CN114023635A - 一种提效降本的太阳能电池硼扩散方法 - Google Patents

一种提效降本的太阳能电池硼扩散方法 Download PDF

Info

Publication number
CN114023635A
CN114023635A CN202111238122.0A CN202111238122A CN114023635A CN 114023635 A CN114023635 A CN 114023635A CN 202111238122 A CN202111238122 A CN 202111238122A CN 114023635 A CN114023635 A CN 114023635A
Authority
CN
China
Prior art keywords
boron
diffusion
amorphous silicon
controlled
1000sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111238122.0A
Other languages
English (en)
Inventor
欧文凯
董思敏
向亮睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pule New Energy Technology Xuzhou Co ltd
Original Assignee
Pule New Energy Technology Xuzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pule New Energy Technology Xuzhou Co ltd filed Critical Pule New Energy Technology Xuzhou Co ltd
Priority to CN202111238122.0A priority Critical patent/CN114023635A/zh
Publication of CN114023635A publication Critical patent/CN114023635A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种提效降本的太阳能电池硼扩散方法,兼顾提升效率同时,改善管式硼扩散维护成本偏高的问题,具体包括:步骤一:N型硅片正面生长硼掺杂非晶硅;步骤二:非晶硅高温晶化并完成硼掺杂;本发明提高晶硅表层掺硼激活率改善效率,同时避开了常规管式硼扩散预沉积过程中,由于反应产物B2O3的沸点在1600℃以上,反应产物B与始终处于液态的B2O3,扩散过程中对石英器件的腐蚀严重,扩散结束后在恒温区外快速冷却凝固,易造成尾管堵塞,引起扩散机台石英炉门与石英炉管的粘连,造成维护成本高的问题。

Description

一种提效降本的太阳能电池硼扩散方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种提效降本的太阳能电池硼扩散方法。
背景技术
目前P型晶硅电池占据晶硅电池市场的绝对份额。然而,不断追求效率提升和成本降低是光伏行业永恒的主题。N型单晶硅较常规的P型单晶硅具有少子寿命高、光致衰减小等优点,具有更大的效率提升空间,同时,N型单晶组件具有弱光响应好、温度系数低等优点。因此,N型单晶系统具有发电量高和可靠性高的双重优势。
硼扩散是N型电池核心工序。与磷扩散相比硼原子在硅中扩散速率要低,所以要达到预期的掺杂浓度及深度,硼扩散工艺温度更高、时间更长,在硅浅表层更易出现“死层”现象,制约着掺硼激活率,直接影响效率表现。再者在硼扩散工艺过程中由于直接作用在硅片的B2O3硅沸点达到1860℃,而扩散工艺温度一般在900℃~1000℃之间,B2O3在工艺过程中以液态的形式与太阳能电池片接触,导致太阳能电池片的工艺结果均匀性较差。另一方面,由于副产物BSG(硼硅玻璃)的存在,致使石英件存在粘黏现象,导致硼扩散设备存在维护周期短、成本高等问题严重制约着N型电池发展。
发明内容
本发明的目的在于提供一种提效降本的太阳能电池硼扩散方法,以解决上述背景技术中提出的问题。
为解决上述技术问题,本发明提供的技术方案为:一种提效降本的太阳能电池硼扩散方法,具体包括以下步骤:
步骤一:采用PECVD的方式在N型硅片上沉积掺杂非晶硅层,考虑到管式硼扩散,硼掺杂非晶硅沉积厚度在100nm-200nm,为使得硼原子均匀分布在膜层中,生长非晶硅层过程同时通入硼源;
步骤二:将步骤一后的硅片进行高温退火并完成硼掺杂:
1)将硅片送入炉管,氮气氛围下升温至900℃-1000℃,N2流量控制在1000-3000sccm;
2)氮气氛围下掺杂非晶硅层进行高温晶化及杂质分布,温度稳定在900℃-1000℃,N2流量控制在1000sccm-3000sccm,时间控制在30min-200min,晶化过程实现硼原子在硅中的原位掺杂,达到替位扩散效果,激活杂质硼原子,多余的硼原子以间隙/替位扩散的方式继续向硅中扩散;
3)氮、氧气氛围下掺杂晶硅层进行杂质再分布,温度稳定在900℃-1000℃,N2流量控制在1000sccm-3000sccm,O2流量控制在1000sccm-3000sccm,时间控制在20min-40min,降低表面杂质浓度同时实现结深要求;
4)氮气氛围下降温退火至800℃并出管,N2流量控制在1000sccm-3000sccm。
作为一种优选方案,所述N型硅片作为衬底材料,通过清洗制绒使硅片表面产生金字塔状表面结构。
作为一种优选方案,所述正面硼掺杂非晶硅厚度在100nm-500nm,掺杂源为BH3
作为一种优选方案,所述非晶硅高温退火并完成硼掺杂,退火温度在900℃-1000℃,N2流量在1000sccm-3000sccm,O2流量在1000sccm-3000sccm。
本发明优点在于:
1)本发明提出一种新型的硼扩散,用以提高硼扩散质量以及解决硼扩散副产物对于机台备件的损伤降低运营成本。
2)本发明采用先沉积掺硼非晶硅再退火扩散的方式,让硼源沉积在非晶硅中,保证了硅片在硼掺杂过程中,非激活硼的含量较少,可有效减少复合。
3)本发明采用先沉积掺硼非晶硅再退火扩散的方式,不会产生B2O3副产物对于石英件无损伤,可有效降低硼扩运营成本。
具体实施方式
下面用具体实施例说明本发明,并不是对本发明的限制。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例
一种提效降本的太阳能电池硼扩散方法,包括以下步骤:
1)将制绒后的片子用PECVD等离子增强化学气相沉积法,恒温450℃,在管压1800mTor下通入SiH4以及BH3沉积非晶硅,通过调整硅烷/硼烷的比例,得到掺杂浓度接近在2E20cm-3,得到监控约在120nm厚的掺杂非晶硅层;
2)将工艺1)后的硅片放入高温退火炉中;
3)升温:持续通入3000sccm的N2下升温到650℃,并保持10min;
4)升温:持续通入3000sccm的N2下升温到950℃;
5)退火:持续通入3000sccm的N2,温度950℃条件下恒温50min,掺杂非晶硅晶化过程中兼备杂质扩散;
6)推进:在950℃的条件下恒温30min并同时通入3000sccm的O2
7)降温:保持通入3000sccm的N2,降温至800℃。
8)出舟。
对比例
对比例与实施例以表1的形式呈现:
表1
Figure BDA0003318177980000031
表2
Figure BDA0003318177980000032
从表2的对比结果来看,本发明的一种提效降本的太阳能电池硼扩散方法,有更优的电性表现,采用先沉积掺硼非晶硅再退火扩散的方式,让硼源沉积在非晶硅中,保证了硅片在硼掺杂过程中,非激活硼的含量较少,可有效减少复合。另外,本发明采用先沉积掺硼非晶硅再退火扩散的方式,不会产生B2O3副产物对于石英件无损伤,可有效降低硼扩运营成本。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种提效降本的太阳能电池硼扩散方法,其特征在于,具体包括以下步骤:
步骤一:采用PECVD的方式在N型硅片上沉积掺杂非晶硅层,考虑到管式硼扩散,硼掺杂非晶硅沉积厚度在100nm-200nm,为使得硼原子均匀分布在膜层中,生长非晶硅层过程同时通入硼源;
步骤二:将步骤一后的硅片进行高温退火并完成硼掺杂:
1)将硅片送入炉管,氮气氛围下升温至900℃-1000℃,N2流量控制在1000-3000sccm;
2)氮气氛围下掺杂非晶硅层进行高温晶化及杂质分布,温度稳定在900℃-1000℃,N2流量控制在1000sccm-3000sccm,时间控制在30min-200min,晶化过程实现硼原子在硅中的原位掺杂,达到替位扩散效果,激活杂质硼原子,多余的硼原子以间隙/替位扩散的方式继续向硅中扩散;
3)氮、氧气氛围下掺杂晶硅层进行杂质再分布,温度稳定在900℃-1000℃,N2流量控制在1000sccm-3000sccm,O2流量控制在1000sccm-3000sccm,时间控制在20min-40min,降低表面杂质浓度同时实现结深要求;
4)氮气氛围下降温退火至800℃并出管,N2流量控制在1000sccm-3000sccm。
2.根据权利要求1所述的一种提效降本的太阳能电池硼扩散方法,其特征在于:所述N型硅片作为衬底材料,通过清洗制绒使硅片表面产生金字塔状表面结构。
3.根据权利要求1所述的一种提效降本的太阳能电池硼扩散方法,其特征在于:所述正面硼掺杂非晶硅厚度在100nm-500nm,掺杂源为BH3
4.根据权利要求1所述的一种提效降本的太阳能电池硼扩散方法,其特征在于:所述非晶硅高温退火并完成硼掺杂,退火温度在900℃-1000℃,N2流量在1000sccm-3000sccm,O2流量在1000sccm-3000sccm。
CN202111238122.0A 2021-10-25 2021-10-25 一种提效降本的太阳能电池硼扩散方法 Withdrawn CN114023635A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111238122.0A CN114023635A (zh) 2021-10-25 2021-10-25 一种提效降本的太阳能电池硼扩散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111238122.0A CN114023635A (zh) 2021-10-25 2021-10-25 一种提效降本的太阳能电池硼扩散方法

Publications (1)

Publication Number Publication Date
CN114023635A true CN114023635A (zh) 2022-02-08

Family

ID=80057312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111238122.0A Withdrawn CN114023635A (zh) 2021-10-25 2021-10-25 一种提效降本的太阳能电池硼扩散方法

Country Status (1)

Country Link
CN (1) CN114023635A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117187774A (zh) * 2023-09-19 2023-12-08 无锡松煜科技有限公司 一种无绕扩无氧源沉积硼扩散方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117187774A (zh) * 2023-09-19 2023-12-08 无锡松煜科技有限公司 一种无绕扩无氧源沉积硼扩散方法

Similar Documents

Publication Publication Date Title
US7846762B2 (en) Integrated emitter formation and passivation
CN101542745B (zh) 多结太阳能电池及其形成方法与设备
US8124502B2 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
CN111341649A (zh) 一种n型太阳能电池硼扩散方法
JP2012506629A (ja) 半導体デバイス製造方法、半導体デバイス、及び半導体デバイス製造設備
CN113604791B (zh) 一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
WO2023092977A1 (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
CN112071954A (zh) 一种钝化接触结构及其太阳能电池的制备方法
CN115692545A (zh) 一种提升PECVD路线N型TOPCon电池多晶硅活性磷掺杂浓度的方法
US7981778B2 (en) Directional solid phase crystallization of thin amorphous silicon for solar cell applications
CN115020546A (zh) 双面钝化接触太阳电池及其制备方法
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法
CN114267753A (zh) 一种TOPCon太阳能电池及其制备方法、光伏组件
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN114335237A (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN112164733A (zh) 一种太阳能电池扩散深结制备方法
CN109545673B (zh) 一种晶体硅太阳电池用无氧扩散方法
CN114725239B (zh) 一种异质结电池的制备方法
CN114038935B (zh) 一种太阳能电池新型硼扩散方法
CN113555468A (zh) 一种提升n型硅片硼扩散方阻均匀性的工艺
CN102097534A (zh) 同时形成晶体硅太阳能电池pn结和氮化硅减反射膜的方法
CN111816735B (zh) 一种ald制作非晶硅的方法
CN114613881B (zh) 太阳能电池及其制备方法、光伏组件
CN111755320A (zh) 多晶硅功能膜、制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220208

WW01 Invention patent application withdrawn after publication