CN109666469A - 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法 - Google Patents

多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法 Download PDF

Info

Publication number
CN109666469A
CN109666469A CN201710966119.8A CN201710966119A CN109666469A CN 109666469 A CN109666469 A CN 109666469A CN 201710966119 A CN201710966119 A CN 201710966119A CN 109666469 A CN109666469 A CN 109666469A
Authority
CN
China
Prior art keywords
structural unit
parts
polymer gel
gel micro
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710966119.8A
Other languages
English (en)
Other versions
CN109666469B (zh
Inventor
苏智青
李应成
夏燕敏
许汇
宋晓芳
王兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201710966119.8A priority Critical patent/CN109666469B/zh
Publication of CN109666469A publication Critical patent/CN109666469A/zh
Application granted granted Critical
Publication of CN109666469B publication Critical patent/CN109666469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及一种多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法,主要解决现有聚合物微球在高温高盐条件下稳定性不足的问题,通过采用聚丙烯酰胺类聚合物凝胶微球包括以下结构单元:包括以下结构单元:丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元;其特征在于所述微球还包括:共价键交联剂结构单元、高价金属交联剂结构单元、稳定剂结构单元;其中,所述的丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元构成聚合物主链结构的技术方案,较好地解决了该问题,可适用于油田开发中的深度调剖。

Description

多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法
技术领域
本发明涉及一种含有四重交联网络的聚丙烯酰胺微球微球,具体的涉及一种微米尺寸的聚丙烯酰胺复合交联微球,可在三次采油中作为深度调剖堵水剂使用。
背景技术
随着现代工业的发展,对能源的需求越来越大,但传统的化石能源随着不断开采的进行不断被消耗,能源危机成为各国经济发展的主要问题。石油是化石能源中的重要组成部分,被称为现代工业的血液。但随着油田的不断开发,石油开采难度逐渐增加,成本逐步加大,开采经济效益降低。原油产量的自然递减是老油田面临的主要问题,对稳定原油供应带来巨大的压力,非常不利于国家经济发展和能源战略安全,因此老油田的稳产增产一直是我国油田面临的主要问题。我国的大多数油田已经过了长期的注水开采,长期的冲刷使得油田的地质条件恶化,地下水窜通道较多,原油分布分散,非均质性非常严重。进而造成了油田开采中大量注入工作失效,无效注入比例增加,开采成本进一步增加。因此,能有效调堵油藏中的大孔道,对油藏中深部的高渗层进行有效的封堵是降低无效注入,增加驱油类化学剂注入效率,降低开采成本的重要手段之一。
聚合物微球是在地面上合成的由亲水性高分子组成的聚合物交联球体,由于其在地层中有较好的运移能力,因此可以有效进入地层深部起到深部调剖的作用。聚合物微球在地面上合成,避免了类似地下冻胶体系在地下交联成胶效果差等问题,同时避免了凝胶颗粒类较大颗粒对近井地带封堵将强而无法有效运移至深部的问题。
目前市场上用于调剖的聚合物微球较多,但微球主要存在的共性问题是微球的长期稳定性不足,水溶性高分子赋予的网络结构在长期高温高盐环境下不断逐步降解失效,因此封堵有效期短,封堵能力有限。
发明内容
本发明所要解决的技术问题之一是解决现有聚合物微球在高温高盐条件下稳定性不足的问题,提供一种多网络型单分散聚丙烯酰胺类聚合物凝胶微球,通过在微球中引入了共价键化学交联、阴阳离子对交联、高价金属螯合交联和高分子链缠结交联四重交联网络,赋予了微球强的网络结构,进而赋予微球优异的老化稳定性,保证了其在地下环境中长期服役中的稳定和有效的封堵能力。
本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的四重交联网络的单分散聚丙烯酰胺类聚合物微球的合成制备方法,采用分散聚合合成获得了粒径均一的多重交联网络聚合物微球。
为解决上述问题之一,本发明采用的技术方案如下:一种聚丙烯酰胺类聚合物凝胶微球,包括以下结构单元:丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元、共价键交联剂结构单元、高价金属交联剂结构单元、稳定剂结构单元;其中,所述的丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元构成聚合物主链结构。
上述技术方案中,所述阴离子单体结构单元和阳离子单体结构单元赋予微球正负电荷形成的静电吸附交联网络;所述共价键交联剂结构单元、高价金属交联剂结构单元、高分子复合助剂结构单元分别赋予微球共价键交联网络、高价金属螯合结构交联网络和高分子链缠结交联网络;所述稳定剂结构单元在微球表面形成稳定隔离层结构。
上述技术方案中,所述聚丙烯酰胺类聚合物凝胶微球还优选包括高分子复合助剂结构单元。
上述技术方案中,所述丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元、共价键交联剂结构单元、高价金属交联剂结构单元、高分子复合助剂结构单元、稳定剂结构单元的质量比为(3-30):(1-25):(1-25):(1-10):(0.001-0.5):(0.001-0.5):(0.001-0.5):(1-5)。
上述技术方案中,所述聚丙烯酰胺类聚合物凝胶微球,按重量份数计,由其中合成配方包含以下组分的反应体系反应得到:
(1)3-30份丙烯酰胺;
(2)1-25份阳离子单体或
(3)1-25份阴离子单体;
(4)1-10份非离子单体;
(5)1-5份稳定剂;
(6)0.001-0.5份双烯类交联剂;
(7)0.001-0.5份高价金属离子交联剂;
(8)0.001-0.5份高分子复合助剂;
(9)0.0001-0.0005复合引发剂;
(10)10-50份去离子水;
(11)50-90份不良溶剂。
上述技术方案中,所述合成配方的反应体系中还包含:
(12)0.01~0.3份的乙二胺四乙酸二钠。
上述技术方案中,所述的阴离子单体选自丙烯酸、甲基丙烯酸、乙烯基磺酸钠、对乙烯基苯磺酸、烯丙基磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠中的至少一种;所述的阳离子单体选自甲基丙烯酰氧乙基三甲基氯化铵、2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、二甲基乙基烯丙基氯化铵、二甲基二烯丙基氯化铵、丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基二甲基苄基氯化铵、甲基丙烯酰氧乙基二甲基苄基氯化铵中的至少一种;所述的非离子单体选自甲基丙烯酰胺、二甲基丙烯酰胺、二乙基丙烯酰胺、羟甲基丙烯酰胺、羟乙基丙烯酰胺、二甲胺基丙基甲基丙烯酰胺、甲基丙烯酸羟甲酯、甲基丙烯酸羟乙酯、甲基丙烯酸二甲氨基乙酯,乙烯基吡咯烷酮中的至少一种。
上述技术方案中,所述的高分子复合助剂选自羟甲基纤维素、羟乙基纤维素、羧甲基纤维素、羟丙基甲基纤维素、单壁碳纳米管、多壁碳纳米管中的至少一种。所述的稳定剂选自聚乙烯醇、聚乙二醇、聚乙烯级吡咯烷酮中的至少一种。
上述技术方案中,所述的双烯类交联剂选自对乙烯基苯、N,N’-亚甲基双丙烯酰胺、聚乙二醇双丙烯酸酯、N,N’-间苯撑双马来酰亚胺、季戊四醇三丙烯酸酯、甲醛、乙二醛、丁二醛、戊二醛、己二醛、邻苯二醛、壬二醛、辛二醛、多聚甲醛、酚醛预聚体中的至少一种。
上述技术方案中,所述的高价金属离子交联剂选自柠檬酸铝、乙酸锆、乙酸铬、氧氯化锆、氯化铬、酵母铬、吡啶羧酸铬、蛋氨酸铬、乳酸铬、乳酸锆、硼酸钠、硼酸钾、硼酸、三甲氧基硼酸酯、三乙醇胺硼酸、三乙二硼酸酯、三甲基硼酸酯、偏硼酸酯、叔丁基硼烷,二甲氨基硼烷、氟硼酸钠、氟硼酸铵中的至少一种。
上述技术方案中,所述的不良溶剂选自甲醇、乙醇、丙醇、丁醇、异丙醇、叔丁醇、新戊醇、乙二醇、丙三醇、丙酮、聚乙二醇水溶液、硫酸铵水溶液、硫酸钠水溶液中的至少一种。
上述技术方案中,,以占总的反应体系的质量百分数计,所述的复合引发剂包括以下组分:
(a)0.01~0.3%的过硫酸盐、过硫酸钾、过硫酸钠、过氧化氢;
(b)0.01~0.3%的亚硫酸盐、酸式亚硫酸盐、硫代硫酸盐;
(c)0.01~0.5%的四甲基乙二胺、二甲基乙二胺或乙二胺;
(d)0.02~0.3%的偶氮类化合物。
上述技术方案中,所述的偶氮类化合物选自偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁基脒盐酸盐、2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、偶氮二(2,5-二甲基-6-羧基)己腈、4,4’-偶氮二(4-氰基戊酸)中的至少一种。
本发明所涉及的聚合物微球是一种微米级的单分散聚合物微球,主要特点是在微球中引入了共价键化学交联、阴阳离子对交联、高价金属螯合交联和高分子链缠结交联四重交联网络,对微球的网络结构进行了强化,使得微球的网络结构进一步稳定,使其在高温高盐环境中能有更长的服役期,在地层中有更好的封堵能力。同时单分散的粒径集中在1-5um的微球赋予了这种调剖剂在地层中深度运移的能力,进而可以在油藏中起到深度调剖的目的。
为解决上述问题之二,本发明采用的技术方案如下:一种聚丙烯酰胺类聚合物微球的制备方法,包括以下步骤:
1)将所需量的丙烯酰胺单体、阴离子单体、阳离子单体、非离子单体、稳定剂、高分子复合助剂、双烯类交联剂分别溶于水和不良溶剂混合所得的混合溶剂中,搅拌均匀,调节pH值=7-12,配制成溶液;
2)将以上制得的溶液加入反应釜中,在100-500r/min的搅拌速率下,通惰性气体除氧,水浴控温在20-80℃;
3)将复合引发剂加入反应釜中,持续通惰性气体搅拌直至聚合反应结束;
7)将高价金属离子交联剂溶解于水和不良溶剂混合所得的混合溶剂中,加入步骤3)反应结束后的反应釜中,持续搅拌保温2-8小时;
8)降温取出反应产物,得到所述的聚丙烯酰胺类聚合物凝胶微球。
