CN109772241A - 一种纳米级木质素基微球及其制备方法 - Google Patents

一种纳米级木质素基微球及其制备方法 Download PDF

Info

Publication number
CN109772241A
CN109772241A CN201910114078.9A CN201910114078A CN109772241A CN 109772241 A CN109772241 A CN 109772241A CN 201910114078 A CN201910114078 A CN 201910114078A CN 109772241 A CN109772241 A CN 109772241A
Authority
CN
China
Prior art keywords
weight
parts
lignin
nanoscale
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910114078.9A
Other languages
English (en)
Inventor
叶俊
李星
李效玉
邱藤
付嘉豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anqing North China University Of Science And Technology Co Ltd
Original Assignee
Anqing North China University Of Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anqing North China University Of Science And Technology Co Ltd filed Critical Anqing North China University Of Science And Technology Co Ltd
Priority to CN201910114078.9A priority Critical patent/CN109772241A/zh
Publication of CN109772241A publication Critical patent/CN109772241A/zh
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种纳米级木质素基微球,包括木质素磺酸钠、间苯二酚、甲醛、溶剂、分散剂、催化剂、界面改性剂和钛源制备而成;所述木质素磺酸钠为3~5重量份、间苯二酚为0.5~2重量份、甲醛为3~4重量份、分散剂为1~3重量份、催化剂为1~3重量份、界面改性剂为1~3重量份、钛源为5~10重量份、溶剂为水50~300重量份和乙醇50~300重量份。本发明还公开了一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,可得到具有良好分散性微波辅助纳米级木质素基微球,生物质废弃物的使用有利于降低成本,微波法的使用有助于提高反应效率,制得的纳米复合微球材料,在污水处理、轻质填料等领域有广泛应用。

Description

一种纳米级木质素基微球及其制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及一种纳米级木质素基微球及其制备方法。
背景技术
光催化由于能在常温常压下反应,且可以直接利用清洁能源太阳能将污染物彻底降解为无机物,成为解决环境污染和能源短缺问题最有应用前景的技术之一。世界上能作为光催化剂的材料众多,包括二氧化钛(TiO2)、氧化锌(ZnO)、氧化锡(SnO2)等多种氧化物半导体。在各种半导体中,由于TiO2生物和化学惰性、强氧化能力、成本低、长期稳定性和环境友好性,被普遍认为是最有前景的光催化剂。然而,TiO2低量子效率,需要进一步改性才能用于实际应用中。将 TiO2固定在载体上是一种有效的方法。负载型光催化剂,比表面积增大,有些载体还能与其发生相互作用,有利于电子与空穴的分离,进而提高光催化效率。同时负载后光催化剂易于分离回收和各种光催化反应器的研制。
碳球是一种理想的载体。目前碳球的制备主要以煤焦油、沥青、石油、聚合物等为原料通过物理化学活化法聚合物混合炭化法、有机凝胶法及模板法制备。 Jones等以煤为原料制备出具有大量孔隙结构、较大比表面积的多孔炭材料,并讨论各反应条件与多孔炭性能的关系。Klett等制备了一系列中间相沥青基泡沫多孔炭,发现溶点低的沥青制备泡沫热导率不受前驱体影响,其孔泡尺寸大。近年来,由于石油、化石等资源的日益短缺,人们开始不断开发新的可再生能源用来代替目前短缺的资源。其中,生物质可以直接以各种化合物和化学质能的形式存在,具有替代短缺能源的条件。木质素磺酸钠是生物质废弃物,主要来源于纸浆废液。选用木质素磺酸钠为原料,不仅用可再生能源代替目前短缺的资源,还可以降低成本。微波能深入到样品内部使其中心温度迅速升高,由里向外传播并使整个样品几乎同时被均匀加热,因此微波加热法能有效提高反应效率和缩短反应时间。目前,微波技术的实际应用实例还比较少,理论知识不够健全,微波法在工业的应用还不是很多。因此,选用木质素磺酸钠为原料,微波辅助制备纳米微球的研究方向有着重要的现实意义和应用价值。
发明内容
本发明所要解决的技术问题在于:如何以生物质废弃物木质素磺酸钠为原料,微波辅助制备纳米微球。
本发明采用以下技术方案解决上述技术问题:
一种纳米级木质素基微球,包括木质素磺酸钠、间苯二酚、甲醛、溶剂、分散剂、催化剂、界面改性剂和钛源制备而成;其中所述木质素磺酸钠为3~5重量份、间苯二酚为0.5~2重量份、甲醛为3~4重量份、分散剂为1~3重量份、催化剂为1~3重量份、界面改性剂为1~3重量份、钛源为5~10重量份、溶剂为水50~300重量份和乙醇50~300重量份。
优选的,所述木质素磺酸钠为3重量份、间苯二酚为2重量份、甲醛为3.5 重量份、分散剂为1重量份、催化剂为1重量份、界面改性剂为1重量份、钛源为5重量份、溶剂为水300重量份和乙醇50重量份。
优选的,所述分散剂为聚乙烯醇、羟丙基纤维素、羟甲基纤维素中的任意一种。
优选的,所述催化剂为浓氨水、氢氧化钠、氢氧化钾中的任意一种。
优选的,所述界面改性剂为环氧稀释剂622、环氧稀释剂636、环氧稀释剂699中的任意一种。
优选的,所述钛源为钛酸四丁酯或四氯化钛。
优选的,本发明还公开了一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,包括以下步骤:
(1)将木质素磺酸钠和间苯二酚溶解在水和乙醇的混合溶剂中,微波加热至70~80℃,搅拌分散1~1.5h;
(2)将步骤(1)物料降温至40℃,加入分散剂、催化剂和甲醛,搅拌分散,反应4~12h,然后微波加热至85℃,加入界面改性剂,再反应4~12h;
(3)随后将步骤(2)反应体系降温至55℃,加入钛源,再微波升温至80℃,继续反应4~12h后冷却至室温,即得微球;
(4)将步骤(3)制备的微球离心洗涤后,干燥过夜,然后煅烧,得到纳米级木质素基微球。
优选的,所述步骤(4)中在温度为60~110℃,真空度为-0.06~-0.1MPa 的真空烘箱中干燥过夜。
优选的,所述步骤(4)中在马弗炉里,惰性气体氛围下于350~500℃煅烧 4~8h,得到纳米级木质素基微球。
优选的,所述惰性气体为氩气、氮气、氦气中的任一种。
本发明技术有益效果:本发明提供一种纳米级木质素基微球及其制备方法,原材料主体为木质素磺酸钠、间苯二酚和甲醛,水和乙醇为溶剂,在分散剂、催化剂、界面改性剂等的作用下聚合形成球形结构;再通过滴加钛源缓慢水解在纳米碳球表面形成二氧化钛负载;产物经离心洗涤、干燥和煅烧,可得到直径在 100-360nm且具有良好分散性微波辅助纳米级木质素基微球。
微波法的使用能够使样品中心的温度迅速升高,并由里向外传播,使样品得到快速均匀的加热,能提高反应效率和缩短反应时间;生物质废弃物的使用有利于降低成本,微波法的使用有助于提高反应效率,制得的纳米复合微球材料,在污水处理、轻质填料等领域有广泛应用。
附图说明
图1为本发明实施例1所述纳米级木质素基微球的TEM图;
图2为本发明实施例1草莓形状的纳米级木质素基微球的TEM图;
图3为本发明实施例1所述纳米级木质素基微球的光降解测试图。
具体实施方式
为便于本领域技术人员理解本发明技术方案,现结合说明书附图对本发明技术方案做进一步的说明。
实施例1
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,包括以下步骤:
(1)将木质素磺酸钠和间苯二酚溶解在水和乙醇的混合溶剂中,微波加热至70~80℃,在此温度下搅拌分散1~1.5h;其中所述木质素磺酸钠添加量为3~ 5g,优选为3g;所述间苯二酚添加量为0.5~2g,优选为2g;所述水和乙醇的混合溶剂中所述水添加量为50~300mL,所述乙醇添加量为50~300mL,优选为水300mL、乙醇50mL;
(2)将步骤(1)物料降温至40℃,加入1g聚乙烯醇、1g浓氨水和3~4g 甲醛,优选3.5g甲醛,搅拌分散,反应12h,然后微波升温至85℃,加入1g环氧稀释剂622,再反应12h;
(3)随后将步骤(2)反应体系降温至55℃,加入5g的钛酸四丁酯,再微波升温至80℃,继续反应12h后冷却至室温,即得微球;
(4)将步骤(3)制备的微球离心洗涤后,在温度为60~110℃,真空度为 -0.06~-0.1MPa的真空烘箱中干燥过夜,然后在马弗炉里,氮气氛围下350~ 500℃煅烧4~8h,最终得到纳米级木质素基微球。
TEM测试:将本实施例得到的纳米级木质素基微球加去离子水稀释到固含量1.5-2%,超声分散30min后,滴加到专用铜网上,利用HT7700型透射电镜观察表征,结果见图1和图2。图1和图2的TEM结果证明了微波辅助纳米级木质素基微球是典型的草莓形状,粒径均匀,分散性良好,TiO2颗粒负载在微球表面,分布均匀范围广泛。
光降解测试:利用UV-3150型紫外-可见分光光度计对甲基橙溶液进行漫反射表征。将本实施例得到的纳米级木质素基微球研磨成粉末溶于甲基橙水溶液中并放入样品池,测试扫描波长范围200-700nm,结果见图3。图3中横坐标是光照时间,纵坐标是溶液中甲基橙实时相对浓度,C0是甲基橙的初始浓度,C是体系中甲基橙光照后剩余浓度。在微波辅助纳米级木质素基微球的光催化作用下,甲基橙的浓度随着时间逐渐降低,光照4h后的基本降解完毕,为最初浓度的为 1%。该结果说明微球有良好的光催化性能。
实施例2
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入聚乙烯醇2g。
实施例3
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入聚乙烯醇3g。
实施例4
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入羟丙基纤维素1g。
实施例5
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入羟丙基纤维素2g。
实施例6
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入羟丙基纤维素3g。
实施例7
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入羟甲基纤维素1g。
实施例8
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入羟甲基纤维素2g。
实施例9
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入羟甲基纤维素3g。
实施例10
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂浓氨水2g。
实施例11
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂浓氨水3g。
实施例12
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂氢氧化钠1g。
实施例13
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂氢氧化钠2g。
实施例14
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂氢氧化钠3g。
实施例15
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂氢氧化钾1g。
实施例16
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂氢氧化钾2g。
实施例17
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入催化剂氢氧化钾3g。
实施例18
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(3)中加入钛源:钛酸四丁酯10g。
实施例19
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(3)中加入钛源:四氯化钛5g。
实施例20
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(3)中加入钛源:四氯化钛10g。
实施例21
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂622 2g。
实施例22
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂622 3g。
实施例23
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂636 1g。
实施例24
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂636 2g。
实施例25
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂636 3g。
实施例26
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂699 1g。
实施例27
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂699 2g。
实施例28
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在步骤(2)中加入界面改性剂:环氧稀释剂699 3g。
实施例29
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应8h。
实施例30
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应8h,85℃下反应8h。
实施例31
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应8h,85℃下反应8h,80℃下反应8h。
实施例32
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应6h。
实施例33
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应6h,85℃下反应6h。
实施例34
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应6h,85℃下反应6h,80℃下反应6h。
实施例35
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应4h。
实施例36
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应4h,85℃下反应4h。
实施例37
本实施例提供一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,与实施例1的区别在于,在40℃下反应4h,85℃下反应4h,80℃下反应4h。
利用所述实施例所述的一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法制得纳米级木质素基微球粒径测试结果见表1。
表1实施例所制得的纳米级木质素基微球粒径测试结果
由表1可知,通过本发明所述的微波辅助溶胶凝胶法制备纳米级木质素基微球的方法可得到直径在100-360nm且具有良好分散性的纳米级木质素基微球。

Claims (10)

1.一种纳米级木质素基微球,其特征在于,包括木质素磺酸钠、间苯二酚、甲醛、溶剂、分散剂、催化剂、界面改性剂和钛源制备而成;其中所述木质素磺酸钠为3~5重量份、间苯二酚为0.5~2重量份、甲醛为3~4重量份、分散剂为1~3重量份、催化剂为1~3重量份、界面改性剂为1~3重量份、钛源为5~10重量份、溶剂为水50~300重量份和乙醇50~300重量份。
2.根据权利要求1所述的一种纳米级木质素基微球,其特征在于,所述木质素磺酸钠为3重量份、间苯二酚为2重量份、甲醛为3.5重量份、分散剂为1重量份、催化剂为1重量份、界面改性剂为1重量份、钛源为5重量份、溶剂为水300重量份和乙醇50重量份。
3.根据权利要求1所述的一种纳米级木质素基微球,其特征在于,所述分散剂为聚乙烯醇、羟丙基纤维素、羟甲基纤维素中的任意一种。
4.根据权利要求1所述的一种纳米级木质素基微球,其特征在于,所述催化剂为浓氨水、氢氧化钠、氢氧化钾中的任意一种。
5.根据权利要求1所述的一种纳米级木质素基微球,其特征在于,所述界面改性剂为环氧稀释剂622、环氧稀释剂636、环氧稀释剂699中的任意一种。
6.根据权利要求1所述的一种纳米级木质素基微球,其特征在于,所述钛源为钛酸四丁酯或四氯化钛。
7.一种微波辅助溶胶凝胶法制备如权利要求1~6任意一项所述的纳米级木质素基微球的方法,其特征在于,包括以下步骤:
(1)将木质素磺酸钠和间苯二酚溶解在水和乙醇的混合溶剂中,微波加热至70~80℃,搅拌分散1~1.5h;
(2)将步骤(1)物料降温至40℃,加入分散剂、催化剂和甲醛,搅拌分散,反应4~12h,然后微波加热至85℃,加入界面改性剂,再反应4~12h;
(3)随后将步骤(2)反应体系降温至55℃,加入钛源,再微波升温至80℃,继续反应4~12h后冷却至室温,即得微球;
(4)将步骤(3)制备的微球离心洗涤后,干燥过夜,然后煅烧,得到纳米级木质素基微球。
8.根据权利要求7所述的一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,其特征在于,所述步骤(4)中在温度为60~110℃,真空度为-0.06~-0.1MPa的真空烘箱中干燥过夜。
9.根据权利要求7所述的一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,其特征在于,所述步骤(4)中在马弗炉里,惰性气体氛围下于350~500℃煅烧4~8h,得到纳米级木质素基微球。
10.根据权利要求9所述的一种微波辅助溶胶凝胶法制备纳米级木质素基微球的方法,其特征在于,所述惰性气体为氩气、氮气、氦气中的任一种。
CN201910114078.9A 2019-02-14 2019-02-14 一种纳米级木质素基微球及其制备方法 Withdrawn CN109772241A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910114078.9A CN109772241A (zh) 2019-02-14 2019-02-14 一种纳米级木质素基微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910114078.9A CN109772241A (zh) 2019-02-14 2019-02-14 一种纳米级木质素基微球及其制备方法

Publications (1)

Publication Number Publication Date
CN109772241A true CN109772241A (zh) 2019-05-21

Family

ID=66504378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910114078.9A Withdrawn CN109772241A (zh) 2019-02-14 2019-02-14 一种纳米级木质素基微球及其制备方法

Country Status (1)

Country Link
CN (1) CN109772241A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237784A (zh) * 2019-06-21 2019-09-17 华南农业大学 木质素微/纳米球、增强聚乳酸3d打印材料及其制备方法
CN115286836A (zh) * 2022-02-09 2022-11-04 浙江科技学院 一种复合木质素纳米微球及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494872A (en) * 1966-10-28 1970-02-10 Ncr Co Manufacture of minute capsules,en masse,and dewatering their walls
CN104399446A (zh) * 2014-11-06 2015-03-11 北京化工大学 一种TiO2/RFC复合微球负载型光降解剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494872A (en) * 1966-10-28 1970-02-10 Ncr Co Manufacture of minute capsules,en masse,and dewatering their walls
CN104399446A (zh) * 2014-11-06 2015-03-11 北京化工大学 一种TiO2/RFC复合微球负载型光降解剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周安宁: "《碳—化工概论》", 30 September 2019, 中国矿业大学出版社 *
夏成龙: "微波辅助木质素改性及其酚醛树脂固化动力学研究", 《中国优秀硕士学位论文全文数据库》 *
沃丁柱: "《复合材料大全》", 31 January 2000, 化学工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237784A (zh) * 2019-06-21 2019-09-17 华南农业大学 木质素微/纳米球、增强聚乳酸3d打印材料及其制备方法
CN115286836A (zh) * 2022-02-09 2022-11-04 浙江科技学院 一种复合木质素纳米微球及其制备方法

Similar Documents

Publication Publication Date Title
CN103769167B (zh) 一种制备石墨烯包裹硫化镉核壳结构光催化材料的方法
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN102698728B (zh) 一种二氧化钛纳米管/石墨烯复合材料及其制备方法
CN105709793B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂、制备方法与应用
CN107081166A (zh) 一种g‑C3N4/TiO2多级结构及其制备方法
CN113275041B (zh) 一种cof-316/cat-1复合材料的制备及光催化二氧化碳还原
CN108126756A (zh) 钨酸铋-MIL-53(Al)复合材料、其制备方法和应用
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN108043426B (zh) 一种可见光产氢二硫化钼量子点/铜铟硫复合光催化剂及其制备方法
CN107824174A (zh) 一种二氧化钛量子点/碳球复合材料及其制备方法
CN103861618A (zh) 一种SnO2基复合可见光光催化剂的制备方法
CN105478142A (zh) 一种硫化铟介孔空心微球光催化剂及其制备方法和用途
CN108686665A (zh) 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
CN106799219A (zh) 一种二氧化钛纳米颗粒/石墨烯复合光催化材料的制备方法
Wang et al. When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications
CN102671674A (zh) 一种磁载溴化银光催化材料及其制备方法
CN106268902A (zh) 一种g‑C3N4量子点、Ag量子点敏化BiVO4光催化剂的制备方法
CN109772241A (zh) 一种纳米级木质素基微球及其制备方法
CN109731583A (zh) 一种两步法制备Zn0.2Cd0.8S/rGO复合材料的方法
CN109647484A (zh) 一种纳米片/纳米管复合结构氮化碳材料的制备方法
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
CN110026207B (zh) CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
CN109876814A (zh) 一种氧缺陷TiO2@ZnFe2O4异质结光催化材料的制备方法
CN108636439A (zh) 一种氮掺杂碳量子点-三维石墨烯气凝胶光催化剂及其制备与应用
CN103570063B (zh) 一种具有分级结构的TiO2材料及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190521