CN111816735B - 一种ald制作非晶硅的方法 - Google Patents

一种ald制作非晶硅的方法 Download PDF

Info

Publication number
CN111816735B
CN111816735B CN202010663155.9A CN202010663155A CN111816735B CN 111816735 B CN111816735 B CN 111816735B CN 202010663155 A CN202010663155 A CN 202010663155A CN 111816735 B CN111816735 B CN 111816735B
Authority
CN
China
Prior art keywords
amorphous silicon
ald
reaction source
introducing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010663155.9A
Other languages
English (en)
Other versions
CN111816735A (zh
Inventor
欧文凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pule New Energy Technology Taixing Co ltd
Original Assignee
Pule New Energy Technology Taixing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pule New Energy Technology Taixing Co ltd filed Critical Pule New Energy Technology Taixing Co ltd
Priority to CN202010663155.9A priority Critical patent/CN111816735B/zh
Publication of CN111816735A publication Critical patent/CN111816735A/zh
Application granted granted Critical
Publication of CN111816735B publication Critical patent/CN111816735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供一种ALD制作非晶硅的方法,包括以下步骤:打开ALD设备炉门,将制作非晶硅的样品放入载具,抽真空;设备测试泄漏率≤5mTorr,同时升温至200~600℃并恒温5‑20min;通入反应源与氮气,如此循环若干次生长非晶硅。本发明工艺采用低温非晶硅的原位掺杂,通过本发明的方法可有效解决非晶硅镀膜的不均匀情况同时非晶硅生长速率较快适合大规模量产。

Description

一种ALD制作非晶硅的方法
技术领域
本发明涉及高效太阳能非晶硅制造领域,具体涉及一种ALD制作非晶硅的方法。
背景技术
非晶硅是一种直接能带半导体,它的结构内部有许多所谓的"悬键",也就是没有和周围的硅原子成键的电子,这些电子在电场作用下就可以产生电流,并不需要声子的帮助,因而非晶硅可以做得很薄,还有制作成本低的优点。
基于晶体硅(单晶硅和多晶硅)的太阳能电池由于发展历史较早且技术比较成熟,在装机容量一直占据领先地位。尽管技术进步和市场扩大使其成本不断下降,但由于材料和工艺的限制,晶体硅太阳能电池进一步降低成本的空间相当有限,很难达到光伏科学家和能源专家在上世纪80年代初预测的光伏发电与柴油发电竞争的临界点--太阳能电池的成本1美元/瓦。因此第一代太阳能电池很难承担太阳能光伏发电大比例进入人类能源结构并成为基础能源的组成部分的历史使命,非晶硅太阳能电池益发得到世界各国的重视。
N型异质结背接触(HBC)单晶硅太阳能电池兼具异质结(HIT)和背接触(IBC)两种电池的优点,可获得高的开路电压和大的短路电流,实验室效率已经达到26.63%,其发展潜力已得到证明,是未来N型高效太阳能电池的发展方向之一,而且N型钝化接触电池TopCon电池结构也是采用掺杂非晶硅获得了25.7%电池转换效率。
目前HBC&TopCon太阳能电池还未实现大规模的产业化,其复杂的工艺流程和生产的成本较高是导致目前还未规模化生产的主要原因。其中非晶硅的制作是其核心工序。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供一种ALD制作非晶硅的方法。
为了实现上述目的,本发明提供以下技术方案:
一种ALD制作非晶硅的方法,包括以下步骤:
(1)打开ALD设备炉门,将制作非晶硅的样品放入载具,抽真空;
(2)设备测试泄漏率≤5mTorr,同时升温至200~600℃并恒温5-20min;
(3)通入反应源与氮气,如此循环若干次生长非晶硅;在一些优选的方式中,在制备掺杂非晶硅时,还需要通入PH3和B2H6。在一些优选的方式中,通入反应源气体量根据机台决定,一般为0~3000sccm,通入时间5~60s。
(4)通N2吹扫特气管道,同时通N2使炉管回压至常压;
(5)开炉门非晶硅制作完成。
进一步地,反应源为三甲基硅烷、三甲基氯硅烷、二氯二乙基硅烷中的至少一种。所述的反应源能够在低温下分解,进而有益于生长非晶硅,提高材料利用率。
本发明的有益效果是:
(1)本发明工艺采用低温非晶硅的原位掺杂,采用本发明的方法使得生长速率达到4nm/min,相比较传统方法的2nm/min,显然通过本发明的方法可有效解决非晶硅镀膜的不均匀情况同时非晶硅生长速率较快适合大规模量产。
(2)本发明采用了原位掺杂,可以精准的控制掺杂浓度,增加工艺优化的窗口。
(3)本发明采用低温工艺,可有效避免硅片在高温情况下的翘曲,更适合薄片化,同时减少了电费机台运行成本也大大降低。
(4)本发明的制备方法能够应用于TopCOn和HBC电池中非晶硅的制作,该制作简单、操作步骤少。
具体实施方式
以下对本发明的技术方案做进一步详细说明,应当指出的是,具体实施方式只是对本发明的详细说明,不应视为对本发明的限定。
实施例1
一种ALD制作非晶硅的方法,包括以下步骤:
(1)打开ALD(原子层沉积)设备炉门,将制作非晶硅的样品放入载具,设备抽真空;
(2)设备测试泄漏率≤5mTorr/min,同时升温至200℃并恒温10min;
(3)通入反应源三甲基硅烷与氮气,根据生长厚度如此循环若干次生长非晶硅,三甲基硅烷、氮气的通入量根据实际情况决定;
(4)通N2吹扫特气管道,同时通N2使炉管回压至常压;
(5)开炉门样品制作完成。
表1实施例1制备的非晶硅厚度及均匀性结果
Figure GDA0002628967720000031
实施例2
一种ALD制作非晶硅的方法,包括以下步骤:
(1)打开ALD(原子层沉积)设备炉门,将制作非晶硅的样品放入载具,设备抽真空;
(2)设备测试泄漏率=3mTorr,同时升温至300℃并恒温15min;
(3)通入反应源二氯二乙基硅烷与氮气,根据生长厚度如此循环若干次生长非晶硅;
(4)通N2吹扫特气管道,同时通N2使炉管回压至常压;
(5)开炉门样品制作完成。
表2实施例2制备的非晶硅厚度及均匀性结果
Figure GDA0002628967720000032
实施例3
一种ALD制作非晶硅的方法,包括以下步骤:
(1)打开ALD(原子层沉积)设备炉门,将制作非晶硅的样品放入载具,设备抽真空;
(2)设备测试泄漏率=2mTorr,同时升温至500℃并恒温5min;
(3)通入反应源乙硅烷与氮气,根据生长厚度如此循环若干次生长非晶硅;
(4)通N2吹扫特气管道,同时通N2使炉管回压至常压;
(5)开炉门样品制作完成。
表3实施例3制备的非晶硅厚度及均匀性结果
Figure GDA0002628967720000041
对比例1
一种ALD制作非晶硅的方法,包括以下步骤:
(1)打开ALD(原子层沉积)设备炉门,将制作非晶硅的样品放入载具,设备抽真空;
(2)设备测试泄漏率=5mTorr,同时升温至700℃并恒温10min;
(3)通入反应源三甲基硅烷与氮气,根据生长厚度如此循环若干次生长非晶硅;
(4)通N2吹扫特气管道,同时通N2使炉管回压至常压;
(5)开炉门样品制作完成。
表4对比例1制备的非晶硅厚度及均匀性结果
Figure GDA0002628967720000042
由表1-4可知,与对比例相比,采用本发明的制备方法制得的非晶硅厚度较为均匀性,效果较好。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (2)

1.一种ALD制作非晶硅的方法,其特征是,所述方法用于制作太阳能电池非晶硅层,包括以下步骤:
(1)打开ALD设备炉门,将制作非晶硅的样品放入载具,抽真空;
(2)设备测试泄漏率≤5mTorr,同时升温至200~300℃并恒温5-20min;
(3)通入反应源与氮气,如此循环若干次生长非晶硅;
(4)通N2吹扫特气管道,同时通N2使炉管回压至常压;
(5)开炉门非晶硅制作完成;
反应源为三甲基硅烷、三甲基氯硅烷、二氯二乙基硅烷中的至少一种;
在制备掺杂非晶硅时,还需要通入PH3和B2H6
2.根据权利要求1所述的一种ALD制作非晶硅的方法,其特征是,通入反应源气体量根据机台决定,范围为0~3000sccm,通入时间5~60s。
CN202010663155.9A 2020-07-10 2020-07-10 一种ald制作非晶硅的方法 Active CN111816735B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010663155.9A CN111816735B (zh) 2020-07-10 2020-07-10 一种ald制作非晶硅的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010663155.9A CN111816735B (zh) 2020-07-10 2020-07-10 一种ald制作非晶硅的方法

Publications (2)

Publication Number Publication Date
CN111816735A CN111816735A (zh) 2020-10-23
CN111816735B true CN111816735B (zh) 2023-05-09

Family

ID=72842682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010663155.9A Active CN111816735B (zh) 2020-07-10 2020-07-10 一种ald制作非晶硅的方法

Country Status (1)

Country Link
CN (1) CN111816735B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275840B1 (ko) * 2009-04-20 2013-06-18 한국전자통신연구원 투명 태양전지
JP5696530B2 (ja) * 2010-05-01 2015-04-08 東京エレクトロン株式会社 薄膜の形成方法及び成膜装置
CN104795315A (zh) * 2015-04-15 2015-07-22 上海华力微电子有限公司 一种非晶硅薄膜及一种半导体器件的制造方法
CN105870249B (zh) * 2016-03-24 2017-10-03 江苏微导纳米装备科技有限公司 一种晶硅太阳能电池的制造工艺
CN109898072B (zh) * 2019-01-31 2021-05-18 长江存储科技有限责任公司 半导体处理装置

Also Published As

Publication number Publication date
CN111816735A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN101548032A (zh) 硅片器件的低温掺杂方法
CN111341649A (zh) 一种n型太阳能电池硼扩散方法
US20140159042A1 (en) Top down aluminum induced crystallization for high efficiency photovoltaics
CN101609796B (zh) 薄膜形成方法和薄膜太阳能电池的制造方法
CN104766896A (zh) 一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法
CN113161447B (zh) 一种铸造单晶或多晶类硅片的磷氢退火预处理方法
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN111816735B (zh) 一种ald制作非晶硅的方法
CN108767056B (zh) 一种增强太阳能电池氢钝化能力的富氢pecvd工艺方法
CN114725239B (zh) 一种异质结电池的制备方法
Benigno et al. Effect of intrinsic layer energy gap and thicknesses optimization on the efficiency of pin amorphous silicon solar cell
CN113555468B (zh) 一种提升n型硅片硼扩散方阻均匀性的工艺
CN111312859B (zh) 一种重掺杂型硅基薄膜的制备方法和由此得到的薄膜及其应用
CN104505419A (zh) 具有过渡层的晶硅及碳化硅薄膜复合型单结pin太阳能电池及其制备方法
CN104576801B (zh) 具有过渡层的晶硅及硅薄膜复合型单结pin太阳能电池及其制备方法
Xi et al. The differences between the hydrogenation by means of photon-injection and electron-injection for N-type tunnel oxide passivated contacts solar cells
CN112103368A (zh) 一种用于多晶硅薄膜的激光掺杂方法
CN117153950B (zh) 一种低温硼激活方法
CN104821344B (zh) 具有量子阱结构的铜铟镓硒薄膜太阳能电池及其制造方法
CN103266352B (zh) 一种多晶硅薄膜的制备方法
CN104505418B (zh) 具有过渡层的晶硅及锗化硅薄膜复合型单结pin太阳能电池及其制备方法
CN103107227B (zh) 非晶硅薄膜太阳能电池及其制作方法
CN118007096A (zh) 一种TOPCon太阳能电池的LPCVD工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230119

Address after: 518000 Room 103, Building 3, Shekou Lanyuan, Nanshan District, Shenzhen, Guangdong Province

Applicant after: Ou Wenkai

Address before: 221399 room 1222, office building, No.11 Zhujiang East Road, Xuzhou high tech Industrial Development Zone, Jiangsu Province

Applicant before: Pule new energy technology (Xuzhou) Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230404

Address after: No. 168, West Side of Kechuang Road, High-tech Industrial Development Zone, Taixing City, Taizhou City, Jiangsu Province, 225400

Applicant after: Pule New Energy Technology (Taixing) Co.,Ltd.

Address before: 518000 Room 103, Building 3, Shekou Lanyuan, Nanshan District, Shenzhen, Guangdong Province

Applicant before: Ou Wenkai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant