CN110617744B - 一种运载火箭导引方法 - Google Patents

一种运载火箭导引方法 Download PDF

Info

Publication number
CN110617744B
CN110617744B CN201910876513.1A CN201910876513A CN110617744B CN 110617744 B CN110617744 B CN 110617744B CN 201910876513 A CN201910876513 A CN 201910876513A CN 110617744 B CN110617744 B CN 110617744B
Authority
CN
China
Prior art keywords
standard
guidance
current
interpolation
characteristic quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910876513.1A
Other languages
English (en)
Other versions
CN110617744A (zh
Inventor
徐孟晋
赵向楠
赵卫娟
米文昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landspace Technology Co Ltd
Original Assignee
Landspace Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landspace Technology Co Ltd filed Critical Landspace Technology Co Ltd
Priority to CN201910876513.1A priority Critical patent/CN110617744B/zh
Publication of CN110617744A publication Critical patent/CN110617744A/zh
Application granted granted Critical
Publication of CN110617744B publication Critical patent/CN110617744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明提供一种运载火箭导引方法,包括以下步骤:离线设计运载火箭的标准飞行弹道;设计后续姿态控制所需的导引控制系数;将所述导引控制系数,以及标准弹道特征量与飞行高度的插值表装订到飞控计算机中;在飞行过程中,根据当前飞行高度,通过预先装订的所述标准弹道特征量与飞行高度的插值表,插值计算该高度下对应的标准弹道特征量;根据计算出的标准弹道特征量与实际当前弹道特征量的差值,计算当前点的导引量;将所述当前点导引量限幅后输出给运载火箭姿控系统。该导引方法能比以飞行时间为导引自变量更准确地修正运载火箭的飞行位置,减少飞行轨迹与标准弹道的偏差,提高导引控制效果;同时,采用抛物线插值比线性插值给出的导引指令更加平滑。

Description

一种运载火箭导引方法
技术领域
本发明涉及运载火箭控制系统领域,特别是涉及一种导引控制飞行轨迹的方法。
背景技术
运载火箭在飞行时,为了能够满足飞行任务的多项指标要求,通常需要预先设计一个标准弹道和标准关机点。在火箭实际飞行时,由于飞行环境中的各种干扰以及火箭各系统偏差,实际飞行轨迹会偏离标准弹道,影响飞行任务的精度甚至成败。此外,采用在标准关机点处关机的方案,其关机方程通过在标准关机点处对飞行速度位置等特征量进行泰勒展开的方式获得,为了保证该展开具有足够的精度,火箭的真实飞行速度、位置特征量必须在标准弹道附近,尤其是火箭实际关机点的飞行特征量必须与标准弹道的标准关机点处的特征量足够接近。为了实现上述目的,同时也为了火箭的实际飞行弹道能够实现标准弹道所设计的多项指标要求,通常火箭选择沿标准弹道飞行的方案。
为了实现上述飞行要求,火箭通常采用导引控制的方式。目前的导引控制方式通常为在飞控计算机中预先装订标准弹道的速度、位置,或标准弹道倾角和弹道偏角与标准飞行时间的插值表,在火箭飞行时用实际飞行时间作为自变量对上述弹道数据进行两点线性插值,经过一定计算后形成导引控制量,并用它进行导引控制。但在火箭实际飞行中若实际关机时间与标准关机时间偏差较大,尤其是固体火箭,其发动机推力偏差和工作时间偏差较液体火箭发动机更大,则在发动机耗尽时刻的高度和弹道倾角会有较大偏差,则导引的效果会较差;同时根据导引的物理意义,实际飞行弹道和标准弹道的飞行速度和位置偏差才是导引需要解决的,而不是飞行时间的偏差。另外若采用线性插值,则导引控制量容易不平滑,易对火箭姿态控制产生不良影响。
发明内容
本发明的目的在于针对现有运载火箭飞行导引控制方法以飞行时间为自变量线性插值弹道数据得到导引控制量的做法所存在的不足,提供一种运载火箭的导引控制方法。
本发明提供的一种运载火箭导引方法,包括以下步骤:
离线设计运载火箭的标准飞行弹道;
设计后续姿态控制所需的导引控制系数;
将所述导引控制系数,以及标准弹道特征量与飞行高度的插值表装订到飞控计算机中;
在飞行过程中,根据当前飞行高度,通过预先装订的所述标准弹道特征量与飞行高度的插值表,插值计算该高度下对应的标准弹道特征量;
根据计算出的标准弹道特征量与实际当前弹道特征量的差值,计算当前点的导引量;
将所述当前点导引量限幅后输出给运载火箭姿态控制系统。
进一步地,所述导引控制系数包括法向导引常系数
Figure BDA0002204534840000021
横向导引常系数
Figure BDA0002204534840000022
以及法向导引放大系数
Figure BDA0002204534840000023
和横向导引放大系数
Figure BDA0002204534840000024
其中i 取1~6;
所述标准弹道特征量包括标准弹道的速度
Figure BDA0002204534840000025
位置
Figure BDA0002204534840000026
进一步地,所述导引控制系数包括法向导引放大系数
Figure BDA0002204534840000027
和横向导引放大系数
Figure BDA0002204534840000028
所述标准弹道特征量包括标准弹道倾角
Figure BDA0002204534840000029
弹道偏角
Figure BDA00022045348400000210
进一步地,所述根据当前飞行高度,通过预先装订的所述标准弹道特征量与飞行高度的插值表,插值计算该高度下对应的标准弹道特征量的方法为:
Figure BDA0002204534840000031
其中,
Figure BDA0002204534840000032
为当前飞行高度h下经抛物线插值计算得到的标准弹道的速度各个特征量的数值;k为插值表中与当前飞行高度最接近的高度数值所对应的序号;
Figure BDA0002204534840000033
为插值表中k序号的高度数值;
Figure BDA0002204534840000034
为插值表中k序号的高度对应的相应标准弹道特征量的值。
进一步地,所述计算当前点的导引量的方法为:
Figure BDA0002204534840000035
Figure BDA0002204534840000036
其中,
Figure BDA0002204534840000037
Figure BDA0002204534840000038
ξi分别表示当前飞行时刻的速度v和位置S各三个分量 vx,vy,vz,x,y,z;
Figure BDA0002204534840000039
为当前飞行高度h下经插值计算得到的标准弹道速度
Figure BDA00022045348400000310
位置
Figure BDA00022045348400000311
各三个分量
Figure BDA00022045348400000312
进一步地,所述计算当前点的导引量的方法为:
Figure BDA00022045348400000313
Figure BDA00022045348400000314
其中,θ为当前飞行时刻的弹道倾角,σ为当前飞行时刻的弹道偏角;
Figure BDA0002204534840000041
为当前飞行高度h下经插值计算得到的标准弹道倾角数值;
Figure BDA0002204534840000042
为当前飞行高度下经插值计算得到的标准弹道偏角数值。
进一步地,所述当前点导引量的限幅方法为:
Figure BDA0002204534840000043
Figure BDA0002204534840000044
其中,
Figure BDA0002204534840000045
为当前点的法向导引量,Uψ(h)为当前点的横向导引量,
Figure BDA0002204534840000046
为限幅后的当前点法向导引量,U′ψ(h)为限幅后的当前点横向导引量,UL为限幅值。
本公开所述导引方法以飞行过程中的高度作为运载火箭导引的自变量,通过抛物线插值得到当前高度对应的标准弹道特征参数,进而根据标准弹道与实际弹道的差距得到运载火箭的导引量,实现将运载火箭的飞行轨迹控制在标准弹道附近的目的。该导引方法能比以飞行时间为导引自变量更准确地修正运载火箭的飞行位置,减少火箭飞行轨迹与标准弹道的偏差,提高导引控制效果;同时,采用抛物线插值比线性插值给出的导引指令更加平滑。
应了解的是,上述一般描述及以下具体实施方式仅为示例性及阐释性的,其并不能限制本发明所欲主张的范围。
附图说明
下面的附图是本发明的说明书的一部分,其绘示了本发明的示例实施例,所附附图与说明书的描述一起用来说明本发明的原理。
附图说明:
图1-本公开所述运载火箭导引方法流程图;
图2-以速度和位置作为标准弹道特征量的实施例流程图;
图3-以弹道倾角和偏角为标准弹道特征量的实施例流程图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本申请说明书和实施例仅是示例性的。
附图1中给出了本发明所述运载火箭导引方法的流程图。如图所示,该方法包括以下步骤:
离线设计运载火箭的标准飞行弹道;
设计后续姿态控制所需的导引控制系数;
将所述导引控制系数,以及标准弹道特征量与飞行高度的插值表装订到飞控计算机中;
在飞行过程中,根据当前飞行高度,通过预先装订的所述标准弹道特征量与飞行高度的插值表,插值计算该高度下对应的标准弹道特征量;
根据计算出的标准弹道特征量与实际当前弹道特征量的差值,计算当前点的导引量;
将所述当前点导引量限幅后输出给运载火箭姿态控制系统。
其中,根据所用导引方法的不同,选择不同的导引控制系数和弹道特征量作为计算依据,同时,为了使得到的导引指令更加平滑,插值计算以抛物线插值方式为优选方案。
具体实施方式进一步举例如下。
实施例一
附图2中给出了本发明第一种实施方式的流程图。该实施例以飞行高度为导引控制的自变量,以速度和位置作为标准弹道特征量,通过抛物线插值方式,插值标准弹道的速度、位置来计算导引控制量。如附图2所示,其主要步骤如下:
(1)离线设计运载火箭的标准飞行弹道。该飞行弹道应当满足飞行的相关性能指标,如火箭运载能力、残骸落区、飞行和分离时刻攻角约束、飞行时间约束等要求,如果是液体火箭,还需要设计标准关机时间。
(2)设计法向导引常系数
Figure BDA0002204534840000061
横向导引常系数
Figure BDA0002204534840000062
以及法向导引放大系数
Figure BDA0002204534840000063
和横向导引放大系数
Figure BDA0002204534840000064
其中i取1~6。
(3)将导引常系数
Figure BDA0002204534840000065
导引放大系数
Figure BDA0002204534840000066
以及标准弹道的速度
Figure BDA0002204534840000067
位置
Figure BDA0002204534840000068
与飞行高度
Figure BDA0002204534840000069
的插值表装订到飞控计算机中。
例如在本实例中,装订的参数数值如下:
Figure BDA00022045348400000610
Figure BDA00022045348400000611
Figure BDA00022045348400000612
Figure BDA00022045348400000613
装订的插值表如下表所示:
Figure BDA0002204534840000071
(4)火箭在飞行过程中通过导航算法解算当前飞行高度h,并以h 为自变量,根据之前装订的插值表,通过抛物线插值的方式得到当前飞行高度下的标准弹道速度
Figure BDA0002204534840000072
和位置
Figure BDA0002204534840000073
其插值公式如下所示:
Figure BDA0002204534840000074
其中,
Figure BDA0002204534840000075
为当前飞行高度h抛物线插值标准弹道的速度
Figure BDA0002204534840000076
位置
Figure BDA0002204534840000077
得到的速度、位置各三个分量
Figure BDA0002204534840000078
Figure BDA0002204534840000079
为插值表中与当前飞行高度最接近的k序号的高度
Figure BDA00022045348400000710
所对应的速度、位置数值。
本领域技术人员应当理解,采用现有的其他插值方式也能够实现计算当前高度下对应的标准弹道特征量的目的。但相比常用的线性插值而言,采用抛物线插值,后续得到的导引指令更加平滑。
