CN109974538B - 一种垂直起降可重复使用运载器多终端约束上升段制导方法 - Google Patents

一种垂直起降可重复使用运载器多终端约束上升段制导方法 Download PDF

Info

Publication number
CN109974538B
CN109974538B CN201910227588.7A CN201910227588A CN109974538B CN 109974538 B CN109974538 B CN 109974538B CN 201910227588 A CN201910227588 A CN 201910227588A CN 109974538 B CN109974538 B CN 109974538B
Authority
CN
China
Prior art keywords
terminal
vertical take
optimal control
landing
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910227588.7A
Other languages
English (en)
Other versions
CN109974538A (zh
Inventor
崔乃刚
韦常柱
李源
关英姿
浦甲伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910227588.7A priority Critical patent/CN109974538B/zh
Publication of CN109974538A publication Critical patent/CN109974538A/zh
Application granted granted Critical
Publication of CN109974538B publication Critical patent/CN109974538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Feedback Control In General (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

本发明提出了一种垂直起降可重复使用运载器多终端约束上升段制导方法,属于运载火箭弹道制导控制技术领域。所述方法包括:步骤一、建立垂直起降可重复使用运载器动力学方程,并根据所述垂直起降可重复使用运载器动力学方程确定过程约束要求;步骤二、根据最优控制原理推导并获取最优控制条件;步骤三、根据制导任务需求,给定终端位置、速度和姿态角要求,并确定其满足的终端约束要求;步骤四、获取终端状态变量和协态变量;步骤五、根据所述满足终端约束的状态变量和协态变量初值,结合最优控制条件即可获得指导指令。本发明有效提高的垂直起降可重复使用运载器上升段制导方法的收敛性、工程实用性和精确性。

Description

一种垂直起降可重复使用运载器多终端约束上升段制导方法
技术领域
本发明涉及一种垂直起降可重复使用运载器多终端约束上升段制导方法,属于运载火箭弹道制导控制技术领域。
背景技术
为了降低运载器的发射成本,提升空间快速响应能力,垂直起降可重复使用运载器相关技术的发展倍受关注。可重复使用运载器最关键的环节即为对其的精确返回控制以及回收,要求运载器子级分离后能够精确返回预定着陆回收场。与传统运载火箭不同的是,为了节省推进剂,保证火箭子级返回能力和精度,垂直起降可重复使用运载器上升段终端约束不仅包括主动段结束点的位置和速度状态约束,还包括终端姿态角约束。然而传统的运载火箭上升段一般采用迭代制导方法,其终端姿态角偏差可能达到10~20°,无法适用于垂直起降重复使用运载器上升段制导任务。
发明内容
本发明目的是为了解决现有运载器上升段制导无法约束终端姿态角的问题,提供了一种基于最优控制原理的垂直起降可重复使用运载器多终端约束上升段制导方法。本发明的应用对象为小型垂直起降重复使用运载器。其基本思路为:基于最优控制原理,将垂直起降重复使用运载器的位置、速度、姿态信息视为状态量,根据垂直起降重复使用运载器受力模型建立状态方程,并推导最优控制条件,最后根据终端约束推导得到Hamilton两点边值问题,通过牛顿迭代求解即可得到姿态角指令。本发明所采取的具体技术方案为:
一种垂直起降可重复使用运载器多终端约束上升段制导方法,所述垂直起降可重复使用运载器多终端约束上升段制导方法包括:
步骤一、建立垂直起降可重复使用运载器动力学方程,并根据所述垂直起降可重复使用运载器动力学方程确定过程约束要求;
步骤二、根据最优控制原理推导并获取最优控制条件;
步骤三、根据垂直起降可重复使用运载器多终端约束上升段的制导任务,给定终端位置、速度和姿态角要求
Figure BDA0002005695490000011
并确定所述终端位置、速度和姿态角要求
Figure BDA0002005695490000012
满足的终端约束要求;
步骤四、在给定初值的条件下对所述垂直起降可重复使用运载器动力学方程和最优控制条件进行积分,获得终端状态变量和协态变量;其中,根据工程经验给定初值;利用牛顿迭代法,对所述终端状态变量和协态变量进行求解能够使终端状态变量和协态变量满足终端约束的状态变量和协态变量初值;
步骤五、根据所述满足终端约束的状态变量和协态变量初值,结合最优控制条件即可获得指导指令。
进一步地,步骤一所述垂直起降可重复使用运载器动力学方程为:
Figure BDA0002005695490000021
其中,r,V,u,a分别为垂直起降可重复使用运载器的位置、速度、姿态和姿态变化率矢量,
Figure BDA0002005695490000022
Figure BDA0002005695490000023
分别表示位置、速度和姿态的导数;T为发动机推力,m为发动机质量;
所述确定过程约束要求:保证|u|≡1,则有约束要求为:
ua=0 (2)
进一步地,步骤二所述的根据最优控制原理推导并获取最优控制条件的过程包括:
第一步、根据最优控制原理,确定性能函数J为:
J=min tf (3)
其中,t为发射时间,下角标“f”表示终端值;
第二步、确定哈密尔顿函数H为:
Figure BDA0002005695490000024
其中,pr,pv,pu,μ为协态变量;
第三步、根据最优控制原理,确定最优控制条件为:
Figure BDA0002005695490000025
Figure BDA0002005695490000026
Figure BDA0002005695490000027
Figure BDA0002005695490000028
第四步、根据第三步获得的最优控制条件,则确定:
Figure BDA0002005695490000031
且有
Figure BDA0002005695490000032
a=-pu-μu (11)
根据约束
ua=0 (12)
Figure BDA0002005695490000033
进一步地,步骤三所述所述终端位置、速度和姿态角要求
Figure BDA0002005695490000034
满足的终端约束要求为:
Hf+1=0 (14)
本发明有益效果:
本发明提出的一种基于最优控制理论的垂直起降可重复使用运载器多终端约束上升段制导方法。该方法通过对垂直起降可重复使用运载器最优控制模型的推导,可实现对垂直起降可重复使用运载器上升段位置、速度、姿态角多终端约束精确制导,同时保证在初值不精确、终端约束精度要求高的情况下,对制导指令的高精度、高效率求解。本发明有效提高的垂直起降可重复使用运载器上升段制导方法的收敛性、工程实用性和精确性,在垂直起降可重复使用运载器制导领域具有广阔的应用前景。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明不受实施例的限制。
实施例1:
一种垂直起降可重复使用运载器多终端约束上升段制导方法,包括以下步骤:
步骤一:建立垂直起降可重复使用运载器动力学方程,并给出过程约束要求:
Figure BDA0002005695490000041
式中,r,V,u,a分别为垂直起降可重复使用运载器的位置、速度、姿态,姿态变化率矢量,本专利中上标“·”表示导数,T为发动机推力,m为发动机质量。
为保证|u|≡1,则有约束
ua=0 (2)
步骤二:推导最优控制条件:
根据最优控制原理,性能指标函数J取
J=min tf (3)
t为发射时间,本专利中下标“f”表示终端值。
哈密尔顿函数H
Figure BDA0002005695490000042
式中,pr,pv,pu,μ为协态变量。
根据最优控制原理,最优控制条件为
Figure BDA0002005695490000043
Figure BDA0002005695490000044
Figure BDA0002005695490000045
Figure BDA0002005695490000046
根据最优控制条件,有:
Figure BDA0002005695490000047
且有
Figure BDA0002005695490000051
a=-pu-μu (11)
根据约束
ua=0 (12)
Figure BDA0002005695490000052
步骤三:给出终端约束要求;
根据任务需求,给定终端位置、速度和姿态角要求
Figure BDA0002005695490000053
且同时还需满足
Hf+1=0 (14)
步骤四:在给定初值的条件下,积分公式(1)、(5)~(7),即可得到终端状态变量、协态变量。应用牛顿迭代法,求解能够使终端状态变量、协态变量满足终端约束的状态变量、协态变量初值即可;
步骤五:得到状态变量、协态变量初值,并根据最优控制条件公式(11),即可得到制导指令。
本发明提出的一种基于最优控制理论的垂直起降可重复使用运载器多终端约束上升段制导方法。该方法通过对垂直起降可重复使用运载器最优控制模型的推导,可实现对垂直起降可重复使用运载器上升段位置、速度、姿态角多终端约束精确制导,同时保证在初值不精确、终端约束精度要求高的情况下,对制导指令的高精度、高效率求解。本发明有效提高的垂直起降可重复使用运载器上升段制导方法的收敛性、工程实用性和精确性,在垂直起降可重复使用运载器制导领域具有广阔的应用前景。
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (4)