本发明的关键在于通过在聚合物微球中引入共价键化学交联、阴阳离子对交联、高价金属螯合交联和高分子链缠结交联四重交联网络,对微球的网络结构进行了强化,使得微球的网络结构进一步稳定,使其在高温高盐环境中能有更长的服役期,在地层中有更好的封堵能力。同时单分散的粒径集中在1-5um的微球赋予了这种调剖剂在地层中深度运移的能力,进而可以在油藏中起到深度调剖的目的。
对比传统的化学交联的聚合物微球的性能,可以看出,在经过长期老化后,本发明所得的多重交联网络聚合物微球仍有更高的封堵强度,也证实了这种多重交联网络对微球稳定性的提高,证明其可作为有效期更长的调剖封窜剂使用。
采用本发明的技术方案,得到的聚丙烯酰胺类聚合物凝胶微球,具有粒径均一、多重交联网络的优点,在6000mg/L矿化度的模拟地层水中,于70℃下老化30天,然后在2000md渗透率的岩心中测定其封堵能力,阻力系数可达20.6,取得了较好的技术效果。
附图说明
图1为实施例1中所得聚合物微球扫描电镜图片。
下面通过实施例对本发明做进一步的阐述。
具体实施方式
【实施例1】
将30份丙烯酰胺,15份甲基丙烯酰氧乙基三甲基氯化铵,15份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.2份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将实施例1所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中1#所示为实施例1所得微球的的性能测试数据可以看出,实施例1所得微球在经过三十天老化后,仍然对2000md的高渗岩心有较强的封堵能力,阻力系数大于20,证明了微球有优异的长期稳定性,这也是微球多重网络结构所赋予微球的主要特征。图1所示为所得聚合物微球的电镜照片,可以看出微球球形度较好,微球粒径均一,结构完成清晰。
【实施例2】
将30份丙烯酰胺,5份甲基丙烯酰氧乙基三甲基氯化铵,5份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.2份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将实施例2所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中2#所示为实施例2所得微球的的性能测试数据可以看出,实施例2所得微球在经过三十天的老化后,仍然对2000md的高渗岩心有较强的封堵能力,阻力系数大于17,证明了微球有优异的长期稳定性,这也是微球多重网络结构所赋予微球的主要特征。但与实施例1相比,微球的阻力系数有一定的下降,这是由于实施例2中微球的阴阳离子对交联结构含量降低,因此微球的交联网络密度降低,进而造成封堵能力下降,也证实了阴阳离子对交联结构对微球网络的增强作用。
【实施例3】
将30份丙烯酰胺,15份甲基丙烯酰氧乙基三甲基氯化铵,15份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.05份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将实施例3所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中3#所示为实施例3所得微球的的性能测试数据可以看出,实施例3所得微球在经过三十天的老化后,仍然对2000md的高渗岩心有较强的封堵能力,阻力系数大于13,证明了微球有优异的长期稳定性,但相比实施例1和实施例2而言,封堵能力下降,且下降最为明显,这是由于实施例3中微球的共价键化学交联结构的含量仅为实施例1和实施例2的四分之一,共价键化学交联结构是微球交联结构的主要组成部分,且是不可逆的稳定交联结构,对微球性能影响最为明显。
【实施例4】
将30份丙烯酰胺,15份甲基丙烯酰氧乙基三甲基氯化铵,15份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,0.1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.2份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将实施例4所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中4#所示为实施例4所得微球的的性能测试数据可以看出,实施例4所得微球在经过三十天的老化后,仍然对2000md的高渗岩心有较强的封堵能力,阻力系数大于18,证明了微球有优异的长期稳定性,但相比实施例1的封堵能力略低而相比实施例2的封堵能力略高,这是由于实施例4中所得微球的高分子复合助剂含量降低,进而使得高分子链缠结网络在微球中含量降低,造成封堵能力下降,结果也证实了这种高分子缠结网络对微球的增强能力,同时也发现,高分子缠结网络对微球性能的影响要小于阴阳离子对交联网络的影响。
【实施例5】
将30份丙烯酰胺,15份甲基丙烯酰氧乙基三甲基氯化铵,15份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.2份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将0.2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将实施例5所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中5#所示为实施例5所得微球的的性能测试数据可以看出,实施例5所得微球在经过三十天老化后,仍然对2000md的高渗岩心有较强的封堵能力,阻力系数大于15,阻力系数大于实施例3所得微球的阻力系数,而小于其他实施例所得微球的阻力系数。这是由于实施例5中高价金属离子交联结构的含量明显降低所致,也证实了高价金属离子交联结构对交联网络有较大的增强能力,其用量下降对微球的封堵能力影响较大,仅次于共价键交联结构的影响。
【比较例1】
将30份丙烯酰胺,15份甲基丙烯酰氧乙基三甲基氯化铵,15份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将比较例1所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中6#所示为比较例1所得微球的的性能测试数据可以看出,比较例1所得微球在经过三十天老化后,对2000md的高渗岩心的封堵实验阻力系数仅为2左右,这是由于比较例1中的微球缺乏共价键化学交联网络,因此在长期老化中微球交联网络降解严重,网络结构坍塌,进而封堵能力最弱。
【比较例2】
将30份丙烯酰胺,15份甲基丙烯酰氧乙基三甲基氯化铵,15份2-丙烯酰胺基-二甲基丙磺酸,5份丙烯酸,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.2份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将比较例2所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中7#所示为比较例2所得微球的的性能测试数据可以看出,比较例2所得微球在经过三十天老化后,对2000md的高渗岩心的封堵实验阻力系数仅为7左右,这是由于比较例2的微球中缺少高价金属离子交联网络结构,进而微球网络结构密度降低,抗老化能力降低,微球网络强度较低,因此封堵能力也较低。
【比较例3】
将65份丙烯酰胺,0.02份乙二胺四乙酸二钠,1份聚乙烯醇,0.2份聚乙烯级吡咯烷酮,0.2份亚甲基双丙烯酰胺,1份叔丁基丙烯酰胺溶解于120份水和400份乙醇配置的混合溶剂中搅拌均匀。将溶液加入反应釜中,搅拌速率100r/min,通惰性气体保护,水浴温度30℃。持续搅拌30min后,将复合引发体系分别滴加入反应釜中。持续反应1小时。
将2份乙酸锆溶解与6份水和20份乙醇配置的混合溶剂中,缓慢滴加进入反应釜中,用盐酸调节pH值至3-5,将水浴温度提升至60℃,持续搅拌保温2小时后降温至室温取出反应体系即为产物。
将比较例3所得样品搅拌下分散于6000mg/L矿化度的模拟地层水中,于70℃下分别老化30天,然后在2000md渗透率的岩心中测定其封堵能力如表1所示。
如表1中8#所示为比较例3所得微球的的性能测试数据可以看出,比较例3所得微球在经过三十天老化后,对2000md的高渗岩心的封堵实验阻力系数仅为9左右,这是由于比较例3中的微球缺少阴阳离子对交联结构,因此相比实施例样品的微球,比较例3中微球的网络密度较低,对老化过程的抵抗能力较差,老化后微球网络强度较低,进而封堵能力较低。
表1实施例及比较例样品性能列表

Claims (10)

1.一种聚丙烯酰胺类聚合物凝胶微球,包括以下结构单元:丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元;其特征在于所述微球还包括:共价键交联剂结构单元、高价金属交联剂结构单元、稳定剂结构单元;其中,所述的丙烯酰胺结构单元、阴离子单体结构单元、阳离子单体结构单元、非离子单体结构单元构成聚合物主链结构。
2.根据权利要求1所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述聚丙烯酰胺类聚合物凝胶微球,按重量份数计,由合成配方包含以下组分的反应体系反应得到:
(1)3-30份丙烯酰胺;
(2)1-25份阳离子单体;
(3)1-25份阴离子单体;
(4)1-10份非离子单体;
(5)1-5份稳定剂;
(6)0.001-0.5份双烯类交联剂;
(7)0.001-0.5份高价金属离子交联剂;
(8)0.001-0.5份高分子复合助剂;
(9)0.0001-0.0005复合引发剂;
(10)10-50份去离子水;
(11)50-90份不良溶剂。
3.根据权利要求2所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的阴离子单体选自丙烯酸、甲基丙烯酸、乙烯基磺酸钠、对乙烯基苯磺酸、烯丙基磺酸钠、2-丙烯酰胺基-2-甲基丙磺酸钠中的至少一种;所述的阳离子单体选自甲基丙烯酰氧乙基三甲基氯化铵、2-丙烯酰胺基-2-甲基丙基三甲基氯化铵、二甲基乙基烯丙基氯化铵、二甲基二烯丙基氯化铵、丙烯酰氧乙基三甲基氯化铵、丙烯酰氧乙基二甲基苄基氯化铵、甲基丙烯酰氧乙基二甲基苄基氯化铵中的至少一种;所述的非离子单体选自甲基丙烯酰胺、二甲基丙烯酰胺、二乙基丙烯酰胺、羟甲基丙烯酰胺、羟乙基丙烯酰胺、二甲胺基丙基甲基丙烯酰胺、甲基丙烯酸羟甲酯、甲基丙烯酸羟乙酯、甲基丙烯酸二甲氨基乙酯,乙烯基吡咯烷酮中的至少一种。
4.根据权利要求2所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的高分子复合助剂选自羟甲基纤维素、羟乙基纤维素、羧甲基纤维素、羟丙基甲基纤维素、单壁碳纳米管、多壁碳纳米管中的至少一种;所述的稳定剂选自聚乙烯醇、聚乙二醇、聚乙烯级吡咯烷酮中的至少一种。
5.根据权利要求2所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的双烯类交联剂选自对乙烯基苯、N,N’-亚甲基双丙烯酰胺、聚乙二醇双丙烯酸酯、N,N’-间苯撑双马来酰亚胺、季戊四醇三丙烯酸酯、甲醛、乙二醛、丁二醛、戊二醛、己二醛、邻苯二醛、壬二醛、辛二醛、多聚甲醛、酚醛预聚体中的至少一种。
6.根据权利要求2所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的高价金属离子交联剂选自柠檬酸铝、乙酸锆、乙酸铬、氧氯化锆、氯化铬、酵母铬、吡啶羧酸铬、蛋氨酸铬、乳酸铬、乳酸锆、硼酸钠、硼酸钾、硼酸、三甲氧基硼酸酯、三乙醇胺硼酸、三乙二硼酸酯、三甲基硼酸酯、偏硼酸酯、叔丁基硼烷,二甲氨基硼烷、氟硼酸钠、氟硼酸铵中的至少一种。
7.根据权利要求2所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的不良溶剂选自甲醇、乙醇、丙醇、丁醇、异丙醇、叔丁醇、新戊醇、乙二醇、丙三醇、丙酮、聚乙二醇水溶液、硫酸铵水溶液、硫酸钠水溶液中的至少一种。
8.根据权利要求2所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的复合引发剂,以占总的反应体系的质量百分数计,包括以下组分:
(a)0.01~0.3%的过硫酸盐、过硫酸钾、过硫酸钠、过氧化氢;
(b)0.01~0.3%的亚硫酸盐、酸式亚硫酸盐、硫代硫酸盐;
(c)0.01~0.5%的四甲基乙二胺、二甲基乙二胺或乙二胺;
(d)0.02~0.3%的偶氮类化合物。
9.根据权利要求8所述的聚丙烯酰胺类聚合物凝胶微球,其特征在于所述的偶氮类化合物选自偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、偶氮二异丁基脒盐酸盐、2,2’-偶氮[2-(2-咪唑啉-2-基)丙烷]二盐酸盐、偶氮二(2,5-二甲基-6-羧基)己腈、4,4’-偶氮二(4-氰基戊酸)中的至少一种。
10.一种权利要求1~9任一所述的聚丙烯酰胺类聚合物凝胶微球的制备方法,包括以下步骤:
1)将所需量的丙烯酰胺单体、阴离子单体、阳离子单体、非离子单体、稳定剂、高分子复合助剂、双烯类交联剂分别溶于水和不良溶剂混合所得的混合溶剂中,搅拌均匀,调节pH值=7-12,配制成溶液;
2)将以上制得的溶液加入反应釜中,在100-500r/min的搅拌速率下,通惰性气体除氧,水浴控温在20-80℃;
3)将复合引发剂加入反应釜中,持续通惰性气体、搅拌直至聚合反应结束;
4)将高价金属离子交联剂溶解于水和不良溶剂混合所得的混合溶剂中,加入步骤3)反应结束后的反应釜中,持续搅拌保温2-8小时;
5)降温,取出反应产物,得到所述的聚丙烯酰胺类聚合物凝胶微球。
CN201710966119.8A 2017-10-17 2017-10-17 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法 Active CN109666469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710966119.8A CN109666469B (zh) 2017-10-17 2017-10-17 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710966119.8A CN109666469B (zh) 2017-10-17 2017-10-17 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法

Publications (2)

Publication Number Publication Date
CN109666469A true CN109666469A (zh) 2019-04-23
CN109666469B CN109666469B (zh) 2021-03-30

Family

ID=66139917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710966119.8A Active CN109666469B (zh) 2017-10-17 2017-10-17 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法

Country Status (1)

Country Link
CN (1) CN109666469B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776608A (zh) * 2019-11-13 2020-02-11 西南石油大学 一种羟基化多维纳米材料杂化分散胶及其应用
CN111117582A (zh) * 2019-12-30 2020-05-08 长江大学 一种可控交联型凝胶堵漏剂及其制备方法
CN111350474A (zh) * 2020-03-09 2020-06-30 长安大学 一种能实现深部调驱的二次交联互穿网络凝胶的封堵方法
CN111349193A (zh) * 2020-04-17 2020-06-30 大庆市新万通科技开发有限公司 一种四元共聚抗温抗盐聚丙烯酰胺及其合成方法与应用
CN112094374A (zh) * 2020-09-23 2020-12-18 中国石油大学(北京) 一种双重交联结构的耐温聚合物微球及其制备方法
CN113121745A (zh) * 2020-01-16 2021-07-16 中国石油化工股份有限公司 微悬浮聚合制备的阴阳复合柔性聚合物微球及制备方法
WO2022028376A1 (zh) * 2020-08-04 2022-02-10 中国石油化工股份有限公司 一种聚合物颗粒、其制造方法及其应用
CN115466352A (zh) * 2022-10-11 2022-12-13 杰瑞能源服务有限公司 调堵剂、调堵剂制备方法及封堵方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475691A (zh) * 2009-01-23 2009-07-08 成都理工大学 丙烯酰胺改性聚合物微交联凝胶及其制备方法
CN104448126A (zh) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 苛刻油藏反相微乳液调驱体系及其制备方法
CN105085799A (zh) * 2015-08-25 2015-11-25 北京熠海能源科技有限公司 一种缓膨型纳米弹性微球深部调剖驱油剂的制备方法及其应用
CN105504158A (zh) * 2016-02-24 2016-04-20 白宝君 在地层条件下可再交联的智能凝胶颗粒及其制备方法与应用
CN105524215A (zh) * 2014-10-24 2016-04-27 中国石油化工股份有限公司 耐温抗盐丙烯酰胺类聚合物微球分散体系及其制备方法和应用
CN105586025A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 高温高盐油藏聚合物微球分散体系调驱剂及其制备方法和应用
CN106147738A (zh) * 2015-03-27 2016-11-23 中国石油化工股份有限公司 一种油藏深部调驱剂及其制备方法
CN106866877A (zh) * 2015-12-14 2017-06-20 中国石油化工股份有限公司 油藏深部调驱用聚合物微乳体系及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475691A (zh) * 2009-01-23 2009-07-08 成都理工大学 丙烯酰胺改性聚合物微交联凝胶及其制备方法
CN104448126A (zh) * 2013-09-24 2015-03-25 中国石油化工股份有限公司 苛刻油藏反相微乳液调驱体系及其制备方法
CN105524215A (zh) * 2014-10-24 2016-04-27 中国石油化工股份有限公司 耐温抗盐丙烯酰胺类聚合物微球分散体系及其制备方法和应用
CN105586025A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 高温高盐油藏聚合物微球分散体系调驱剂及其制备方法和应用
CN106147738A (zh) * 2015-03-27 2016-11-23 中国石油化工股份有限公司 一种油藏深部调驱剂及其制备方法
CN105085799A (zh) * 2015-08-25 2015-11-25 北京熠海能源科技有限公司 一种缓膨型纳米弹性微球深部调剖驱油剂的制备方法及其应用
CN106866877A (zh) * 2015-12-14 2017-06-20 中国石油化工股份有限公司 油藏深部调驱用聚合物微乳体系及其制备方法
CN105504158A (zh) * 2016-02-24 2016-04-20 白宝君 在地层条件下可再交联的智能凝胶颗粒及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
卜道露 等: "分散聚合法聚丙烯酰胺微球调剖剂的研究", 《化工新型材料》 *
喻琴 等: "聚丙烯酰胺微球在油田调剖堵水中的应用研究进展", 《精细石油化工进展》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776608A (zh) * 2019-11-13 2020-02-11 西南石油大学 一种羟基化多维纳米材料杂化分散胶及其应用
CN111117582A (zh) * 2019-12-30 2020-05-08 长江大学 一种可控交联型凝胶堵漏剂及其制备方法
CN113121745A (zh) * 2020-01-16 2021-07-16 中国石油化工股份有限公司 微悬浮聚合制备的阴阳复合柔性聚合物微球及制备方法
CN113121745B (zh) * 2020-01-16 2023-01-24 中国石油化工股份有限公司 微悬浮聚合制备的阴阳复合柔性聚合物微球及制备方法
CN111350474A (zh) * 2020-03-09 2020-06-30 长安大学 一种能实现深部调驱的二次交联互穿网络凝胶的封堵方法
CN111350474B (zh) * 2020-03-09 2021-11-09 长安大学 一种能实现深部调驱的二次交联互穿网络凝胶的封堵方法
CN111349193A (zh) * 2020-04-17 2020-06-30 大庆市新万通科技开发有限公司 一种四元共聚抗温抗盐聚丙烯酰胺及其合成方法与应用
CN111349193B (zh) * 2020-04-17 2021-03-23 大庆市新万通科技开发有限公司 一种四元共聚抗温抗盐聚丙烯酰胺及其合成方法与应用
WO2022028376A1 (zh) * 2020-08-04 2022-02-10 中国石油化工股份有限公司 一种聚合物颗粒、其制造方法及其应用
CN112094374A (zh) * 2020-09-23 2020-12-18 中国石油大学(北京) 一种双重交联结构的耐温聚合物微球及其制备方法
CN115466352A (zh) * 2022-10-11 2022-12-13 杰瑞能源服务有限公司 调堵剂、调堵剂制备方法及封堵方法

Also Published As

Publication number Publication date
CN109666469B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN109666469A (zh) 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法
US11015109B2 (en) Particulate profile control agent self-adaptive to size of formation pore throat and preparation method thereof
Ghriga et al. Review of recent advances in polyethylenimine crosslinked polymer gels used for conformance control applications
EP3231824B1 (en) Hydrophobic associated polymer and preparation method therefor
CN104936988A (zh) 采用pei的可溶胀聚合物的交联
CN109666098B (zh) 双交联网络缓膨型聚合物微球及其制备方法和应用
CN109666103A (zh) 微球-弱交联聚合物复合调剖体系及其制备方法和应用
CN103216211B (zh) 一种裂缝型油藏调剖方法
CN107383274B (zh) 长效混凝土保水剂及其制备方法
CN106883357A (zh) 一种预交联凝胶缓膨微球调剖剂及其制备方法和用途
CN105085799A (zh) 一种缓膨型纳米弹性微球深部调剖驱油剂的制备方法及其应用
US20220154064A1 (en) Mussel bionic gel composition, self-repairing gel, profile control and water plugging agent, method for preparing self-repairing gel, and use
CN109369848A (zh) 一种功能型耐温抗盐调堵剂及其制备方法
US11268009B2 (en) Fiber assisted re-crosslinkable polymer gel and preformed particle gels for fluid loss and conformance control
CN104419390A (zh) 一种油井控水用复合堵剂及其制备方法
CN109232826A (zh) 一种poss基杂化的预交联凝胶颗粒及其制备方法
CN108912268A (zh) 一种电吸引疏水包覆膜、支撑剂及其制备方法
Zhang et al. High-strength, tough, and anti-swelling Schiff base hydrogels with fluorescent encryption writing, solvent response and double shape memory functions
CN108165251A (zh) 用于水力压裂的具有耐盐水性的自悬浮支撑剂
CN106467598B (zh) 一种两性交联聚合物线团及其制备方法
CN109666104A (zh) 阴阳复合核壳结构聚合物微球及其制备方法
CN114854379B (zh) 一种水基钻井液用环保胶结型固壁剂及其制备方法与应用
CN106467733B (zh) 两性交联聚合物微球-疏水缔合聚合物调驱剂及其应用
CN110204641B (zh) 一种调剖用交联聚合物微球及其制备方法
CN108003856A (zh) 一种珠状微球调剖堵水剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant