CN110776608A - 一种羟基化多维纳米材料杂化分散胶及其应用 - Google Patents

一种羟基化多维纳米材料杂化分散胶及其应用 Download PDF

Info

Publication number
CN110776608A
CN110776608A CN201911105894.XA CN201911105894A CN110776608A CN 110776608 A CN110776608 A CN 110776608A CN 201911105894 A CN201911105894 A CN 201911105894A CN 110776608 A CN110776608 A CN 110776608A
Authority
CN
China
Prior art keywords
hydroxylated
dispersion adhesive
dispersion glue
dispersion
polyoxyethylene ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911105894.XA
Other languages
English (en)
Other versions
CN110776608B (zh
Inventor
蒲万芬
杜代军
金发扬
刘锐
樊桓材
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Erik Petroleum Technology Co.,Ltd.
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201911105894.XA priority Critical patent/CN110776608B/zh
Publication of CN110776608A publication Critical patent/CN110776608A/zh
Application granted granted Critical
Publication of CN110776608B publication Critical patent/CN110776608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明公开了一种羟基化多维纳米材料杂化分散胶及其应用,属于油田化学技术领域,本发明的分散胶由改性羟基化碳纳米管、丙烯酰胺、甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚、N,N‑亚甲基双丙烯酰胺和聚乙二醇二丙烯酸酯在引发剂的作用下发生聚合交联反应制成,本发明通过引入甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚和高度强度的纤维素碳纳米管使得本分散胶具有良好的强度以及耐温抗盐性能,同时,差异性分解的双重交联体系赋予本分散胶良好的缓膨性,使得其在地面配样时几乎不膨胀,在近井地带缓慢膨胀,因而可以达到地层深部,实现有效封堵、使得深部液流转向,提高采收率。