1.一种垂直起降可重复使用运载器多终端约束上升段制导方法,其特征在于,所述垂直起降可重复使用运载器多终端约束上升段制导方法包括:
步骤一、建立垂直起降可重复使用运载器动力学方程,并根据所述垂直起降可重复使用运载器动力学方程确定过程约束要求;
步骤二、根据最优控制原理推导并获取最优控制条件;
步骤三、根据垂直起降可重复使用运载器多终端约束上升段的制导任务,给定终端位置、速度和姿态角要求
Figure FDA0002567699050000011
并确定所述终端位置、速度和姿态角要求
Figure FDA0002567699050000012
满足的终端约束要求;
步骤四、在给定初值的条件下对所述垂直起降可重复使用运载器动力学方程和最优控制条件进行积分,获得终端状态变量和协态变量;其中,给定初值;利用牛顿迭代法,对所述终端状态变量和协态变量进行求解能够使终端状态变量和协态变量满足终端约束的状态变量和协态变量初值;
步骤五、根据所述满足终端约束的状态变量和协态变量初值,结合最优控制条件即可获得制导指令。
2.根据权利要求1所述垂直起降可重复使用运载器多终端约束上升段制导方法,其特征在于,步骤一所述垂直起降可重复使用运载器动力学方程为:
Figure FDA0002567699050000013
其中,r,V,u,a分别为垂直起降可重复使用运载器的位置、速度、姿态和姿态变化率矢量,
Figure FDA0002567699050000014
Figure FDA0002567699050000015
分别表示位置、速度和姿态的导数;T为发动机推力,m为发动机质量;所述确定过程约束要求:保证|u|≡1,则有约束要求为:
ua=0 (2)
3.根据权利要求1所述垂直起降可重复使用运载器多终端约束上升段制导方法,其特征在于,步骤二所述的根据最优控制原理推导并获取最优控制条件的过程包括:
第一步、根据最优控制原理,确定性能函数J为:
J=min tf (3)
其中,t为发射时间,下角标“f”表示终端值;
第二步、确定哈密尔顿函数H为:
Figure FDA0002567699050000021
其中,pr,pv,pu,μ为协态变量;
第三步、根据最优控制原理,确定最优控制条件为:
Figure FDA0002567699050000022
Figure FDA0002567699050000023
Figure FDA0002567699050000024
Figure FDA0002567699050000025
第四步、根据第三步获得的最优控制条件,则确定:
Figure FDA0002567699050000026
且有
Figure FDA0002567699050000027
a=-pu-μu (11)
根据约束
ua=0 (12)
Figure FDA0002567699050000028
4.根据权利要求1所述垂直起降可重复使用运载器多终端约束上升段制导方法,其特征在于,
步骤三所述所述终端位置、速度和姿态角要求
Figure FDA0002567699050000031
满足的终端约束要求为:
Hf+1=0 (14)
CN201910227588.7A 2019-03-25 2019-03-25 一种垂直起降可重复使用运载器多终端约束上升段制导方法 Active CN109974538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910227588.7A CN109974538B (zh) 2019-03-25 2019-03-25 一种垂直起降可重复使用运载器多终端约束上升段制导方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910227588.7A CN109974538B (zh) 2019-03-25 2019-03-25 一种垂直起降可重复使用运载器多终端约束上升段制导方法

Publications (2)

Publication Number Publication Date
CN109974538A CN109974538A (zh) 2019-07-05
CN109974538B true CN109974538B (zh) 2020-09-04

Family

ID=67080412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910227588.7A Active CN109974538B (zh) 2019-03-25 2019-03-25 一种垂直起降可重复使用运载器多终端约束上升段制导方法

Country Status (1)

Country Link
CN (1) CN109974538B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110989644B (zh) * 2019-11-29 2021-04-23 上海宇航系统工程研究所 一种考虑目标点多终端约束的飞行器轨迹规划方法
CN111580555B (zh) * 2020-05-13 2022-04-08 北京控制工程研究所 一种高超声速飞行器上升段分段自适应预测校正制导方法
CN113758383B (zh) * 2021-08-17 2023-03-03 航天科工火箭技术有限公司 一种用于验证垂直起降技术的可重复使用火箭及验证方法
CN115421388B (zh) * 2022-09-23 2023-05-12 南京理工大学 一种基于凸优化的远程导弹末级多姿态约束在线轨迹规划方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2012793B2 (de) * 1970-03-18 1976-07-22 Mebus, Hans Georg, Dipl.-Ing., 8024 Deisenhofen Verfahren zum senkrechten starten und anschliessenden umlenken eines flugkoerpers in andere flugrichtungen
JPH0278761A (ja) * 1988-09-14 1990-03-19 Mitsubishi Heavy Ind Ltd 飛しよう体ロケットエンジンの制御装置
US10994838B2 (en) * 2012-12-07 2021-05-04 Delorean Aerospace, Llc Vertical takeoff and landing aircraft
US11014664B2 (en) * 2017-08-22 2021-05-25 United States Of America As Represented By The Administrator Of Nasa Vertical take off and landing (VTOL) aircraft with vectored thrust having continuously variable pitch attitude in hover
CN109470252A (zh) * 2018-10-23 2019-03-15 哈尔滨工业大学 一种基于凸优化的垂直起降重复使用运载器快速轨迹优化方法
CN109506517B (zh) * 2018-11-21 2021-10-12 中国人民解放军空军工程大学 一种带约束的中制导弹道优化方法
CN109407688B (zh) * 2018-12-13 2021-07-13 北京航天自动控制研究所 一种垂直起降火箭在线轨迹规划的质心运动解耦方法

Also Published As

Publication number Publication date
CN109974538A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109974538B (zh) 一种垂直起降可重复使用运载器多终端约束上升段制导方法
CN111399531B (zh) 高超声速飞行器滑翔段制导与姿态控制一体化设计方法
CN110716566B (zh) 一种欠驱动无人艇的有限时间轨迹跟踪控制方法
CN111591470B (zh) 一种适应推力可调模式的飞行器精确软着陆闭环制导方法
CN111258216B (zh) 一种适用于四旋翼飞行器的滑模重复控制器
CN106681348A (zh) 考虑全捷联导引头视场约束的制导控制一体化设计方法
CN110989669A (zh) 一种多级助推滑翔飞行器主动段在线自适应制导算法
CN110617744B (zh) 一种运载火箭导引方法
CN107330152B (zh) 一种适用于旋翼飞行器的高效气动配平方法
CN112180965A (zh) 一种高精度过载控制方法
CN111026160A (zh) 一种四旋翼无人机轨迹跟踪控制方法
CN114879717B (zh) 靶标的快速转平方法、计算机设备及介质
CN110874055B (zh) 两相流场作用下高超声速飞行器分离过程预示与控制方法
CN112000127B (zh) 一种基于反步法的飞行器横侧向联合控制方法
CN114942649B (zh) 一种基于反步法的飞机俯仰姿态与航迹角解耦控制方法
CN106227968A (zh) 一种航天器主发动机关机点优化方法
CN115615261B (zh) 大长细比火箭弹弹性辨识与视线角速率提取融合方法
CN112596537B (zh) 用于在线轨迹规划的模型误差补偿方法、系统及存储介质
CN114690793B (zh) 基于滑模控制的可重复使用运载火箭垂直软着陆制导方法
CN114879728B (zh) 一种基于自抗扰控制的飞行器鲁棒编队控制方法
CN113467498B (zh) 一种基于Bezier-凸优化的运载火箭上升段轨迹规划方法
CN112668092B (zh) 一种耦合气动干扰的飞行器混合配平分析方法
CN109062044A (zh) 一种终端迭代学习对接控制方法
CN111679687B (zh) 一种带有落角约束的导引控制一体化方法
CN113238572A (zh) 基于预设性能控制的预设时间四旋翼无人机姿态跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant