CN110002877A - 基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法 - Google Patents

基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法 Download PDF

Info

Publication number
CN110002877A
CN110002877A CN201910387091.1A CN201910387091A CN110002877A CN 110002877 A CN110002877 A CN 110002877A CN 201910387091 A CN201910387091 A CN 201910387091A CN 110002877 A CN110002877 A CN 110002877A
Authority
CN
China
Prior art keywords
metal
ceramics
copper
ceramic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910387091.1A
Other languages
English (en)
Other versions
CN110002877B (zh
Inventor
张永利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhang Yongli
Original Assignee
Zhuzhou Chuxiang Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou Chuxiang Technology Co Ltd filed Critical Zhuzhou Chuxiang Technology Co Ltd
Priority to CN201910387091.1A priority Critical patent/CN110002877B/zh
Publication of CN110002877A publication Critical patent/CN110002877A/zh
Application granted granted Critical
Publication of CN110002877B publication Critical patent/CN110002877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种基于MAX相层状陶瓷钛碳化硅(Ti3SiC2)和金属铜的复合材料的制备方法,包括以下步骤:(1)混料:将钛碳化硅粉末与树脂粉末在球磨机中混料后干燥,得到混合粉末。(2)温压成型:混合粉末置于模具中,加温加压成型得到坯体。(3)热解:将坯体在氮气环境下热解,得到多孔碳和陶瓷的混合骨架。(4)反应烧结,得到多孔陶瓷。(5)真空熔渗:在真空下将铜熔融浸渍多孔陶瓷,得到金属/陶瓷复合材料。所制得的复合材料具有陶瓷与金属相互交织的连续三维网络结构,表现出良好的力学性能,同时具有良好的电学性能与耐磨损性能,且制备方法简单,具有广泛的应用前景。

Description

基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法
技术领域
本发明涉及复合材料技术领域,具体涉及一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及其制备方法和应用。
背景技术
陶瓷/金属复合材料具有优异的力学性能、导电导热性能与摩擦磨损性能,可作为苛刻环境中的导电、导热材料与耐磨损材料。目前所报道的陶瓷/金属复合材料主要为陶瓷颗粒增强的金属基复合材料,制备工艺主要为粉末冶金、放电等离子反应烧结等。
MAX相是一种三元层状金属性陶瓷材料,一般通式为Mn+1AXn,其中M为过渡金属元素,一般为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf和Ta;A为在元素周期表13-16列的主族元素,一般为Al、Si、P、S、Ga、Ge、In、Sn、Tl和Pb,另外Cd也可作为MAX相中A的元素;X为C或者N;n=1-3。MAX相综合了陶瓷材料和金属材料的一些优点,包括低密度、高模量、良好的导电和导热性能、抗热震性、低摩擦系数、自润滑等,这一系列优良的性质使其具有较为广阔的前景。
钛碳化硅陶瓷是一种同时具有陶瓷与金属优良性能的MAX相陶瓷,将其与铜进行复合,能够充分发挥陶瓷与金属两相的优势,提高材料力学性能,提高导电、导热性能,增强耐磨损性能,其结构不同于纤维增强、颗粒增强的复合材料,是一种金属和陶瓷均为三维网状结构,这种结构拓扑性便于对材料的结构、性能进行设计。
由于陶瓷一般与金属铜液之间的润湿性能很差,不仅难以实现材料复合,同时在材料服役过程中铜液的渗出而难以实现自发汗冷却效应。 这是制约研制与采用高性能轻质喉衬的巨大技术障碍。
早在上世纪九十年代后期,哈尔滨工业大学朱春成等人曾报道过采用金属钛、碳化硼、金属铜粉和镍粉末为原料通过加压自蔓燃高温合成技术制备 TiB2-TiC/Cu-Ni 抗烧蚀材料,但因制备的复合材料中的陶瓷相晶粒结合强度较低,复合材料的抗热震能力较低,未见后续应用的报道。
发明内容
为了解决上述的技术问题,本发明提供一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及其制备方法,其目的在于,提供一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料,得到具有良好导电导热性能与耐磨损性能的金属陶瓷均为连续三维网状结构的复合材料。
本发明提供一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,包括以下步骤:
S1. 混料:将钛碳化硅粉末与酚醛树脂粉末在行星球磨机中混料后干燥,得到混合粉末;
S2. 温压成型:将步骤S1所得的混合粉末置于模具中,加温加压成型得到陶瓷坯体;
S3. 热解:将步骤S2所得的陶瓷坯体在氮气环境下热解,得到多孔碳和陶瓷的混合骨架。
S4. 反应烧结:将步骤S3所得的多孔碳和陶瓷的混合骨架进行高温反应烧结,得到多孔陶瓷;
S5. 真空熔渗:在真空下将铜熔融,浸渍步骤S4所得的多孔陶瓷,进行真空熔渗,冷却后得到金属/陶瓷复合材料。
作为本发明进一步的改进,所述步骤S1中的酚醛树脂粉末添加量为所述钛碳化硅粉末与酚醛树脂粉末总质量的1%-70%。
作为本发明进一步的改进,所述行星球磨机转速为10-1000r/min,混料时间为1-10h。
作为本发明进一步的改进,所述步骤S2中温压成型温度为100-300℃,升温速率1-20℃/min,压力为1-30MPa,保温保压0.1-10h。
作为本发明进一步的改进,所述步骤S3中氮气环境下热解温度为500-1000℃,升温速率为0.1-5℃/min,保温0.5-3h,氮气流量0.1-3L/min。
作为本发明进一步的改进,所述步骤S4中反应烧结温度为1200-1650℃,升温速率为5℃/min,保温1-3h,而后以1℃/min降温至1200℃,再随炉冷却。
作为本发明进一步的改进,所述多孔陶瓷成分为Ti3SiC2/TiC/SiC。
作为本发明进一步的改进,所述步骤S5中真空熔渗的条件为:熔渗温度为1200-1650℃,升温速率为1-10℃/min,保温0.5-6小时,真空度为10-3MPa,而后随炉冷却。
本发明进一步保护一种基于钛碳化硅陶瓷与铜的复合材料,由上述的制备方法得到,是由陶瓷连续三维网状结构与金属的连续三维网状结构相互交织结构的复合材料。
本发明进一步保护一种上述基于钛碳化硅陶瓷与铜的复合材料在轨道交通、核领域、电池电极材料中的应用
本发明具有如下有益效果:
本发明提供基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料制备方法,通过混料、温压成型、热解与反应烧结工艺,可以获得具有三维网状结构的Ti3SiC2/TiC/SiC多孔陶瓷。再通过真空熔渗工艺,将工业纯铜与多孔陶瓷结合,可以获得金属/陶瓷复合材料。且本发明提供的基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料制备方法工艺过程简单,材料性能稳定,便于实现规模化生产。
第一、采用合适的树脂,可以通过小于300℃的温度压制成型,一般的温压成型设备均可胜任,成型设备简单,工艺稳定可靠。
第二、树脂同时具有两个作用,一个是作为成型粘接剂,保证坯体良好的成型性;另一个是通过热解后转变为碳,作为碳源在坯体中起到造孔剂与调节反应活性的作用,而不是像一般成型方法中需要通过脱脂工艺将作为粘接剂的树脂排除,创造性地赋予传统粘接剂以新功能,使得本制备方法省时省力。
第三、本制备方法的有益效果体现在可以通过调整树脂的含量来调节坯体的孔隙度,从目前的实验结果来看,树脂的添加量可以控制在5wt%-90wt%,相应坯体的孔隙度可以在10%-80%之间,可以很方便地调整最终金属/陶瓷复合材料中金属与陶瓷的比例。
第四、本制备工艺的有益之处体现在所制备的金属/陶瓷复合材料中金属相和陶瓷相都是连续的,一方面具有金属的韧性和高导电、高导热性质;另一方面又保持了陶瓷的高耐磨、低膨胀的特性,而不是像其它工艺制备的金属/陶瓷复合材料复合材料一样,只有一相是连续相,作为基体,另一相不连续,作为增强相。比如常规金属基复合材料,金属相是连续相,主要体现出金属相的性能。本制备方法所制备的金属/陶瓷复合材料是一个创造性发明,金属和陶瓷两相呈三维网络结构交织成一体,均为连续相,所体现的是两相的性能。
本发明提供的基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料具有陶瓷与金属相互交织的三维网状结构,具有良好的力学性能(弯曲强度可达257.90-270.21MPa)、电导率(4.55-5.73×105S·m-1)以及优良的耐磨性,能够充分利用陶瓷与金属的性能,表现出较高的力学性能、电学性能与耐磨损性能,在轨道交通、核领域、电池电极材料领域有着广泛的应用前景。
附图说明
图1是本发明制备基于钛碳化硅陶瓷与铜的复合材料的工艺流程示意图;
图2是本发明实施例1所得基于钛碳化硅陶瓷与铜的复合材料的光学照片;
图3是本发明实施例1所得基于钛碳化硅陶瓷与铜的复合材料断口的SEM图;
图4是本发明实施例1所得基于钛碳化硅陶瓷与铜的复合材料截面的SEM图;
图5是本发明实施例1所得复合材料中钛碳化硅的连续三维网络结构(3D CT);
图6是本发明实施例1所得复合材料中铜的连续三维网络结构(3D CT)。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所述的实施例只是本发明的部分具有代表性的实施例,而不是全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他所有实施例都属于本发明的保护范围。
以下实施例和对比实施例均依照上述基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法步骤进行,区别在于使用条件有所不同;各实施例和对比实施例中所使用氩气为纯度≥99.99%的高纯氩气;其它所使用的化学试剂,如无特殊说明,均通过常规商业途径获得。
实施例1
参照图1,一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,按照如下步骤进行:
(1)制备陶瓷生坯:将200-400M的钛碳化硅粉末与80M过筛酚醛树脂粉末(质量比为17:3)置于行星球磨机中,转速300r/min,混料5h,将混合粉末置于涂有氮化硼脱模剂的不锈钢模具中,在平板硫化机上进行温压成型,设置平板硫化机上下压板温度为180℃,压力为10MPa,保压30min,脱模后得到陶瓷生坯。
(2)制备多孔陶瓷:将陶瓷生坯在N2气氛保护下热解,将酚醛树脂碳化,气压为常压(1atm),氮气流量0.5L/min,以1℃/min升温速率加热至650℃保温1h,在该过程中,酚醛树脂中氢、氧元素以小分子形式脱出,体积收缩,产生孔隙并留下碳骨架。而后进行反应反应烧结,气氛环境保持不变,以5℃/min速率升温至1480℃,保温1h,而后以1℃/min降温至1200℃后随炉冷却,在该过程中,钛碳化硅粉末颗粒在高温下与C发生反应生成TiC与SiC,并相互扩散、粘结,得到Ti3SiC2/TiC/SiC多孔陶瓷。
(3)制备金属/陶瓷复合材料:将多孔陶瓷与工业纯铜置于石墨坩埚中,根据多孔陶瓷孔隙率及坩埚内腔尺寸计算铜的加入量,确保熔融后的铜能够充分浸渍多孔陶瓷,加装合适的坩埚顶盖防止陶瓷在熔融后的铜中漂浮起来,在真空环境下进行熔渗,温度为1450℃,保温1.5h,真空度为10-3MPa,而后随炉冷却,得到金属/陶瓷复合材料。
本实施例中,参见图2-4,多孔陶瓷孔隙率为35.04%,复合材料中陶瓷与金属铜的质量比为1.84:3.12,金属/陶瓷复合材料的弯曲强度可达270.21MPa;电导率达5.72×105S·m-1,约为石墨电导率(0.7~1.2×105S·m-1)的5倍;与轴承钢球的摩擦系数在压力达到60N时为0.63,磨损率为1.1×10-3 mm3/N·m。
本实施例制备的金属/陶瓷复合材料中金属相和陶瓷相都是连续的,从图5、图6中可以清晰的看到,这可以保持两者优势,一方面具有金属的韧性和高导电、高导热性质;另一方面又保持了陶瓷的高耐磨、低膨胀的特性,而不是像其它工艺制备的金属/陶瓷复合材料复合材料一样,只有一相是连续相,作为基体,另一相不连续,作为增强相。比如常规金属基复合材料,金属相是连续相,主要体现出金属相的性能。本制备方法所制备的金属/陶瓷复合材料是一个创造性发明,金属和陶瓷两相呈三维网络结构交织成一体,均为连续相,所体现的是两相的性能。
实施例2
参照图1,一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,按照如下步骤进行:
(1)制备陶瓷生坯:将200-400M的钛碳化硅粉末与80M过筛酚醛树脂粉末(质量比为17:3)置于行星球磨机中,转速300r/min,混料5h,将混合粉末置于涂有氮化硼脱模剂的不锈钢模具中,在平板硫化机上进行温压成型,设置平板硫化机上下压板温度为180℃,压力为10MPa,保压30min,脱模后得到陶瓷生坯。
(2)制备多孔陶瓷:将陶瓷生坯在N2气氛保护下热解,将酚醛树脂碳化,气压为常压(1atm),氮气流量0.5L/min,以1℃/min升温速率加热至650℃保温1h,在该过程中,酚醛树脂中氢、氧元素以小分子形式脱出,体积收缩,产生孔隙并留下碳骨架。而后进行反应反应烧结,气氛环境保持不变,以5℃/min速率升温至1500℃,保温1h,而后以1℃/min降温至1200℃后随炉冷却,在该过程中,钛碳化硅粉末颗粒在高温下与C发生反应生成TiC与SiC,并相互扩散、粘结,得到Ti3SiC2/TiC/SiC多孔陶瓷。
(3)制备金属/陶瓷复合材料:将多孔陶瓷与工业纯铜置于石墨坩埚中,根据多孔陶瓷孔隙率及坩埚内腔尺寸计算铜的加入量,确保熔融后的铜能够充分浸渍多孔陶瓷,加装合适的坩埚顶盖防止陶瓷在熔融后的铜中漂浮起来,在真空环境下进行熔渗,温度为1450℃,保温1.5h,真空度为10-3MPa,而后随炉冷却,得到金属/陶瓷复合材料。
本实施例中,多孔陶瓷孔隙率为35.29%,复合材料中陶瓷与金属铜的质量比为1.84:3.14,金属/陶瓷复合材料的弯曲强度可达265.02MPa;电导率达5.73×105S·m-1,约为石墨电导率(0.7~1.2×105S·m-1)的5倍;与轴承钢球的摩擦系数在压力达到60N时为0.69,磨损率为1.65×10-3 mm3/N·m。
实施例 3
参照图1,一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,按照如下步骤进行:
(1)制备陶瓷生坯:将200-400M的钛碳化硅粉末与80M过筛酚醛树脂粉末(质量比为17:3)置于行星球磨机中,转速300r/min,混料5h,将混合粉末置于涂有氮化硼脱模剂的不锈钢模具中,在平板硫化机上进行温压成型,设置平板硫化机上下压板温度为180℃,压力为10MPa,保压30min,脱模后得到陶瓷生坯。
(2)制备多孔陶瓷:将陶瓷生坯在N2气氛保护下热解,将酚醛树脂碳化,气压为常压(1atm),氮气流量0.5L/min,以1℃/min升温速率加热至650℃保温1h,在该过程中,酚醛树脂中氢、氧元素以小分子形式脱出,体积收缩,产生孔隙并留下碳骨架。而后进行反应反应烧结,气氛环境保持不变,以5℃/min速率升温至1460℃,保温1h,而后以1℃/min降温至1200℃后随炉冷却,在该过程中,钛碳化硅粉末颗粒在高温下与C发生反应生成TiC与SiC,并相互扩散、粘结,得到Ti3SiC2/TiC/SiC多孔陶瓷。
(3)制备金属/陶瓷复合材料:将多孔陶瓷与工业纯铜置于石墨坩埚中,根据多孔陶瓷孔隙率及坩埚内腔尺寸计算铜的加入量,确保熔融后的铜能够充分浸渍多孔陶瓷,加装合适的坩埚顶盖防止陶瓷在熔融后的铜中漂浮起来,在真空环境下进行熔渗,温度为1450℃,保温1.5h,真空度为10-3MPa,而后随炉冷却,得到金属/陶瓷复合材料。
本实施例中,多孔陶瓷孔隙率为34.88%,复合材料中陶瓷与金属铜的质量比为1.85:3.10,金属/陶瓷复合材料的弯曲强度可达268.39MPa;电导率达5.55×105S·m-1,约为石墨电导率(0.7~1.2×105S·m-1)的5倍;与轴承钢球的摩擦系数在压力达到60N时为0.73,磨损率为3.3×10-3 mm3/N·m。
实施例4
参照图1,一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,按照如下步骤进行:
(1)制备陶瓷生坯:将200-400M的钛碳化硅粉末与80M过筛酚醛树脂粉末(质量比为17:3)置于行星球磨机中,转速300r/min,混料5h,将混合粉末置于涂有氮化硼脱模剂的不锈钢模具中,在平板硫化机上进行温压成型,设置平板硫化机上下压板温度为180℃,压力为10MPa,保压30min,脱模后得到陶瓷生坯。
(2)制备多孔陶瓷:将陶瓷生坯在N2气氛保护下热解,将酚醛树脂碳化,气压为常压(1atm),氮气流量0.5L/min,以1℃/min升温速率加热至650℃保温1h,在该过程中,酚醛树脂中氢、氧元素以小分子形式脱出,体积收缩,产生孔隙并留下碳骨架。而后进行反应反应烧结,气氛环境保持不变,以5℃/min速率升温至1440℃,保温1h,而后以1℃/min降温至1200℃后随炉冷却,在该过程中,钛碳化硅粉末颗粒在高温下与C发生反应生成TiC与SiC,并相互扩散、粘结,得到Ti3SiC2/TiC/SiC多孔陶瓷。
(3)制备金属/陶瓷复合材料:将多孔陶瓷与工业纯铜置于石墨坩埚中,根据多孔陶瓷孔隙率及坩埚内腔尺寸计算铜的加入量,确保熔融后的铜能够充分浸渍多孔陶瓷,加装合适的坩埚顶盖防止陶瓷在熔融后的铜中漂浮起来,在真空环境下进行熔渗,温度为1450℃,保温1.5h,真空度为10-3MPa,而后随炉冷却,得到金属/陶瓷复合材料。
本实施例中,多孔陶瓷孔隙率为35.34%,复合材料中陶瓷与金属铜的质量比为1.82:3.15,金属/陶瓷复合材料的弯曲强度可达257.90MPa;电导率达4.55×105S·m-1,约为石墨电导率(0.7~1.2×105S·m-1)的4.5倍;与轴承钢球的摩擦系数在压力达到60N时为0.71,磨损率为0.63×10-3 mm3/N·m。
本制备技术的目标之一就是替代现有高铁受电弓所采用的材料,一般而言,高铁受电弓的要求主要体现高导电和高耐磨性两方面,目前主要采用石墨或者石墨渗铜,本制备方法所制备金属/陶瓷复合材料,在耐磨性方面明显高于上述两种材料,在导电性方面也表现良好。
与现有技术相比,本发明提供基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料制备方法,通过混料、温压成型、热解与反应烧结工艺,可以获得具有三维网状结构的Ti3SiC2/TiC/SiC多孔陶瓷。再通过真空熔渗工艺,将工业纯铜与多孔陶瓷结合,可以获得金属/陶瓷复合材料。且本发明提供的基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料制备方法工艺过程简单,材料性能稳定,便于实现规模化生产。
第一、采用合适的树脂,可以通过小于300℃的温度压制成型,一般的温压成型设备均可胜任,成型设备简单,工艺稳定可靠。
第二、树脂同时具有两个作用,一个是作为成型粘接剂,保证坯体良好的成型性;另一个是通过热解后转变为碳,作为碳源在坯体中起到造孔剂与调节反应活性的作用,而不是像一般成型方法中需要通过脱脂工艺将作为粘接剂的树脂排除,创造性地赋予传统粘接剂以新功能,使得本制备方法省时省力。
第三、本制备方法的有益效果体现在可以通过调整树脂的含量来调节坯体的孔隙度,从目前的实验结果来看,树脂的添加量可以控制在5wt%-90wt%,相应坯体的孔隙度可以在10%-80%之间,可以很方便地调整最终金属/陶瓷复合材料中金属与陶瓷的比例。
第四、本制备工艺的有益之处体现在所制备的金属/陶瓷复合材料中金属相和陶瓷相都是连续的,从图5、图6中可以清晰的看到,这可以保持两者优势,一方面具有金属的韧性和高导电、高导热性质;另一方面又保持了陶瓷的高耐磨、低膨胀的特性,而不是像其它工艺制备的金属/陶瓷复合材料复合材料一样,只有一相是连续相,作为基体,另一相不连续,作为增强相。比如常规金属基复合材料,金属相是连续相,主要体现出金属相的性能。本制备方法所制备的金属/陶瓷复合材料是一个创造性发明,金属和陶瓷两相呈三维网络结构交织成一体,均为连续相,所体现的是两相的性能。
本发明提供的基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料具有陶瓷与金属相互交织的三维网状结构,具有良好的力学性能(弯曲强度可达257.90-270.21MPa)、电导率(4.55-5.73×105S·m-1)以及优良的耐磨性,能够充分利用陶瓷与金属的性能,表现出较高的力学性能、电学性能与耐磨损性能,在轨道交通、核领域、电池电极材料领域有着广泛的应用前景。
本领域的技术人员在不脱离权利要求书确定的本发明的精神和范围的条件下,还可以对以上内容进行各种各样的修改。因此本发明的范围并不仅限于以上的说明,而是由权利要求书的范围来确定的。

Claims (10)

1.一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,包括以下步骤:
S1. 混料:将钛碳化硅粉末与酚醛树脂粉末在行星球磨机中混料后干燥,得到混合粉末;
S2. 温压成型:将步骤S1所得的混合粉末置于模具中,加温加压成型得到陶瓷坯体;
S3. 热解:将步骤S2所得的陶瓷坯体在氮气环境下热解,得到多孔碳和陶瓷的混合骨架;
S4. 反应烧结:将步骤S3所得的多孔碳和陶瓷的混合骨架进行高温反应烧结,得到多孔陶瓷;
S5. 真空熔渗:在真空下将铜熔融,浸渍步骤S4所得的多孔陶瓷,进行真空熔渗,冷却后得到金属/陶瓷复合材料。
2.根据权利要求1所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述步骤S1中的酚醛树脂粉末添加量为所述钛碳化硅粉末与酚醛树脂粉末总质量的1%-70%。
3.根据权利要求1或2所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述行星球磨机转速为10-1000r/min,混料时间为1-10h。
4.根据权利要求1所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述步骤S2中温压成型温度为100-300℃,升温速率1-20℃/min,压力为1-30MPa,保温保压0.1-10h。
5.根据权利要求1所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述步骤S3中氮气环境下热解温度为500-1000℃,升温速率为0.1-5℃/min,保温0.5-3h,氮气流量0.1-3L/min。
6.根据权利要求1所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述步骤S4中反应烧结温度为1200-1650℃,升温速率为5℃/min,保温1-3h,而后以1℃/min降温至1200℃,再随炉冷却。
7.根据权利要求1或6所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述多孔陶瓷成分为Ti3SiC2/TiC/SiC。
8.根据权利要求1或6所述的一种基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料的制备方法,其特征在于,所述步骤S5中真空熔渗的条件为:熔渗温度为1200-1650℃,升温速率为1-10℃/min,保温0.5-6小时,真空度为10-3MPa,而后随炉冷却。
9.一种基于钛碳化硅陶瓷与铜的复合材料,其特征在于,由如权利要求1-8任一项权利要求所述的制备方法得到,是由陶瓷连续三维网状结构与金属的连续三维网状结构相互交织结构的复合材料。
10.一种如权利要求9所述基于钛碳化硅陶瓷与铜的复合材料在轨道交通、核领域、电池电极材料中的应用。
CN201910387091.1A 2019-05-10 2019-05-10 基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法 Active CN110002877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910387091.1A CN110002877B (zh) 2019-05-10 2019-05-10 基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910387091.1A CN110002877B (zh) 2019-05-10 2019-05-10 基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN110002877A true CN110002877A (zh) 2019-07-12
CN110002877B CN110002877B (zh) 2022-01-11

Family

ID=67176394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910387091.1A Active CN110002877B (zh) 2019-05-10 2019-05-10 基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN110002877B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045328A (zh) * 2021-05-06 2021-06-29 中铭富驰(苏州)纳米高新材料有限公司 多孔陶瓷板的制备方法以及高精密陶瓷多孔平台
CN113563095A (zh) * 2020-04-28 2021-10-29 安泰科技股份有限公司 金属陶瓷闸片、碳陶制动盘的制备方法及摩擦副对偶
CN114427049A (zh) * 2022-01-12 2022-05-03 中国科学院金属研究所 一种Cu-TiCx复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
CN1986491A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高导热、高强高密的SiC/Cu复相泡沫材料及其制备方法
CN102102720A (zh) * 2009-12-18 2011-06-22 中国科学院金属研究所 一种陶瓷/金属双连续相复合材料闸片及其制备方法
CN102242302A (zh) * 2011-06-28 2011-11-16 钢铁研究总院 一种层状三元陶瓷增强金属铜复合材料的制备方法
CN103589895A (zh) * 2013-11-21 2014-02-19 北京科技大学 一种低成本制备高精度金刚石/Cu复合材料零件的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
CN1986491A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高导热、高强高密的SiC/Cu复相泡沫材料及其制备方法
CN102102720A (zh) * 2009-12-18 2011-06-22 中国科学院金属研究所 一种陶瓷/金属双连续相复合材料闸片及其制备方法
CN102242302A (zh) * 2011-06-28 2011-11-16 钢铁研究总院 一种层状三元陶瓷增强金属铜复合材料的制备方法
CN103589895A (zh) * 2013-11-21 2014-02-19 北京科技大学 一种低成本制备高精度金刚石/Cu复合材料零件的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
禄璐: "Cu-Ti3SiC2复合材料的摩擦磨损性能及多孔Ti3SiC2的制备", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563095A (zh) * 2020-04-28 2021-10-29 安泰科技股份有限公司 金属陶瓷闸片、碳陶制动盘的制备方法及摩擦副对偶
CN113045328A (zh) * 2021-05-06 2021-06-29 中铭富驰(苏州)纳米高新材料有限公司 多孔陶瓷板的制备方法以及高精密陶瓷多孔平台
CN113045328B (zh) * 2021-05-06 2023-02-17 中铭富驰(苏州)纳米高新材料有限公司 多孔陶瓷板的制备方法以及高精密陶瓷多孔平台
CN114427049A (zh) * 2022-01-12 2022-05-03 中国科学院金属研究所 一种Cu-TiCx复合材料及其制备方法

Also Published As

Publication number Publication date
CN110002877B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN110002877A (zh) 基于钛碳化硅陶瓷与铜的金属/陶瓷复合材料及制备方法
EP0277085B1 (en) Production of metal carbide articles
US10597333B2 (en) Process for producing ceramic fiber-reinforced composite material
JP4536950B2 (ja) SiC繊維強化型SiC複合材料のホットプレス製造方法
JP3673436B2 (ja) 炭素基金属複合材料およびその製造方法
CN114380613B (zh) 一种轴向梯度和平面均质的超高温陶瓷基复合材料的制备方法
KR20080071987A (ko) 실리콘 카바이드 전구체 및 이의 용도
CN108610081B (zh) 一种C/C-Cu复合材料的制备方法
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
Chen et al. Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration
CN103387422A (zh) 在炭材料表面制备碳化硅/二硅化钼复合涂层的方法
CN111960839B (zh) 一种高速列车用受电弓滑板的制备方法
CN102167592A (zh) ZrB2-ZrC基耐超高温陶瓷的制备方法
CN109928756A (zh) 一种碳化硅增强碳基复合材料及制备方法
CN112047739A (zh) 一种可加工的陶瓷/金属梯度结构材料及其制备方法
CN101818048B (zh) 一种铜硅合金改性炭/陶摩擦材料的制备方法
CN101709421B (zh) W-ZrC-SiC金属陶瓷及其制备方法
CN108754357B (zh) 一种SiC纳米线增强铝碳化硅复合材料及其制备方法
CN102796972B (zh) 一种连续Mo纤维增强TiAl基复合材料的制备方法
CN102167591B (zh) ZrB2基复合材料的制备方法
KR20080055741A (ko) 활성 브레이징용 저열팽창 복합재료 및 세라믹/금속 간접합체 제조방법
Zhang et al. Preparation and property modulation of three-dimensional bicontinuous graphite/aluminum alloy composites
KR101956683B1 (ko) 금속탄화물 필러 함유 섬유강화 세라믹 복합소재 제조방법
JPH07215780A (ja) 高耐熱性複合材料
CN116536597A (zh) 一种三维网络碳相增强铜基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211221

Address after: Room 2101, building B, Yangguang Mingdi, No. 3, huishati 1st Road, Huicheng District, Huizhou City, Guangdong Province, 516001

Applicant after: Zhang Yongli

Address before: 412000 room 310, yuechuanghui, Tianyi Science and Technology City, Zhuzhou City, Hunan Province

Applicant before: Zhuzhou Chuxiang Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant