真空室压强保持在1Pa,时间30s,功率60W,温度100℃,;在PECVD系统中通入SiH4,流量控制在40sccm,真空室压强保持在133Pa,时间30s,功率80W,温度180℃,在A的上表面制备本征氢化非晶硅层,得到B;
(3)在PECVD系统中通入SiH4、H2和BH3,在B的上表面制备低RH的P型微晶硅层,BH3/SiH4=0.015,SiH4/(H2+SiH4)=0.9%,时间30s,功率100W,温度180℃,真空室压强保持在100Pa,流量控制在40sccm,得到C;
(4)在PECVD系统中通入SiH4、H2和BH3,在C的上表面制备高RH的P型微晶硅层,BH3/SiH4=0.015,SiH4/(H2+SiH4)=0.4%,时间150s,功率100W,温度180℃,真空室压强保持在100Pa,流量控制在40sccm,得到D;
(5)采用磁控溅射的方法在D的上表面和下表面分别制备80nm的ITO透明导电薄膜,得到E;
(6)用掩膜板遮住E的部分下表面,采用PECVD的方法,在E的下表面依次沉积厚度为57nm重掺杂的N型非晶硅和厚度为99nm氮化硅;
(7)重复步骤(6)两次,得到F;
(8)采用丝网印刷技术在F的上表面印刷银浆,膜的厚度为10um,然后低温烧结制成电极,烧结温度为300℃,时间为2小时,形成铝栅电极,得到G;
(9)用掩模板遮住G的下表面制备了DBRs的区域,在G的下表面,热蒸发制备厚度为150nm的金属铝背电极,并在H2气氛下退火,退火温度为450℃,退火处理时间为30min,从而最终得到带DBRs的HIT太阳能电池。
实例2:
(1)采用标准RCA清洗工艺处理N型单晶硅衬底,去除表面的颗粒物、有机物和金属杂质,其中硅片厚度为250um;并采用1.1wt%NaOH、3vol%IPA和1.1wt%Na2SiO4的混合溶液在80℃条件下腐蚀N型单晶硅衬底25min,获得洁净并具有绒面的单晶硅片,记作A;;
(2)在PECVD系统中通入NH3,用H等离子轰击A的上表面来达到钝化效果,流量控制在25sccm,真空室压强保持在1Pa,时间30s,功率60W,温度100℃;在PECVD系统中通入SiH4,流量控制在40sccm,真空室压强保持在133Pa,时间30s,功率80W,温度180℃,在A的上表面制备本征氢化非晶硅层,得到B;
(3)在PECVD系统中通入SiH4、H2和BH3,在B的上表面制备低RH的P型微晶硅层,BH3/SiH4=0.01,SiH4/(H2+SiH4)=0.7%,时间45s,功率100W,温度200℃,真空室压强保持在150Pa,流量控制在30sccm,得到C;
(4)在PECVD系统中通入SiH4、H2和BH3,在C的上表面制备高RH的P型微晶硅层,BH3/SiH4=0.02,SiH4/(H2+SiH4)=0.4%,时间225s,功率100W,温度200℃,真空室压强保持在150Pa,流量控制在30sccm,得到D;
(5)采用磁控溅射的方法在D的上表面和下表面分别制备80nm的ITO透明导电薄膜,得到E;
(6)用掩膜板遮住E的部分下表面,采用PECVD的方法,在E的下表面依次沉积厚度为63nm重掺杂的N型非晶硅和厚度为109nm氮化硅;
(7)重复步骤(6)两次,得到F;
(8)采用丝网印刷技术在F的上表面印刷银浆,膜的厚度为10um,然后低温烧结制成电极,烧结温度为300℃,时间为2小时,形成铝栅电极,得到G;
(9)用掩模板遮住G的下表面制备了DBRs的区域,在G的下表面,热蒸发制备厚度为150nm的金属铝背电极,并在H2气氛下退火,退火温度为450℃,退火处理时间为30min,从而最终得到带DBRs的HIT太阳能电池。
由于制备太阳能电池的步骤是相同的,各个实施例之间的区别仅仅是各个参数的区别的,为了节省篇幅,上述实例仅仅给出了个别实施例中的参数;具体实例如下表1所示,表1示出了HIT太阳能电池的制备方法实施例。
表1
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种HIT太阳能电池,其特征在于,包括:N型单晶硅衬底(5)、本征氢化非晶硅层(4)、第一P型微晶硅层(3)、第二P型微晶硅层(2)、第一ITO透明导电薄膜(1)、正面栅线电极(9)、第二ITO透明导电薄膜(10)和背电极(6);
在N型单晶硅衬底(5)的一面依次附着有本征氢化非晶硅层(4)、第一P型微晶硅层(3)、第二P型微晶硅层(2)和第一ITO透明导电薄膜(1),在N型单晶硅衬底(5)的另一面附着有第二ITO透明导电薄膜(10),在第二ITO透明导电薄膜(10)上设置有背电极(6);正面栅线电极(9)设置在第一ITO透明导电薄膜(1)上;所述第二P型微晶硅层的氢气稀释比RH大于所述第一P型微晶硅层的氢气稀释比RH
2.如权利要求1所述的HIT太阳能电池,其特征在于,所述HIT太阳能电池还包括设置在第二ITO透明导电薄膜(10)上的DBRs,所述DBRs包括:依次附着在第二ITO透明导电薄膜(10)上的第一N型非晶硅薄膜、第一氮化硅薄膜,第二N型非晶硅薄膜、第二氮化硅薄膜,第三N型非晶硅薄膜和第三氮化硅薄膜。
3.如权利要求1或2所述的HIT太阳能电池,其特征在于,第一P型微晶硅层的厚度为4nm~10nm;第二P型微晶硅层的厚度为15nm~40nm。
4.如权利要求2所述的HIT太阳能电池,其特征在于,在所述DBRs中,第一N型非晶硅薄膜、第二N型非晶硅薄膜和第三N型非晶硅薄膜的厚度da-Si=λ/4na-si,第一氮化硅薄膜、第二氮化硅薄膜和第三氮化硅薄膜的厚度其中λ为波长,na‐Si为N+非晶硅层的折射率,为氮化硅层的折射率。
5.如权利要求2所述的HIT太阳能电池,其特征在于,第一N型非晶硅薄膜、第二N型非晶硅薄膜和第三N型非晶硅薄膜的厚度为57nm~78nm,第一氮化硅薄膜、第二氮化硅薄膜和第三氮化硅薄膜的厚度为99nm~136nm。
6.一种HIT太阳能电池的制备方法,其特征在于,包括下述步骤:
(1)清洗硅片并制备绒面,得到洁净并具有绒面的单晶硅片A;
(2)采用H等离子钝化A的上表面、并用PECVD在A的上表面制备本征非晶硅层,得到带有本征非晶硅薄膜的硅片B;
(3)在PECVD系统中通入SiH4、H2和BH3,并在B的上表面制备低RH的P型微晶硅层,得到的硅片C;
(4)在PECVD系统中通入SiH4、H2和BH3,在C的上表面制备高RH的P型微晶硅层,得到的硅片D;
(5)在D的上表面和下表面分别制备ITO透明导电薄膜后获得硅片E;
(6)用掩膜板遮住E的部分下表面,采用PECVD的方法,在E的下表面依次沉积厚度为57nm~78nm重掺杂的N型非晶硅和厚度为99nm~136nm氮化硅;并重复两次后获得带DBRs的硅片F;
(7)在F的上表面制备铝栅电极后获得H;
(8)用掩模板遮住H的下表面制备了DBRs的区域,在H的下表面制备金属铝背电极,获得带DBRs的HIT太阳能电池。
7.如权利要求6所述的制备方法,其特征在于,在步骤(3)中,BH3/SiH4=0.01~0.03,SiH4/(H2+SiH4)=0.7%~1.5%,时间30s~60s,功率80W~120W,温度150℃~200℃,真空室压强保持在80Pa~150Pa,流量控制在30sccm~60sccm。
8.如权利要求6或7所述的制备方法,其特征在于,在步骤(4)中,BH3/SiH4=0.01~0.03,SiH4/(H2+SiH4)=0.3%~0.5%,时间150s~300s,功率80W~120W,温度150℃~200℃,真空室压强保持在80Pa~150Pa,流量控制在30sccm~60sccm。
CN201611090552.1A 2016-11-30 2016-11-30 一种hit太阳能电池及其制备方法 Expired - Fee Related CN106531834B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611090552.1A CN106531834B (zh) 2016-11-30 2016-11-30 一种hit太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611090552.1A CN106531834B (zh) 2016-11-30 2016-11-30 一种hit太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN106531834A true CN106531834A (zh) 2017-03-22
CN106531834B CN106531834B (zh) 2018-01-30

Family

ID=58354159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611090552.1A Expired - Fee Related CN106531834B (zh) 2016-11-30 2016-11-30 一种hit太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106531834B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545656A (zh) * 2018-10-12 2019-03-29 南昌大学 氢化非晶硅薄膜制备方法
CN110620163A (zh) * 2019-10-28 2019-12-27 成都晔凡科技有限公司 异质结太阳能电池片、叠瓦组件及其制造方法
CN112382680A (zh) * 2020-10-09 2021-02-19 浙江爱旭太阳能科技有限公司 基于激光诱导的hjt电池的制备方法及hjt电池
CN113394309A (zh) * 2021-01-30 2021-09-14 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种太阳能电池及其制备方法
CN114497260A (zh) * 2022-02-08 2022-05-13 上海理想万里晖薄膜设备有限公司 用于制造异质结太阳能电池的方法及异质结太阳能电池
CN114566561A (zh) * 2020-11-27 2022-05-31 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及其制作方法
CN114628533A (zh) * 2020-11-27 2022-06-14 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202788A (en) * 1981-06-09 1982-12-11 Matsushita Electric Ind Co Ltd Manufacture of amorphous photoelectric conversion element
WO2010098538A2 (en) * 2009-02-25 2010-09-02 Lg Electronics Inc. Solar cell and method of manufacturing the same
CN102064236A (zh) * 2010-11-19 2011-05-18 理想能源设备有限公司 薄膜太阳能电池的制造方法
CN102105992A (zh) * 2008-11-27 2011-06-22 三菱重工业株式会社 光电转换装置的制造方法
US20110253203A1 (en) * 2010-04-20 2011-10-20 Seung-Yeop Myong Tandem photovoltaic device and method for manufacturing the same
CN102569479A (zh) * 2012-02-28 2012-07-11 常州天合光能有限公司 叠层硅基异质结太阳能电池
CN105655425A (zh) * 2016-04-08 2016-06-08 陈立新 一种基于硅纳米结构的光电转换器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202788A (en) * 1981-06-09 1982-12-11 Matsushita Electric Ind Co Ltd Manufacture of amorphous photoelectric conversion element
CN102105992A (zh) * 2008-11-27 2011-06-22 三菱重工业株式会社 光电转换装置的制造方法
WO2010098538A2 (en) * 2009-02-25 2010-09-02 Lg Electronics Inc. Solar cell and method of manufacturing the same
US20110253203A1 (en) * 2010-04-20 2011-10-20 Seung-Yeop Myong Tandem photovoltaic device and method for manufacturing the same
CN102064236A (zh) * 2010-11-19 2011-05-18 理想能源设备有限公司 薄膜太阳能电池的制造方法
CN102569479A (zh) * 2012-02-28 2012-07-11 常州天合光能有限公司 叠层硅基异质结太阳能电池
CN105655425A (zh) * 2016-04-08 2016-06-08 陈立新 一种基于硅纳米结构的光电转换器件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545656A (zh) * 2018-10-12 2019-03-29 南昌大学 氢化非晶硅薄膜制备方法
CN110620163A (zh) * 2019-10-28 2019-12-27 成都晔凡科技有限公司 异质结太阳能电池片、叠瓦组件及其制造方法
CN110620163B (zh) * 2019-10-28 2024-05-24 通威太阳能(金堂)有限公司 异质结太阳能电池片、叠瓦组件及其制造方法
CN112382680A (zh) * 2020-10-09 2021-02-19 浙江爱旭太阳能科技有限公司 基于激光诱导的hjt电池的制备方法及hjt电池
CN114566561A (zh) * 2020-11-27 2022-05-31 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及其制作方法
CN114628533A (zh) * 2020-11-27 2022-06-14 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及其制作方法
CN114628533B (zh) * 2020-11-27 2024-02-13 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及其制作方法
CN113394309A (zh) * 2021-01-30 2021-09-14 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种太阳能电池及其制备方法
CN114497260A (zh) * 2022-02-08 2022-05-13 上海理想万里晖薄膜设备有限公司 用于制造异质结太阳能电池的方法及异质结太阳能电池
CN114497260B (zh) * 2022-02-08 2024-01-09 理想万里晖半导体设备(上海)股份有限公司 用于制造异质结太阳能电池的方法及异质结太阳能电池

Also Published As

Publication number Publication date
CN106531834B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN106531834B (zh) 一种hit太阳能电池及其制备方法
Yan et al. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells
KR100900443B1 (ko) 태양전지 및 그의 제조방법
US9887306B2 (en) Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
CN210926046U (zh) 太阳能电池
KR101066394B1 (ko) 광기전력 장치 및 광기전력 장치의 제조 방법
US8354585B2 (en) Solar cell and method of fabricating the same
US20100243042A1 (en) High-efficiency photovoltaic cells
CN102064216A (zh) 一种新型晶体硅太阳电池及其制作方法
CN104733557B (zh) Hit太阳能电池及提高hit电池的短路电流密度的方法
KR102350885B1 (ko) 태양 전지
CN214043679U (zh) 太阳能电池
CN112820793A (zh) 太阳能电池及其制备方法
JP2008034543A (ja) 光電変換素子およびその製造方法
TWI493605B (zh) 背面電極層的製造方法
CN114256361A (zh) 一种太阳能电池、光伏组件
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN212874518U (zh) 太阳能电池
CN112349801B (zh) 叠层电池的中间串联层及生产方法、叠层电池
CN104465803A (zh) 一种背发射极异质结太阳电池及制备方法
CN108538952A (zh) 晶体硅高效太阳能电池结构及其制作方法
CN110797428A (zh) 异质结太阳能电池
CN216084905U (zh) CdTe/晶硅叠层电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180130

Termination date: 20181130

CF01 Termination of patent right due to non-payment of annual fee