CN112382680A - 基于激光诱导的hjt电池的制备方法及hjt电池 - Google Patents

基于激光诱导的hjt电池的制备方法及hjt电池 Download PDF

Info

Publication number
CN112382680A
CN112382680A CN202011073252.9A CN202011073252A CN112382680A CN 112382680 A CN112382680 A CN 112382680A CN 202011073252 A CN202011073252 A CN 202011073252A CN 112382680 A CN112382680 A CN 112382680A
Authority
CN
China
Prior art keywords
layer
type
laser
sio
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011073252.9A
Other languages
English (en)
Inventor
张小明
田得雨
盛健
林纲正
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Aiko Solar Energy Technology Co Ltd
Guangdong Aiko Technology Co Ltd
Tianjin Aiko Solar Energy Technology Co Ltd
Original Assignee
Zhejiang Aiko Solar Energy Technology Co Ltd
Guangdong Aiko Technology Co Ltd
Tianjin Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Aiko Solar Energy Technology Co Ltd, Guangdong Aiko Technology Co Ltd, Tianjin Aiko Solar Energy Technology Co Ltd filed Critical Zhejiang Aiko Solar Energy Technology Co Ltd
Priority to CN202011073252.9A priority Critical patent/CN112382680A/zh
Publication of CN112382680A publication Critical patent/CN112382680A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于激光诱导的HJT电池的制备方法,采用激光对N型a‑Si:H层及P型a‑Si:H层进行诱导晶化处理形成N型nc‑Si:H层、P型nc‑Si:H层,本发明还公开了一种基于激光诱导的HJT电池,包括硅片衬底、所述硅片衬底正面依次设有正面SiO2层、N型nc‑Si:H层、正面TCO层和正面电极;所述硅片衬底的背面依次设有背面SiO2层、P型nc‑Si:H层、背面TCO层和背面电极。采用本发明,所述nc‑Si:H层具有比a‑Si:H层更宽的光学带隙和更高的电导率,对光的寄生吸收少,与TCO层的接触电阻小,且电导率更高;本发明的HJT电池引入了nc‑Si:H层,具有高电池效率、高载流子传输及收集能力及高光转化效率的优点。

Description

基于激光诱导的HJT电池的制备方法及HJT电池
技术领域
本发明涉及光伏高效电池技术领域,尤其涉及一种基于激光诱导的HJT电池的制备方法及HJT电池。
背景技术
随着光伏行业的兴起,市场需求量加大,光伏行业开始研发更高效的电池技术。HJT电池作为近年来业内看好的新电池技术,具有转换效率高、能耗少、工艺流程简单、温度系数小等诸多优点。目前HJT电池的结构中多采用a-Si:H层,然而目前a-Si:H层的材料对光具有明显的寄生吸收作用,而且a-Si:H层的材料本身的电导率也相对低,与TCO层界面接触的电阻高,存在一定的缺点,限制HJT电池质量的进一步提升,目前HJT电池无法满足市场的需求。
发明内容
本发明所要解决的技术问题在于,提供一种基于激光诱导的HJT电池的制备方法,提高HJT电池的电池效率、载流子传输及收集能力及光转化效率。
本发明所要解决的技术问题还在于,提供上述基于激光诱导的HJT电池。
为了解决上述技术问题,本发明提供了一种基于激光诱导的HJT电池的制备方法,包括:
S1、选用硅片衬底,对其进行制绒和清洗处理;
S2、在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层;
S3、在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层;
S4、利用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层;
S5、在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层;
S6、在TCO层的表面形成正面电极和背面电极,得到成品。
作为上述方案的改进,步骤S2包括:
在工艺温度为600-800℃的条件下,通入O2和N2,在硅片的表面形成正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为1-5nm。
作为上述方案的改进,步骤S3包括:
采用PECVD设备在正面SiO2层的表面沉积N型a-Si:H层,所述N型a-Si:H层的厚度为1-10nm,光学带隙为1.5-2.2eV;
采用PECVD设备在背面SiO2层的表面沉积P型a-Si:H层,所述P型a-Si:H层的厚度为1-10nm,光学带隙为1.5-2.2eV。
作为上述方案的改进,步骤S3包括:
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为1-10SLM,H2的流量为5-50SLM,PH3的流量为1-5SLM,沉积温度为180-200℃,沉积压强为50-500Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3/B2H6/B(CH3)3,SiH4的流量为1-10SLM,H2的流量为5-50SLM,BH3/B2H6/B(CH3)3的流量为1-5SLM,沉积温度为140-160℃,沉积压强为50-500Pa。
作为上述方案的改进,步骤S4包括:
利用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层,其中,激光的功率为1-15W,激光处理的时间为50-300s,所述N型nc-Si:H层及P型nc-Si:H层的光学带隙为2.6-2.8eV。
作为上述方案的改进,所述N型a-Si:H层及P型a-Si:H层进行激光诱导晶化后,形成微晶晶粒,所述微晶晶粒嵌入在N型a-Si:H层及P型a-Si:H层中,晶粒尺寸与N型a-Si:H层及P型a-Si:H层的厚度相同,晶粒密度达1018cm-3以上;
所述P型a-Si:H层的暗电导率为0.08-0.1S/cm,所述N型a-Si:H层的暗电导率≥2.0S/cm。
作为上述方案的改进,通过皮秒激光器或飞秒激光器,对N型a-Si:H层及P型a-Si:H层进行连续性诱导晶化处理,其中,激光束斑直径为20-100um,激光束斑扫描速度为1-10cm/s,激光束扫描交叠>50%,激光束功率为1-10W,激光时间为100-200s,硅片衬底的温度为150-200℃。
相应的,本发明还提供了一种基于激光诱导的HJT电池,包括硅片衬底、所述硅片衬底正面依次设有正面SiO2层、N型nc-Si:H层、正面TCO层和正面电极;所述硅片衬底的背面依次设有背面SiO2层、P型nc-Si:H层、背面TCO层和背面电极。
作为上述方案的改进,所述正面SiO2层和背面SiO2层的厚度为1-5nm;
所述N型nc-Si:H层的厚度为1-10nm,光学带隙为2.6-2.8eV,暗电导率≥2.0S/cm;
所述P型nc-Si:H层的厚度为1-10nm,光学带隙为2.6-2.8eV,暗电导率为0.08-0.1S/cm;
所述正面TCO层和背面TCO层的厚度为70-110nm。
作为上述方案的改进,所述N型nc-Si:H层、P型nc-Si:H层是采用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理而形成的,所述N型a-Si:H层及P型a-Si:H层进行激光诱导晶化后,形成微晶晶粒,所述微晶晶粒嵌入在N型a-Si:H层及P型a-Si:H层中,晶粒尺寸与N型a-Si:H层及P型a-Si:H层的厚度相同,晶粒密度达1018cm-3以上。
实施本发明,具有如下有益效果:
本发明利用激光诱导晶化技术,诱导a-Si:H层晶化形成nc-Si:H层,nc-Si:H层与a-Si:H层相比具有更宽的光学带隙,对光的寄生吸收少,与TCO层的接触电阻小,且电导率更高;引入nc-Si:H层的HJT电池具有高电池效率、高载流子传输及收集能力及高光转化效率。本发明的激光诱导晶化技术利用了限制性结晶原理,作用于N/P型a-Si:H层上,使a-Si:H层吸收光子能力从而相变得到N/P型nc-Si:H层,激光诱导晶化后形成的微晶晶粒嵌入在a-Si:H层中,晶粒尺寸与a-Si:H层的厚度相同,晶粒密度可达1018cm-3以上;本发明在所述硅片衬底和所述a-Si:H层之间设有SiO2层,所述SiO2层可以在后续激光诱导步骤中保护硅片衬底免受损伤;所述SiO2层在所述硅片衬底的表面起到钝化作用,还具有控制界面陷阱和固定电荷的作用,此外,所述SiO2层由于吸收系数的差异,基本不吸收激光能量,可在激光诱导晶化工艺过程中,保护硅片衬底,并确保激光的对a-Si:H层有效晶化;本发明中激光诱导晶化工艺采用皮秒或飞秒激光器,所述皮秒或飞秒激光器产生的高能量入射a-Si:H层表面,仅在a-Si:H层表面产生热能效应,不会产生过多的热能传导到a-Si:H层深层位置,以避免工艺过程中产生激光损伤及热损伤。
附图说明
图1是本发明基于激光诱导的HJT电池的制备方法一实施例的流程图;
图2是本发明基于激光诱导的HJT电池的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
参见图1所示,本发明提供了一种基于激光诱导的HJT电池的制备方法,包括:
S1、选用硅片衬底,对其进行制绒和清洗处理;
优选的,可采用O3清洗法或RCA标准清洗法进行制绒清洗。
S2、在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层;
作为步骤S2优选的实施方式,包括:
在工艺温度为600-800℃的条件下,通入O2和N2,在硅片的表面形成正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为1-5nm;
更佳的,所述O2的流量为500-800sccm、N2的流量为3000-5000sccm、工艺时间为1000-2000秒;
所述正面SiO2层和背面SiO2层在所述硅片衬底的表面起到钝化作用,还具有控制界面陷阱和固定电荷的作用,此外,所述SiO2层由于吸收系数的差异,基本不吸收激光能量,可在激光诱导晶化工艺过程中,保护硅片衬底,并确保激光的对a-Si:H层有效晶化;
生长所述SiO2层需要高温环境,而持续的高温会对硅片衬底的质量产生影响,而且厚的SiO2层会影响减反效果,因此结合考虑HJT电池的结构及性能,所述正面SiO2层和背面SiO2层的厚度均控制在1-5nm。
S3、在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层;
作为步骤S3优选的实施方式,包括:
采用PECVD设备在正面SiO2层的表面沉积N型a-Si:H层,所述N型a-Si:H层的厚度为1-10nm,光学带隙为1.5-2.2eV;
采用PECVD设备在背面SiO2层的表面沉积P型a-Si:H层,所述P型a-Si:H层的厚度为1-10nm,光学带隙为1.5-2.2eV;
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为1-10SLM,H2的流量为5-50SLM,PH3的流量为1-5SLM,沉积温度为180-200℃,沉积压强为50-500Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3/B2H6/B(CH3)3,SiH4的流量为1-10SLM,H2的流量为5-50SLM,BH3/B2H6/B(CH3)3的流量为1-5SLM,沉积温度为140-160℃,沉积压强为50-500Pa。
所述N型a-Si:H层和P型a-Si:H层控制1-10nm的厚度范围,能确保在相应的工艺条件下,进一步激光操作下所获得的nc-Si:H层的量子点大小能受到所述a-Si:H层厚度的限制,从而实现激光诱导的限制性晶化效应,当所述a-Si:H层的厚度继续增加,则限制性晶化效应会消失。
S4、利用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层;
具体的,所述激光的功率为1-15W,激光处理的时间为50-300s,所述N型nc-Si:H层及P型nc-Si:H层的光学带隙为2.6-2.8eV;所述N型a-Si:H层及P型a-Si:H层进行激光诱导晶化后,形成微晶晶粒,所述微晶晶粒嵌入在N型a-Si:H层及P型a-Si:H层中,在限制性晶化效应的作用下,晶粒尺寸与N型a-Si:H层及P型a-Si:H层的厚度相同;在此晶粒尺寸下,微晶晶粒能够增强a-Si:H层电导率和光吸收能力,能够避免产生因晶粒尺寸过大,而导致的晶化率增大、影响a-Si:H层钝化效果以及降低电池开路电压的问题。所述P型nc-Si:H层的暗电导率为0.08-0.1S/cm,所述N型nc-Si:H层的暗电导率≥2.0S/cm;所述nc-Si:H层具有比的所述a-Si:H层更宽、更高的光学带隙及更高的暗电导率,更宽、更高的光学带隙能够增强电池的内建电场,高的暗电导率能够提高电池的短路电流密度和开路电压,从而提高电池的光电转化效率。
作为步骤S4更佳的实施方式,包括:
采用皮秒激光器或飞秒激光器,对N型a-Si:H层及P型a-Si:H层进行连续性诱导晶化处理,其中,激光束斑直径为20-100um,激光束斑扫描速度为1-10cm/s,激光束扫描交叠>50%,激光束功率为1-10W,激光时间为100-200s,硅片衬底的温度为150-200℃;
所述皮秒激光器或飞秒激光器所产生的的高能量入射a-Si:H层表面,仅在a-Si:H层表面产生热能效应,不会产生过多的热能传导到a-Si:H层深层位置,以避免工艺过程中产生激光损伤及热损伤。
S5、在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层;
作为步骤S3优选的实施方式,包括:
采用PVD或RPD法分别于N型nc-Si:H层及P型nc-Si:H层的表面形成TCO层,所述TCO层的厚度均为70-110nm。所述TCO层可以保护HJT电池中的PN结,也可以通过控制其厚度使其成为减反层,具有提升电池的转化效率的作用。
S6、在TCO层的表面形成正面电极和背面电极,得到成品;
优选的,所述正面电极和背面电极可以是Ag电极或Cu电极。
综上,本发明采用激光诱导晶化技术,作用于N/P型a-Si:H层,使a-Si:H层吸收光子能力从而相变得到N/P型nc-Si:H层,利用了限制性结晶原理,使激光诱导晶化后形成的微晶晶粒嵌入在nc-Si:H层中,晶粒尺寸与a-Si:H层厚度相当,晶粒密度可达1018cm-3以上;所述N/P型nc-Si:H层具有具有相对更宽的光学带隙和更高的电导率特性,对光的寄生吸收少,与TCO层的接触电阻小;SiO2层由于吸收系数的差异,基本不吸收激光能量,可保证在激光诱导晶化工艺过程中,硅片衬底不被破坏;本发明采用皮秒或飞秒激光器,以避免工艺过程中的激光损伤及热损伤。采用本发明,能够得到具有高电池效率、高载流子传输及收集能力及高光转化效率的HJT电池。
相应的,参见图2所示,本发明还提供了一种基于激光诱导的HJT电池,包括硅片衬底1、所述硅片衬底1正面依次设有正面SiO2层2、N型nc-Si:H层4、正面TCO层6和正面电极8;所述硅片衬底1的背面依次设有背面SiO2层3、P型nc-Si:H层5、背面TCO层7和背面电极9。
所述正面SiO2层2和背面SiO2层3的厚度为1-5nm,SiO2层与所述硅片衬底1具有良好的相容性,可减少界面上载流子复合导致载流子损失的现象,有利于太阳能电池光电转化效率的提高,此外,SiO2层由于吸收系数的差异,基本不吸收激光能量,可在激光诱导晶化工艺过程中,保护所述硅片衬底1;所述N型nc-Si:H层4的厚度为1-10nm,光学带隙为2.6-2.8eV,暗电导率≥2.0S/cm;所述P型nc-Si:H层5的厚度为1-10nm,光学带隙为2.6-2.8eV,暗电导率为0.08-0.1S/cm,nc-Si:H层具有比a-Si:H层更宽的光学带隙,对光的寄生吸收少,与TCO层的接触电阻小,且电导率更高,可提高电池的效率和载流子传输及收集能力;所述正面TCO层6和背面TCO层7的厚度为70-110nm;所述正面电极8和背面电极9可以是Ag电极或Cu电极,但不限于此。
所述N型nc-Si:H层4、P型nc-Si:H层5是采用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理而形成的,所述N型a-Si:H层及P型a-Si:H层进行激光诱导晶化后,形成微晶晶粒,所述微晶晶粒嵌入在N型a-Si:H层及P型a-Si:H层中,晶粒尺寸与N型a-Si:H层及P型a-Si:H层的厚度相同,晶粒密度达1018cm-3以上。
下面以具体实施例进一步阐述本发明
实施例1
一种基于激光诱导的HJT电池的制备方法,包括:
(1)选用N型硅片衬底,对其进行制绒和清洗处理;
(2)采用O2和N2,在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为5nm,其中,工艺温度为800℃、O2的流量为800sccm、N2的流量为5000sccm、工艺时间为2000秒;
(3)采用SiH4、H2和PH3,通过PECVD设备在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层,所述N型a-Si:H层及P型a-Si:H层的厚度为10nm,光学带隙均为1.5-2.2eV;
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为10SLM,H2的流量为50SLM,PH3的流量为5SLM,沉积温度为180℃,沉积压强为50Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3,SiH4的流量为10SLM,H2的流量为50SLM,BH3的流量为5SLM,沉积温度为140℃,沉积压强为50Pa;
(4)利用飞秒激光器对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层,其中,激光束斑直径为100um、激光束斑扫描速度为10cm/s、激光束扫描交叠为70%、激光束功率为10W、激光时间为200s、衬底温度为200℃;得到所述N型nc-Si:H层及P型nc-Si:H层的厚度均为10nm,光学带隙为2.6-2.8eV;所述N型nc-Si:H层的暗电导率约为3.0S/cm,所述P型nc-Si:H层暗电导率约为0.1S/cm;
(5)在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层,所述TCO层的厚度为110nm;
(6)在TCO层的表面形成Ag正面电极和Ag背面电极,得到成品。
实施例2
一种基于激光诱导的HJT电池的制备方法,包括:
(1)选用N型硅片衬底,对其进行制绒和清洗处理;
(2)采用O2和N2,在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为1nm,其中,工艺温度为600℃、O2的流量为500sccm、N2的流量为3000sccm、工艺时间为1000秒;
(3)采用SiH4、H2和PH3,通过PECVD设备在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层,所述N型a-Si:H层及P型a-Si:H层的厚度为1nm,光学带隙均为1.5-2.2eV;
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为1SLM,H2的流量为5SLM,PH3的流量为1SLM,沉积温度为200℃,沉积压强为500Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3,SiH4的流量为1SLM,H2的流量为5SLM,BH3的流量为1SLM,沉积温度为160℃,沉积压强为500Pa;
(4)利用皮秒激光器对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层,其中,激光束斑直径为20um、激光束斑扫描速度为1cm/s、激光束扫描交叠为55%、激光束功率为1W、激光时间为100s、衬底温度为150℃;得到所述N型nc-Si:H层及P型nc-Si:H层的厚度均为1nm,光学带隙为2.6-2.8eV;所述N型nc-Si:H层的暗电导率约为2.0S/cm,所述P型nc-Si:H层暗电导率约为0.08S/cm;
(5)在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层,所述TCO层的厚度为70nm;
(6)在TCO层的表面形成Cu正面电极和Cu背面电极,得到成品。
实施例3
一种基于激光诱导的HJT电池的制备方法,包括:
(1)选用N型硅片衬底,对其进行制绒和清洗处理;
(2)采用O2和N2,在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为3nm,其中,工艺温度为700℃、O2的流量为650sccm、N2的流量为4000sccm、工艺时间为1500秒;
(3)采用SiH4、H2和PH3,通过PECVD设备在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层,所述N型a-Si:H层及P型a-Si:H层的厚度为5nm,光学带隙均为1.5-2.2eV;
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为5SLM,H2的流量为30SLM,PH3的流量为3SLM,沉积温度为190℃,沉积压强为300Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3,SiH4的流量为5SLM,H2的流量为30SLM,BH3的流量为3SLM,沉积温度为150℃,沉积压强为300Pa;
(4)利用飞秒激光器对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层,其中,激光束斑直径为60um、激光束斑扫描速度为5cm/s、激光束扫描交叠为70%、激光束功率为5W、激光时间为150s、衬底温度为170℃;得到所述N型nc-Si:H层及P型nc-Si:H层的厚度均为5nm,光学带隙为2.6-2.8eV;所述N型nc-Si:H层的暗电导率约为2.0S/cm,所述P型nc-Si:H层暗电导率约为0.09S/cm;
(5)在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层,所述TCO层的厚度为90nm;
(6)在TCO层的表面形成Ag正面电极和Ag背面电极,得到成品。
实施例4
一种基于激光诱导的HJT电池的制备方法,包括:
(1)选用N型硅片衬底,对其进行制绒和清洗处理;
(2)采用O2和N2,在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为4nm,其中,工艺温度为750℃、O2的流量为700sccm、N2的流量为4500sccm、工艺时间为1700秒;
(3)采用SiH4、H2和PH3,通过PECVD设备在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层,所述N型a-Si:H层及P型a-Si:H层的厚度为8nm,光学带隙均为1.5-2.2eV;
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为8SLM,H2的流量为40SLM,PH3的流量为4SLM,沉积温度为190℃,沉积压强为400Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3,SiH4的流量为8SLM,H2的流量为40SLM,BH3的流量为4SLM,沉积温度为160℃,沉积压强为400Pa;
(4)利用飞秒激光器对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层,其中,激光束斑直径为80um、激光束斑扫描速度为8cm/s、激光束扫描交叠为75%、激光束功率为7W、激光时间为180s、衬底温度为180℃;得到所述N型nc-Si:H层及P型nc-Si:H层的厚度均为8nm,光学带隙为2.6-2.8eV;所述N型nc-Si:H层的暗电导率约为2.0S/cm,所述P型nc-Si:H层暗电导率约为0.10S/cm;
(5)在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层,所述TCO层的厚度为100nm;
(6)在TCO层的表面形成Cu正面电极和Cu背面电极,得到成品。
将实施例1-4所得的HJT电池进行技术检测,结果如表1所示:
Figure BDA0002715880930000101
表1 HJT电池电性测试结果
由表1可知,本发明的HJT电池与市面上普通的HJT电池相比,具有更高的短路电流和开路电压,其填充因子为83.35%,比普通HJT电池的填充因子要高,表明本电池具有良好的性能;测试结果还表明本发明HJT电池光电转转换效率为23.73%、最大输出功率为5.98W,均比普通HJT电池略有提高。通过HJT电池电性测试结果可证明,采用本发明,能够有效提高HJT电池的性能,生产出合格且具有良好发展潜力的HJT电池。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种基于激光诱导的HJT电池的制备方法,其特征在于,包括:
(1)选用硅片衬底,对其进行制绒和清洗处理;
(2)在硅片的表面通过热氧化工艺沉积正面SiO2层和背面SiO2层;
(3)在正面SiO2层和背面SiO2层的表面分别沉积N型a-Si:H层及P型a-Si:H层;
(4)利用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层;
(5)在N型nc-Si:H层及P型nc-Si:H层的表面分别形成TCO层;
(6)在TCO层的表面形成正面电极和背面电极,得到成品。
2.如权利要求1所述的HJT电池的制备方法,其特征在于,步骤(2)包括:
在工艺温度为600-800℃的条件下,通入O2和N2,在硅片的表面形成正面SiO2层和背面SiO2层,所述正面SiO2层和背面SiO2层的厚度为1-5nm。
3.如权利要求1所述的HJT电池的制备方法,其特征在于,步骤(3)包括:
采用PECVD设备在正面SiO2层的表面沉积N型a-Si:H层,所述N型a-Si:H层的厚度为1-10nm,光学带隙为1.5-2.2eV;
采用PECVD设备在背面SiO2层的表面沉积P型a-Si:H层,所述P型a-Si:H层的厚度为1-10nm,光学带隙为1.5-2.2eV。
4.如权利要求3所述的HJT电池的制备方法,其特征在于,步骤(3)包括:
所述N型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和PH3,SiH4的流量为1-10SLM,H2的流量为5-50SLM,PH3的流量为1-5SLM,沉积温度为180-200℃,沉积压强为50-500Pa;
所述P型a-Si:H层的沉积条件包括:通入的气体源为SiH4、H2和BH3/B2H6/B(CH3)3,SiH4的流量为1-10SLM,H2的流量为5-50SLM,BH3/B2H6/B(CH3)3的流量为1-5SLM,沉积温度为140-160℃,沉积压强为50-500Pa。
5.如权利要求1所述的HJT电池的制备方法,其特征在于,步骤(4)包括:
利用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理,形成N型nc-Si:H层及P型nc-Si:H层,其中,激光的功率为1-15W,激光处理的时间为50-300s,所述N型nc-Si:H层及P型nc-Si:H层的光学带隙为2.6-2.8eV。
6.如权利要求5所述的HJT电池的制备方法,其特征在于,所述N型a-Si:H层及P型a-Si:H层进行激光诱导晶化后,形成微晶晶粒,所述微晶晶粒嵌入在N型a-Si:H层及P型a-Si:H层中,晶粒尺寸与N型a-Si:H层及P型a-Si:H层的厚度相同,晶粒密度达1018cm-3以上;
所述P型a-Si:H层的暗电导率为0.08-0.1S/cm,所述N型a-Si:H层的暗电导率≥2.0S/cm。
7.如权利要求5所述的HJT电池的制备方法,其特征在于,通过皮秒激光器或飞秒激光器,对N型a-Si:H层及P型a-Si:H层进行连续性诱导晶化处理,其中,激光束斑直径为20-100um,激光束斑扫描速度为1-10cm/s,激光束扫描交叠>50%,激光束功率为1-10W,激光时间为100-200s,硅片衬底的温度为150-200℃。
8.一种HJT电池,其特征在于,包括硅片衬底、所述硅片衬底正面依次设有正面SiO2层、N型nc-Si:H层、正面TCO层和正面电极;所述硅片衬底的背面依次设有背面SiO2层、P型nc-Si:H层、背面TCO层和背面电极。
9.如权利要求8所述的HJT电池,其特征在于,所述正面SiO2层和背面SiO2层的厚度为1-5nm;
所述N型nc-Si:H层的厚度为1-10nm,光学带隙为2.6-2.8eV,暗电导率≥2.0S/cm;
所述P型nc-Si:H层的厚度为1-10nm,光学带隙为2.6-2.8eV,暗电导率为0.08-0.1S/cm;
所述正面TCO层和背面TCO层的厚度为70-110nm。
10.如权利要求8所述的HJT电池,其特征在于,所述N型nc-Si:H层、P型nc-Si:H层是采用激光对N型a-Si:H层及P型a-Si:H层进行诱导晶化处理而形成的,所述N型a-Si:H层及P型a-Si:H层进行激光诱导晶化后,形成微晶晶粒,所述微晶晶粒嵌入在N型a-Si:H层及P型a-Si:H层中,晶粒尺寸与N型a-Si:H层及P型a-Si:H层的厚度相同,晶粒密度达1018cm-3以上。
CN202011073252.9A 2020-10-09 2020-10-09 基于激光诱导的hjt电池的制备方法及hjt电池 Pending CN112382680A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011073252.9A CN112382680A (zh) 2020-10-09 2020-10-09 基于激光诱导的hjt电池的制备方法及hjt电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011073252.9A CN112382680A (zh) 2020-10-09 2020-10-09 基于激光诱导的hjt电池的制备方法及hjt电池

Publications (1)

Publication Number Publication Date
CN112382680A true CN112382680A (zh) 2021-02-19

Family

ID=74581162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011073252.9A Pending CN112382680A (zh) 2020-10-09 2020-10-09 基于激光诱导的hjt电池的制备方法及hjt电池

Country Status (1)

Country Link
CN (1) CN112382680A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488555A (zh) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 异质结电池及制备方法、太阳能电池组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866836A (zh) * 2010-05-28 2010-10-20 常州大学 一种纳米硅量子点的制备方法及在薄膜太阳电池中的应用
CN102296363A (zh) * 2010-06-23 2011-12-28 中国科学院金属研究所 一种微晶硅薄膜的沉积方法
CN103000742A (zh) * 2012-12-04 2013-03-27 南京大学 一种带隙渐变硅量子点多层膜的太阳电池及制备方法
CN203218277U (zh) * 2012-11-19 2013-09-25 湖南师范大学 一种hit太阳电池
CN106531834A (zh) * 2016-11-30 2017-03-22 华中科技大学 一种hit太阳能电池及其制备方法
CN112151623A (zh) * 2019-06-27 2020-12-29 君泰创新(北京)科技有限公司 异质结太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866836A (zh) * 2010-05-28 2010-10-20 常州大学 一种纳米硅量子点的制备方法及在薄膜太阳电池中的应用
CN102296363A (zh) * 2010-06-23 2011-12-28 中国科学院金属研究所 一种微晶硅薄膜的沉积方法
CN203218277U (zh) * 2012-11-19 2013-09-25 湖南师范大学 一种hit太阳电池
CN103000742A (zh) * 2012-12-04 2013-03-27 南京大学 一种带隙渐变硅量子点多层膜的太阳电池及制备方法
CN106531834A (zh) * 2016-11-30 2017-03-22 华中科技大学 一种hit太阳能电池及其制备方法
CN112151623A (zh) * 2019-06-27 2020-12-29 君泰创新(北京)科技有限公司 异质结太阳能电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488555A (zh) * 2021-07-06 2021-10-08 安徽华晟新能源科技有限公司 异质结电池及制备方法、太阳能电池组件

Similar Documents

Publication Publication Date Title
Rahman et al. Advances in surface passivation of c-Si solar cells
Hänni et al. High‐efficiency microcrystalline silicon single‐junction solar cells
JP2022125290A (ja) 高効率太陽電池構造体および製造方法
JP2009524916A (ja) 太陽電池
EP1872413A1 (en) Surface passivation of silicon based wafers
AU2007300831A1 (en) Method of manufacturing crystalline silicon solar cells with improved surface passivation
JP2013533620A (ja) 微結晶吸収層とパシベーション層とを有する薄膜太陽電池およびその太陽電池の製造方法
JP2012060080A (ja) 結晶太陽電池及びその製造方法
JP5207852B2 (ja) 太陽電池及びその製造方法
CN104600157A (zh) 一种异质结太阳能电池的制造方法及异质结太阳能电池
CN102751371A (zh) 一种太阳能薄膜电池及其制造方法
Ohdaira et al. Suppression of the epitaxial growth of Si films in Si heterojunction solar cells by the formation of ultra-thin oxide layers
Maki et al. High-efficiency HIT solar cells with a very thin structure enabling a high Voc
I Kabir et al. A review on progress of amorphous and microcrystalline silicon thin-film solar cells
CN112768534A (zh) 一种氧化硅钝化perc双面电池及其制备方法
CN112382680A (zh) 基于激光诱导的hjt电池的制备方法及hjt电池
CN112838132A (zh) 一种太阳能电池叠层钝化结构及其制备方法
JP2004265889A (ja) 光電変換素子、光電変換装置、及び鉄シリサイド膜
CN110246905B (zh) 一种硅太阳能电池及其制备方法
JPH10242492A (ja) 非晶質シリコンゲルマニウム薄膜の製造方法及び光起電力素子
TWI675490B (zh) 製造太陽能電池的方法
Voz et al. Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV
CN215220733U (zh) 一种太阳能电池及其正面膜层结构、电池组件及光伏系统
Khokhar et al. A review on p-type tunnel oxide passivated contact (TOPCon) solar cell
Nowak et al. Optimizing folded silicon thin-film solar cells on ZnO honeycomb electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210219