(5)通过下述公式计算当前时刻法向导引量
Figure BDA00022045348400000711
和横向导引量 Uψ(h):
Figure BDA00022045348400000712
Figure BDA0002204534840000081
其中,
Figure BDA0002204534840000088
Figure BDA0002204534840000082
ξi分别表示当前飞行时刻的速度v和位置S各三个分量 vx,vy,vz,x,y,z。
(6)对当前点的法向导引量
Figure BDA0002204534840000083
和横向导引量Uψ(h)进行限幅,得到限幅后的当前点法向导引量
Figure BDA0002204534840000084
和横向导引量U′ψ(h),限幅公式如下所示:
Figure BDA0002204534840000085
Figure BDA0002204534840000086
其中,UL为限幅值。
(7)输出
Figure BDA0002204534840000087
和U′ψ(h)给运载火箭姿态控制系统。
实施例二
附图3中给出了本公开的第二种实施例的流程图。该实施例以飞行高度为导引控制的自变量,采用弹道倾角和弹道偏角作为标准弹道特征量,用抛物线插值方式插值标准弹道倾角和弹道偏角来进一步计算导引控制量。
(1)离线设计运载火箭的标准飞行弹道,该步骤与实施例一相同。
(2)设计法向导引放大系数
Figure BDA0002204534840000091
和横向导引放大系数
Figure BDA0002204534840000092
(3)飞控计算机装订的数为导引放大系数
Figure BDA0002204534840000093
及标准弹道倾角
Figure BDA0002204534840000094
和弹道偏角
Figure BDA0002204534840000095
与飞行高度
Figure BDA0002204534840000096
的插值表。
例如在本实例中,装订的参数数值如下:
Figure BDA0002204534840000097
装订的插值表如下表所示:
Figure BDA0002204534840000098
(4)火箭在飞行过程中通过导航算法解算当前飞行高度h,并以 h为自变量,通过抛物线插值的方式得到当前飞行高度下的标准弹道的弹道倾角
Figure BDA0002204534840000099
和弹道偏角
Figure BDA00022045348400000910
数值,其插值公式如下所示:
Figure BDA00022045348400000911
其中,
Figure BDA00022045348400000912
为当前飞行高度h抛物线插值标准弹道的弹道倾角
Figure BDA00022045348400000913
和弹道偏角
Figure BDA00022045348400000914
得到的数值
Figure BDA00022045348400000915
Figure BDA00022045348400000916
为插值表中与当前飞行高度最接近的k序号的高度
Figure BDA00022045348400000917
所对应的弹道倾角、弹道偏角数值。
(5)通过下述公式计算当前时刻法向导引量
Figure BDA0002204534840000101
和横向导引量 Uψ(h):
Figure BDA0002204534840000102
Figure BDA0002204534840000103
其中,θ为当前飞行时刻的弹道倾角,σ为当前飞行时刻的弹道偏角。
(6)对当前点的法向导引量
Figure BDA0002204534840000104
和横向导引量Uψ(h)进行限幅,得到限幅后的当前点法向导引量
Figure BDA0002204534840000105
和横向导引量U′ψ(h),限幅公式与实施例一相同。
(7)输出
Figure BDA0002204534840000106
和U′ψ(h)给运载火箭姿态控制系统。
本发明相比于传统的运载火箭导引控制方法,产生的有益效果有:
使用高度作为自变量对标准弹道数据进行插值,可以为火箭的导引控制提供更好地修正飞行位置的导引量,从而提高导引效果,使火箭更精确地沿标准弹道飞行,这能够对火箭飞行产生多方面的有益效果:
能够为火箭提供更高的飞行精度,如果该导引控制方案为火箭最终入轨级的飞行方案,则能够让火箭获得更高的入轨精度,如果该导引控制方案为火箭非入轨级的飞行方案,则能够为火箭后续飞行段提供较小的初始误差,减少后续飞行段的误差修正压力;
能够更好地满足标准飞行弹道所优化设计得到的火箭运载能力、残骸落区、飞行攻角约束、飞行时间约束等多项指标要求;
能够更好地保证实际关机点的位置、速度等特征量接近标准关机点的标准特征量,使得关机方程的小偏差条件能够更好地满足;
采用抛物线插值的方式对标准弹道数据进行插值,可以为火箭的姿态控制系统提供更加平滑的导引指令,从而改善姿态控制系统对指令的响应效果。
本发明所述导引方法,也同样适用于有类似飞行弹道的导弹的导引控制。
以上所述仅为本发明示意性的具体实施方式,在不脱离本发明的构思和原则的前提下,任何本领域的技术人员所做出的等同变化与修改,均应属于本发明保护的范围。

Claims (7)

1.一种运载火箭导引方法,其特征在于,包括以下步骤:
离线设计运载火箭的标准飞行弹道;
设计后续姿态控制所需的导引控制系数;
将所述导引控制系数,以及标准弹道特征量与飞行高度的插值表装订到飞控计算机中;
在飞行过程中,根据当前飞行高度,通过预先装订的所述标准弹道特征量与飞行高度的插值表,插值计算该高度下对应的标准弹道特征量;
根据计算出的标准弹道特征量与实际当前弹道特征量的差值,计算当前点的导引量;
将所述当前点导引量限幅后输出给运载火箭姿态控制系统。
2.根据权利要求1所述的运载火箭导引方法,其特征在于,所述导引控制系数包括法向导引常系数
Figure FDA0002204534830000011
横向导引常系数
Figure FDA0002204534830000012
以及法向导引放大系数
Figure FDA0002204534830000013
和横向导引放大系数
Figure FDA0002204534830000014
其中i取1~6;
所述标准弹道特征量包括标准弹道的速度
Figure FDA0002204534830000015
位置
Figure FDA0002204534830000016
3.根据权利要求1所述的运载火箭导引方法,其特征在于,所述导引控制系数包括法向导引放大系数
Figure FDA0002204534830000017
和横向导引放大系数
Figure FDA0002204534830000018
所述标准弹道特征量包括标准弹道倾角
Figure FDA0002204534830000019
弹道偏角
Figure FDA00022045348300000110
4.根据权利要求1所述的运载火箭导引方法,其特征在于,所述根据当前飞行高度,通过预先装订的所述标准弹道特征量与飞行高度的插值表,插值计算该高度下对应的标准弹道特征量的方法为:
Figure FDA00022045348300000111
其中,
Figure FDA00022045348300000112
为当前飞行高度h下经抛物线插值计算得到的标准弹道的速度各个特征量的数值;k为插值表中与当前飞行高度最接近的高度数值所对应的序号;
Figure FDA00022045348300000113
为插值表中k序号的高度数值;
Figure FDA00022045348300000114
为插值表中k序号的高度对应的相应标准弹道特征量的值。
5.根据权利要求2所述的运载火箭导引方法,其特征在于,所述计算当前点的导引量的方法为:
Figure FDA0002204534830000021
Figure FDA0002204534830000022
其中,
Figure FDA0002204534830000023
Figure FDA00022045348300000212
ξi分别表示当前飞行时刻的速度v和位置S各三个分量vx,vy,vz,x,y,z;
Figure FDA0002204534830000024
为当前飞行高度h下经插值计算得到的标准弹道速度
Figure FDA0002204534830000025
位置
Figure FDA0002204534830000026
各三个分量
Figure FDA0002204534830000027
6.根据权利要求3所述的运载火箭导引方法,其特征在于,所述计算当前点的导引量的方法为:
Figure FDA0002204534830000028
Figure FDA0002204534830000029
其中,θ为当前飞行时刻的弹道倾角,σ为当前飞行时刻的弹道偏角;
Figure FDA00022045348300000210
为当前飞行高度h下经插值计算得到的标准弹道倾角数值;
Figure FDA00022045348300000211
为当前飞行高度下经插值计算得到的标准弹道偏角数值。
7.根据权利要求1所述的运载火箭导引方法,其特征在于,所述当前点导引量的限幅方法为:
Figure FDA0002204534830000031
Figure FDA0002204534830000032
其中,
Figure FDA0002204534830000033
为当前点的法向导引量,Uψ(h)为当前点的横向导引量,
Figure FDA0002204534830000034
为限幅后的当前点法向导引量,U′ψ(h)为限幅后的当前点横向导引量,UL为限幅值。
CN201910876513.1A 2019-09-17 2019-09-17 一种运载火箭导引方法 Active CN110617744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910876513.1A CN110617744B (zh) 2019-09-17 2019-09-17 一种运载火箭导引方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910876513.1A CN110617744B (zh) 2019-09-17 2019-09-17 一种运载火箭导引方法

Publications (2)

Publication Number Publication Date
CN110617744A CN110617744A (zh) 2019-12-27
CN110617744B true CN110617744B (zh) 2020-08-04

Family

ID=68923370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910876513.1A Active CN110617744B (zh) 2019-09-17 2019-09-17 一种运载火箭导引方法

Country Status (1)

Country Link
CN (1) CN110617744B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141182B (zh) * 2019-12-31 2020-09-08 北京星际荣耀空间科技有限公司 火箭入轨控制方法、装置、火箭及计算机可读存储介质
CN112015196B (zh) * 2020-10-21 2021-11-16 蓝箭航天空间科技股份有限公司 一种姿控系统限幅值设计方法、存储介质及服务器
CN112304169B (zh) * 2020-10-28 2023-05-02 北京星际荣耀空间科技股份有限公司 一种基于推力调节的运载火箭制导方法及系统
CN112462794B (zh) * 2020-11-09 2024-03-26 航天科工火箭技术有限公司 一种演示验证火箭悬停制导方法及系统
CN112762776B (zh) * 2021-01-22 2022-03-01 北京理工大学 一种火箭弹末端速度估计方法
CN114646238B (zh) * 2022-03-30 2023-08-04 南京理工大学 飞行体状态感知自适应方案弹道跟踪方法
CN116045744B (zh) * 2023-01-09 2024-08-23 航天科工火箭技术有限公司 一种固体运载火箭分离体残骸落区的控制方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788179A (en) * 1996-10-29 1998-08-04 Mcdonnell Douglas Corporation Missile stage ignition delay timing for axial guidance correction
CN101672606B (zh) * 2009-09-30 2012-09-26 北京航天自动控制研究所 一种运载火箭的导引控制方法
RU2491210C1 (ru) * 2012-02-10 2013-08-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) Способ изменения траектории движения опасного космического тела (варианты)

Also Published As

Publication number Publication date
CN110617744A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN110617744B (zh) 一种运载火箭导引方法
CN108036676B (zh) 一种基于三维再入弹道解析解的全射向自主再入制导方法
CN103090728B (zh) 一种基于滑模控制的带末角约束制导方法
CN111591470B (zh) 一种适应推力可调模式的飞行器精确软着陆闭环制导方法
CN108362171A (zh) 一种具有攻击时间和攻击角度约束的制导策略
CN111324142B (zh) 一种导弹驾驶仪扰动补偿控制方法
CN113126644B (zh) 基于自适应视线法的无人机三维航迹跟踪方法
CN110989669A (zh) 一种多级助推滑翔飞行器主动段在线自适应制导算法
CN104019701B (zh) 一种利用直接力气动力复合控制的前向拦截制导方法
CN108387140A (zh) 一种考虑多个禁飞区约束的解析再入制导方法
CN110764534B (zh) 基于非线性转换的前置导引与姿态稳定匹配制导的方法
CN106444822A (zh) 一种基于空间矢量场制导的平流层飞艇路径跟踪控制方法
CN111897223A (zh) 一种考虑自动驾驶仪动态特性的速度追踪制导方法
CN112000127A (zh) 一种基于反步法的飞行器横侧向联合控制方法
CN113359819B (zh) 一种带有碰撞角约束和加速度限制的最优制导律
CN112034879B (zh) 一种基于高度-射程比的标准轨迹跟踪制导方法
CN116301028B (zh) 基于吸气式高超声速平台的多约束在线飞行轨迹规划中段导引方法
CN115574666B (zh) 一种掠地巡航靶标定高方法
CN111679687A (zh) 一种带有落角约束的导引控制一体化方法
Sun et al. Practical solution to impact angle control in vertical plane
CN116859991A (zh) 一种无加速度切换跳变的多约束协同制导方法
CN110879604A (zh) 一种带落角控制的飞行器航向导引方法
CN114610057B (zh) 一种高马赫飞行器机动突防策略设计方法
Arita et al. Improvement of guidance law for simultaneous attack
CN112596537B (zh) 用于在线轨迹规划的模型误差补偿方法、系统及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant