CN112030143A - 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法 - Google Patents

一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法 Download PDF

Info

Publication number
CN112030143A
CN112030143A CN202010736510.0A CN202010736510A CN112030143A CN 112030143 A CN112030143 A CN 112030143A CN 202010736510 A CN202010736510 A CN 202010736510A CN 112030143 A CN112030143 A CN 112030143A
Authority
CN
China
Prior art keywords
amorphous silicon
solar cell
passivation film
buffer layer
silicon passivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010736510.0A
Other languages
English (en)
Inventor
张悦
刘曙光
庞先标
杨荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Lvxing Energy Technology Co ltd
Original Assignee
Beijing Lvxing Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lvxing Energy Technology Co ltd filed Critical Beijing Lvxing Energy Technology Co ltd
Priority to CN202010736510.0A priority Critical patent/CN112030143A/zh
Publication of CN112030143A publication Critical patent/CN112030143A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开一种用于a‑Si/c‑Si异质结太阳电池的高效非晶硅钝化膜的制备方法,用等离子体增强化学气相沉积(PECVD)方法,以SiH4、H2为反应气体,将单晶硅衬底放入PECVD腔室,在单晶硅衬底上两步法沉积制备非晶硅薄膜,包括以下两个主要步骤:a)以纯SiH4为反应气体,在高耗尽率状态下生长非晶硅缓冲层;b)以高氢稀释比的SiH4和H2的混合气体为反应气体,在非晶硅钝化缓冲层上生长非晶硅钝化膜。本发明利用PECVD方法,采用两步法完成非晶硅钝化膜的制备,大大提高了a‑Si/c‑Si异质结太阳电池的界面钝化质量,少子寿命显著提高,且制备时间段、工艺简单,同时无需特别退火,降低成本。

Description

一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的 制备方法
技术领域
本发明属于太阳电池领域,是一种用于a-Si/c-Si异质结太阳电池中c-Si表面钝化的非晶硅薄膜的制备方法。
背景技术
近年来,能源紧缺问题和全球变暖的环境问题日益严重,人类对清洁的可再生能源需求空前急切。光伏太阳能是一种重要的可再生能源,具有能源广泛,地域限制少,安全可靠等诸多优势。
自1954年第一块硅太阳电池应用至今,太阳电池经过了第一代单晶硅太阳电池,第二代薄膜电池的发展,但是当前高的发电成本仍然严重限制太阳电池的进一步广泛应用,因此降低太阳电池成本成为当前研究的重点。从目前光伏太阳电池的发展来看,其技术发展趋势是成本降低,效率提高。
带有本征薄层(本发明所制备的非晶钝化层)的a-Si/c-Si异质结太阳电池目前最高转换效率高达25.6%,保持晶硅太阳电池的世界纪录。但是a-Si/c-Si异质结太阳电池的技术难度很高,特别是高质量钝化膜的制备更是a-Si/c-Si异质结太阳电池的最关键技术。
发明内容
本发明解决的技术问题是:提供一种用于a-Si/c-Si异质结太阳电池中c-Si 表面钝化的非晶硅薄膜的制备方法,本发明利用等离子体增强化学气相沉积 (PECVD)方法,通过技术创新采用两步法完成非晶硅钝化膜的制备,大大提高了a-Si/c-Si异质结太阳电池的界面钝化质量,少子寿命显著提高。这种方法制备时间段、工艺简单,同时无需特别退火,在降低成本方面也有显著优势。
本发明采用的技术方案如下:
一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,用等离子体增强化学气相沉积(PECVD)方法,以SiH4、H2为反应气体,将单晶硅衬底放入PECVD腔室,在单晶硅衬底上两步法沉积制备非晶硅薄膜,其特征在于,包括以下两个主要步骤:a)以纯SiH4为反应气体,在高耗尽率状态下生长非晶硅缓冲层;b)以高氢稀释比的SiH4和H2的混合气体为反应气体,在非晶硅钝化缓冲层上生长非晶硅钝化膜。
优选的,所述步骤a)中,非晶硅缓冲层的制备为在高耗尽的硅烷等离子下生长,射频或甚高频功率密度小于等于100mW/cm2
优选的,所述步骤a)中,非晶硅缓冲层的制备为在高耗尽的硅烷等离子下生长,且射频或甚高频功率密度为30mW/cm2-100mW/cm2
优选的,所述步骤a)中,生长所述非晶硅缓冲层的沉积速率应大于等于 0.5nm/,所述的非晶硅缓冲层的厚度为1~5nm。
优选的,所述步骤a)生长完所述非晶硅缓冲层后,以及步骤b)生长所述非晶硅钝化层之前,PECVD腔室不破空。
优选的,所述步骤b)中H2与SiH4的流量比为3:1-20:1。
优选的,所述步骤b)中H2与SiH4的流量比为10:1。
优选的,所述步骤b)中,在非晶硅钝化缓冲层上生长非晶硅钝化膜的射频或甚高频功率密度在100mW/cm2-300mW/cm2之间。
优选的,所述步骤b)中,在非晶硅钝化缓冲层上生长非晶硅钝化膜的厚度大于等于3nm。
本发明的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,能够显著提高a-Si/c-Si异质结太阳电池的少子寿命,从常规工艺的500-600us 提高到4ms,电池效率得到明显提高;并且制备方法简单、高效,无需退火工艺,大大降低了能耗。另外本发明提出的工艺与现有a-Si/c-Si异质结太阳电池的制备工艺完全兼容,利于产业化发展。
具体实施方式
下面结合说明和实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
实施例1
(1)以纯SiH4为反应气体,洁净的单晶硅衬底上沉积非晶硅缓冲层。甚高频等离子体增强化学气相沉积(VHF-PECVD)制备缓冲层的条件为:背底真空高于10-3Pa,衬底温度200℃,气体SiH4流量为15sccm,压强为0.4mbar,沉积功率50mW/cm2,制备的非晶硅缓冲层的厚度2nm。
(2)接着在非晶硅缓冲层表面生长非晶硅钝化膜。VHF-PECVD制备缓冲层的条件为:背底真空高于10-3Pa,衬底温度200℃,气体SiH4流量为15sccm,气体H2流量为150sccm,压强为0.5mbar,沉积功率150mW/cm2,制备的非晶硅钝化层的厚度4nm。
对比例1:
以纯SiH4为反应气体,洁净的单晶硅衬底上沉积非晶硅钝化膜。甚高频等离子体增强化学气相沉积(VHF-PECVD)制备非晶硅钝化膜的条件为:背底真空高于10-3Pa,衬底温度200℃,气体SiH4流量为15sccm,压强为0.4mbar,沉积功率50mW/cm2,制备的非晶硅钝化层的厚度6nm。
对比例2:
在洁净的单晶硅衬底上,生长非晶硅钝化膜。VHF-PECVD制备非晶硅钝化膜的条件为:背底真空高于10-3Pa,衬底温度230℃,气体SiH4流量为15sccm,气体H2流量为150sccm,压强为0.5mbar,沉积功率150mW/cm2,制备的非晶硅钝化层的厚度6nm。
测试一:对实施例和对比例中的非晶硅钝化膜的钝化效果进行少子寿命测试:
一、测试条件:采用Sinton WCT-120仪器测试,运用Transient模式进行测试,160μm绒面N型单晶硅(5-10Ωcm),两面制备实施例及对比例所属的非晶硅钝化层。
二、测试方法:采用Transient模式。Transient模式对非晶硅钝化膜的钝化效果进行少子寿命测试为本领域技术所熟知的常规测试手段,在这里不再进行详细的阐述。
测试二:对实施例和对比例中采用不同非晶硅钝化膜工艺的太阳能电池进行IV测试。
一、太阳能电池的制备工艺:包括如下步骤:清洗、制绒、制备非晶硅钝化膜、制备发射极及背场、制备TCO、印刷并烘干电极。上述太阳电池的制备工艺除非晶硅钝化膜工艺采用本发明的实施例和对比例工艺制备,其余工艺相同且同一炉进行制备。上述太阳能电池除非晶硅钝化膜工艺采用本发明的实施例和对比例工艺制备,其余工艺步骤皆为现有太阳能电池制备工艺,为本领域技术人员所熟知,因此,在这里不再进行详细的阐述。
二、太阳能电池板IV测试条件:测试温度为25℃,AM1.5光谱,光强1000W/m2
上述少子寿命测试和IV测试的测试结果如下表1所示:
表1性能测试结果
Figure RE-GDA0002694252860000051
需要指出的是,上述关于制备步骤的具体实施例方式仅为简单清楚描述本发明原理的示意性举例,并非对本发明作任何形式上的限制,尤其是一些可通过现有工艺实现的步骤。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。本领域普通技术人员显然可知,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,用等离子体增强化学气相沉积(PECVD)方法,以SiH4、H2为反应气体,将单晶硅衬底放入PECVD腔室,在单晶硅衬底上两步法沉积制备非晶硅薄膜,其特征在于,包括以下两个主要步骤:a)以纯SiH4为反应气体,在高耗尽率状态下生长非晶硅缓冲层;b)以高氢稀释比的SiH4和H2的混合气体为反应气体,在非晶硅钝化缓冲层上生长非晶硅钝化膜。
2.根权利要求1中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤a)中,非晶硅缓冲层的制备为在高耗尽的硅烷等离子下生长,射频或甚高频功率密度小于等于100mW/cm2
3.根权利要求2中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤a)中,非晶硅缓冲层的制备为在高耗尽的硅烷等离子下生长,且射频或甚高频功率密度为30mW/cm2-100mW/cm2
4.根权利要求1中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤a)中,生长所述非晶硅缓冲层的沉积速率应大于等于0.5nm/,所述的非晶硅缓冲层的厚度为1~5nm。
5.根权利要求1中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤a)生长完所述非晶硅缓冲层后,以及步骤b)生长所述非晶硅钝化层之前,PECVD腔室不破空。
6.根权利要求1中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤b)中H2与SiH4的流量比为3:1-20:1。
7.根权利要求6中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤b)中H2与SiH4的流量比为10:1。
8.根权利要求1中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤b)中,在非晶硅钝化缓冲层上生长非晶硅钝化膜的射频或甚高频功率密度在100mW/cm2-300mW/cm2之间。
9.根权利要求1中所述的一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法,其特征在于,所述步骤b)中,在非晶硅钝化缓冲层上生长非晶硅钝化膜的厚度大于等于3nm。
CN202010736510.0A 2020-07-28 2020-07-28 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法 Pending CN112030143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010736510.0A CN112030143A (zh) 2020-07-28 2020-07-28 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010736510.0A CN112030143A (zh) 2020-07-28 2020-07-28 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法

Publications (1)

Publication Number Publication Date
CN112030143A true CN112030143A (zh) 2020-12-04

Family

ID=73583314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010736510.0A Pending CN112030143A (zh) 2020-07-28 2020-07-28 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法

Country Status (1)

Country Link
CN (1) CN112030143A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531052A (zh) * 2020-12-28 2021-03-19 苏州腾晖光伏技术有限公司 高效异质结电池结构及其制备方法
CN113937192A (zh) * 2021-07-30 2022-01-14 国家电投集团科学技术研究院有限公司 硅异质结太阳电池非晶硅钝化层的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935647A (zh) * 2019-03-29 2019-06-25 天合光能股份有限公司 太阳能电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935647A (zh) * 2019-03-29 2019-06-25 天合光能股份有限公司 太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张悦: "面向产业化高效硅基异质结电池的关键问题研究", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技II辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531052A (zh) * 2020-12-28 2021-03-19 苏州腾晖光伏技术有限公司 高效异质结电池结构及其制备方法
CN112531052B (zh) * 2020-12-28 2022-03-22 苏州腾晖光伏技术有限公司 异质结电池结构及其制备方法
WO2022142007A1 (zh) * 2020-12-28 2022-07-07 苏州腾晖光伏技术有限公司 高效异质结电池结构及其制备方法
CN113937192A (zh) * 2021-07-30 2022-01-14 国家电投集团科学技术研究院有限公司 硅异质结太阳电池非晶硅钝化层的制备方法

Similar Documents

Publication Publication Date Title
TW200950113A (en) Thin film silicon solar cell and manufacturing method thereof
CN103915523A (zh) 一种含复合发射层硅异质结太阳电池的制备方法
CN101609796B (zh) 薄膜形成方法和薄膜太阳能电池的制造方法
CN102157577A (zh) 纳米硅/单晶硅异质结径向纳米线太阳电池及制备方法
WO2022142007A1 (zh) 高效异质结电池结构及其制备方法
WO2023184844A1 (zh) 硅基薄膜、太阳电池及其制备方法
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN111883621A (zh) 一种高效晶硅异质结太阳能电池的tco镀膜工艺方法
CN109545656B (zh) 氢化非晶硅薄膜制备方法
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN108767056B (zh) 一种增强太阳能电池氢钝化能力的富氢pecvd工艺方法
CN111403492A (zh) 太阳能电池用钝化层的制备方法以及太阳能电池的制备方法
CN114843175A (zh) 一种n型掺杂氧化微晶硅、异质结太阳能电池及两者的制备方法
CN107994097B (zh) 一种太阳能电池的制备方法
CN112382680A (zh) 基于激光诱导的hjt电池的制备方法及hjt电池
CN101159297B (zh) SnO2为衬底的微晶硅薄膜太阳电池用透明导电薄膜的制备方法
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
CN111816735B (zh) 一种ald制作非晶硅的方法
JP2007519245A (ja) 微結晶シリコン層を備えたシリコン太陽電池の製造方法
Shi et al. Process Research on Intrinsic Passivation Layer for Heterojunction Solar Cells
CN102751372A (zh) 具有NIP隧穿结的a-Si/μc-SiGe叠层太阳能电池及其制造方法
CN210156406U (zh) 具有双层非晶硅本征层的异质结太阳能电池结构
CN116454162A (zh) 一种采用氢等离子体处理的异质结太阳能电池制作方法
CN115425097A (zh) 一种制备hbc太阳能电池的方法及其hbc太阳能电池
CN117253926A (zh) 化学钝化与场效应钝化协同效应的晶硅异质结双面太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201204