Description

一种羟基化多维纳米材料杂化分散胶及其应用
技术领域
本发明涉及油田化学技术领域,具体涉及一种羟基化多维纳米材料杂化分散胶及其应用。
背景技术
随着石油的进一步开发,油藏开采向更深的储层发展,出现了油藏条件更加苛刻的高温、高盐油藏。与此同时,水驱采油后的剩余油分布不均,导致油水两相交错式分布。高渗区域经注入水的长期冲刷形成优势通道,注采矛盾进一步加剧。如何实现高温高盐油藏稳油控水以及进一步提高原油采收率是我们面临的挑战。
对于高温高盐油藏,受油藏高温(>80℃)的影响,以流度控制为主的聚合物驱、聚合物/表面活性剂二元驱、聚合物/表面活性剂/碱三元复合驱以及聚合物增强泡沫调驱长期稳定性差,有效期短;受油藏强非均质性的影响,以降低界面为主的表面活性剂驱油由于优势通道的存在,蹿流现象严重,最终导致波及体积小,采收率低。有效提高高温高盐油藏采收率的途径是向注水井中注入化学体系,包括无机颗粒、凝胶和分散胶来有效封堵高渗条带,使注入水液流转向去低渗层,扩大波及体积。
然而,目前无机颗粒不具备吸水膨胀性或膨胀性很差,不能有效的封堵高渗层实现深部液流转向;整体凝胶虽能够直接将高渗层堵死,但是存在伤害低渗层的潜在危害;分散胶能够对高渗层实现有效封堵,且“堵而不死”,但常规的分散胶耐温、抗盐性差,在高温高盐油藏中其膨胀性的长期稳定性较差。
发明内容
针对常规分散胶耐温抗盐性差的缺点,本发明的目的是提供一种满足高温高盐油藏使用条件的羟基化多维纳米材料杂化分散胶。
本发明采用以下技术方案为:
一种羟基化多维纳米材料杂化分散胶,该分散胶由高强度纤维素—改性羟基化碳纳米管、丙烯酰胺、甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚、N,N-亚甲基双丙烯酰胺和聚乙二醇二丙烯酸酯在引发剂的作用下发生聚合交联反应制备而成,其各组分的质量百分含量为:
丙烯酰胺15%~25%,
改性羟基化碳纳米管0.01%~0.1%,
甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚0.5%~5%,
聚乙二醇二丙烯酸酯:0.05%~0.5%
N,N-亚甲基双丙烯酰胺0.05%~0.5%
引发剂0.02%~0.1%
其余为水。
所述的引发剂为偶氮二异丁脒盐酸盐、过硫酸盐或者氧化还原引发体系。
该分散胶所用的改性羟基化碳纳米管的结构式如下:
Figure BDA0002271269850000021
所用的甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚的结构式如下:
Figure BDA0002271269850000022
n为氧乙烯的聚合度,7≤n≤40。
上述羟基化多维纳米材料杂化分散胶主要通过单体经引发剂引发聚合交联而得,最后经过烘干、粉碎、筛分和再粉碎制备而成,具体的制备步骤如下所示:
(1)搅拌速度为200~400r/min条件下,将改性羟基化碳纳米管、丙烯酰胺、甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚、N,N-亚甲基双丙烯酰胺和聚乙二醇二丙烯酸酯加入到水中,完全加入后继续搅拌1小时,得到黑色的液体。
(2)向步骤(1)中得到的黑色液体通入N2除氧30分钟,然后加入引发剂,再继续通N230分钟。
(3)升温至30℃~60℃,保温3小时,得到黑色的凝胶块。
(4)将上述凝胶块通过烘干、粉碎、筛分和再粉碎后,得到羟基化多维纳米材料杂化分散胶。
本发明的另一目的是提供上述羟基化多维纳米材料杂化分散胶在高温高盐油藏的应用,本分散胶具有良好的缓膨性,使得其在地面配样时几乎不膨胀,将其注入地层后,在近井地带缓慢膨胀,可到达地层深部继续膨胀实现有效封堵、使得深部液流转向,提高采收率。
与现有技术相比,本发明具有以下有益效果:
该分散胶的原料配方中加入了改性羟基化碳纳米管,与引发体系/交联体系构建三维空间网络结构,将高强度纤维素碳纳米管引入到三维空间网络结构中,改善了传统的预交联凝胶颗粒强度低、耐温抗盐性差的缺点;甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚的引入提高了分散胶的抗盐性,尤其是抗钙镁离子的性能;本分散胶具有差异性分解的双重交联体系,因而具有良好的缓膨性,将其应用于高温高盐油层时,其地面配样时几乎不膨胀,在近井地带缓慢膨胀,因此能够到地层深部继续膨胀实现有效封堵。
附图说明
图1为实施例1分散胶的缓膨性能图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
(一)实施例
羟基化多维纳米材料杂化分散胶,由以下原料组分组成:0.01g改性羟基化碳纳米管,23g丙烯酰胺,2g甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚(聚氧乙烯醚的聚合度为20),0.1gN,N-亚甲基双丙烯酰胺,0.1g聚乙二醇二丙烯酸酯,0.008g过硫酸铵,75g去离子水。
制备工艺:搅拌条件下将0.01g改性羟基化碳纳米管,23g丙烯酰胺,2g甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚,0.1gN,N-亚甲基双丙烯酰胺和0.1g聚乙二醇二丙烯酸酯加入到75g去离子水中,然后继续搅拌1小时得到黑色的液体;通入N230分钟后将0.008g的过硫酸铵在搅拌条件下加入到前述液体中;再次通入N230分钟;将温度升高至60℃后保温3小时,得到黑色的凝胶块;最后经过烘干、粉碎、筛分和再粉碎后,得到羟基化多维纳米材料杂化分散胶。
实施例2
羟基化多维纳米材料杂化分散胶,由以下原料组分组成:0.03g改性羟基化碳纳米管,20g丙烯酰胺,5g甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚,0.2gN,N-亚甲基双丙烯酰胺,0.07g聚乙二醇二丙烯酸酯,0.004g过硫酸铵/0.004g亚硫酸氢钠,75g去离子水。
制备工艺:搅拌条件下将0.03g改性羟基化碳纳米管,20g丙烯酰胺,5g甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚(聚氧乙烯醚的聚合度为30),0.2gN,N-亚甲基双丙烯酰胺和0.07g聚乙二醇二丙烯酸酯加入到75g去离子水中,然后继续搅拌1小时得到黑色的液体;通入N230分钟后将0.004g过硫酸铵/0.004g亚硫酸氢钠在搅拌条件下加入到前述液体中;再次通入N230分钟;将温度升高至30℃后保温3小时,得到黑色的凝胶块;最后经过烘干、粉碎、筛分和再粉碎后,得到羟基化多维纳米材料杂化分散胶。
(二)性能测试
(1)缓膨性
采用激光粒度仪测量实施例1制备的羟基化多维纳米材料杂化分散胶的中值粒径,根据不同温度下凝胶颗粒的中值粒径计算相应的膨胀倍数,以此来判断凝胶颗粒的缓膨性。从图1可知,随着温度的升高,分散胶膨胀倍数增加。现场配注是一个由地面到油藏深部的过程,在地面配注时为了保证分散胶的注入性,要求分散胶膨胀倍数低,而进入地层深部后需要缓慢的膨胀到最大倍数。由图1可知,该分散胶在低温时膨胀倍数小,有利于地面配注,随着温度的升高,膨胀倍数增大,有助于油藏深部调驱。
(2)强度与韧性
由于碳纳米管的引入,分散胶的强度得到了较高的提升。采用转向压力法评价实施例1中准备的分散胶的强度,实验用水矿化度10万,温度90℃。通过以下实验步骤计算分散胶的韧性:1)记录分散胶颗粒通过筛网时的最大压力P1max;2)收集通过后的分散胶在相同的速度下再次通过筛网,记录通过时的最大压力P2max,3)计算其韧性系数(P2max/P1max)。
表1、羟基化多维纳米材料杂化分散胶的转向压力与韧性
Figure BDA0002271269850000041
Figure BDA0002271269850000051
(3)调驱性能
利用国内某油藏提供的油水样、岩心及油藏资料,油藏条件(实验温度90℃,矿化度:10万)进行高、低渗透率岩心并联驱油实验。实验步骤如下:1)测试岩心基本参数后饱和原油,记录原油饱和度;2)水驱至含水率为98%;3)注入0.3PV以实施例1制备的分散胶颗粒配置的浓度为1500mg/L的溶液;4)后续水驱至含水率为98%。整个驱替过程中的速度为0.5mL/min。岩心参数及实验结果如表1所示。
由于渗透率级差较大,水驱过程中的低渗岩心未启动,高渗岩心采收率为48.8%。注入分散胶后,低渗层采收率提高20.4%同时高渗层的采收率提高18.9%。说明分散胶能够有效的进行非均质性调控,扩大注入水波及体积,启动低渗层。
表4-6不同渗透率级差条件下注分散胶调驱实验结果
Figure BDA0002271269850000052
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (3)

1.一种羟基化多维纳米材料杂化分散胶,其特征在于,由以下质量含量的组分发生聚合交联反应制备而成:
Figure FDA0002271269840000011
所述改性羟基化碳纳米管结构式如下:
Figure FDA0002271269840000012
所述甲基丙烯酰氯改性十二烷基醇聚氧乙烯醚的结构式如下:
Figure FDA0002271269840000013
式中,n为氧乙烯的聚合度,7≤n≤40。
2.根据权利要求1所述的羟基化多维纳米材料杂化分散胶,其特征在于,所述引发剂为偶氮二异丁脒盐酸盐、过硫酸盐或者氧化还原引发体系。
3.如权利要求1所述羟基化多维纳米材料杂化分散胶在高温高盐油藏的应用。
CN201911105894.XA 2019-11-13 2019-11-13 一种羟基化多维纳米材料杂化分散胶及其应用 Active CN110776608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911105894.XA CN110776608B (zh) 2019-11-13 2019-11-13 一种羟基化多维纳米材料杂化分散胶及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911105894.XA CN110776608B (zh) 2019-11-13 2019-11-13 一种羟基化多维纳米材料杂化分散胶及其应用

Publications (2)

Publication Number Publication Date
CN110776608A true CN110776608A (zh) 2020-02-11
CN110776608B CN110776608B (zh) 2021-02-26

Family

ID=69390754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911105894.XA Active CN110776608B (zh) 2019-11-13 2019-11-13 一种羟基化多维纳米材料杂化分散胶及其应用

Country Status (1)

Country Link
CN (1) CN110776608B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533863A (zh) * 2020-05-29 2020-08-14 西南石油大学 一种油藏深部调驱用碳纳米管杂化预交联凝胶颗粒及其制备方法
CN111777723A (zh) * 2020-07-30 2020-10-16 西南石油大学 一种物理-化学双重交联凝胶颗粒及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178257A1 (en) * 2010-01-18 2011-07-21 Geoscience Research Institute of Shengli Oilfield Branch, SINOPEC Novel oil displacement agent and process for preparing the same
CN102850488A (zh) * 2012-09-25 2013-01-02 西南石油大学 一种低密度二次膨胀型凝胶颗粒
CN109134781A (zh) * 2018-07-12 2019-01-04 中国石油天然气集团公司 一种双重交联微米级微球调剖剂的制备方法及应用
CN109232826A (zh) * 2018-07-18 2019-01-18 西南石油大学 一种poss基杂化的预交联凝胶颗粒及其制备方法
CN109608577A (zh) * 2018-10-26 2019-04-12 西南石油大学 一种膨胀时间可控的聚合物微球及其制备方法
CN109666469A (zh) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法
CN109825263A (zh) * 2019-04-12 2019-05-31 西南石油大学 一种水基钻井液用纳米封堵剂及其制备方法与钻井液
CN110003409A (zh) * 2019-04-29 2019-07-12 西南石油大学 一种碳纳米管杂化耐温抗盐聚合物及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110178257A1 (en) * 2010-01-18 2011-07-21 Geoscience Research Institute of Shengli Oilfield Branch, SINOPEC Novel oil displacement agent and process for preparing the same
CN102850488A (zh) * 2012-09-25 2013-01-02 西南石油大学 一种低密度二次膨胀型凝胶颗粒
CN109666469A (zh) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 多网络型单分散聚丙烯酰胺类聚合物凝胶微球及其制备方法
CN109134781A (zh) * 2018-07-12 2019-01-04 中国石油天然气集团公司 一种双重交联微米级微球调剖剂的制备方法及应用
CN109232826A (zh) * 2018-07-18 2019-01-18 西南石油大学 一种poss基杂化的预交联凝胶颗粒及其制备方法
CN109608577A (zh) * 2018-10-26 2019-04-12 西南石油大学 一种膨胀时间可控的聚合物微球及其制备方法
CN109825263A (zh) * 2019-04-12 2019-05-31 西南石油大学 一种水基钻井液用纳米封堵剂及其制备方法与钻井液
CN110003409A (zh) * 2019-04-29 2019-07-12 西南石油大学 一种碳纳米管杂化耐温抗盐聚合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
孙磊等: ""双交联聚合物微球调剖剂研究"", 《天津科技》 *
王中华: "《油田化学品实用手册》", 31 July 2004, 中国石化出版社 *
蒲万芬等: ""延缓膨胀微尺度分散胶及其性能评价"", 《石油学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533863A (zh) * 2020-05-29 2020-08-14 西南石油大学 一种油藏深部调驱用碳纳米管杂化预交联凝胶颗粒及其制备方法
CN111777723A (zh) * 2020-07-30 2020-10-16 西南石油大学 一种物理-化学双重交联凝胶颗粒及其制备方法

Also Published As

Publication number Publication date
CN110776608B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Kang et al. Progress of polymer gels for conformance control in oilfield
Bai et al. A comprehensive review of polyacrylamide polymer gels for conformance control
US10526530B2 (en) Flooding operations employing chlorine dioxide
CN105504158B (zh) 在地层条件下可再交联的智能凝胶颗粒及其制备方法与应用
CN108166960B (zh) 一种低渗透油藏逐级调驱工艺
US20190119559A1 (en) Preformed particle gel for enhanced oil recovery
CN110358008A (zh) 一种耐温抗盐聚丙烯酰胺类的100纳米微球及制备方法
CN110776608B (zh) 一种羟基化多维纳米材料杂化分散胶及其应用
CN103923629B (zh) 一种堵水剂
CN113025292B (zh) 一种热采水平井修井前封堵水平井筒用高强度冻胶暂堵剂及其制备方法
CN106317321B (zh) 用于制备井下交联复合凝胶的组合物以及由其制备的交联复合凝胶
CN106947450B (zh) 一种具有低初始粘度的深部调驱剂及其制备方法
CN110173251A (zh) 致密油藏co2辅助蓄能渗吸压裂方法
CN106188403A (zh) 一种高温高盐油藏防co2气窜堵剂及其制备方法
CN104830302A (zh) 二元复合驱油体系及其优化方法
CN112898484B (zh) 一种油气田调堵驱多功能药剂及其制作工艺
CN104861110A (zh) 高渗透稠油油藏防膨抑砂剂及其制备方法
CN108661612A (zh) 一种高矿化度油藏水驱提高采收率的方法
Li et al. A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity
Mao et al. Nanocellulose-regulated robust particle-gel for conformance improvement in fractured tight reservoirs: A mechanistic investigation of transport behavior and EOR performance in fracture models
CN114109304A (zh) 一种暂堵剂辅助二氧化碳吞吐采油方法
CN110305651B (zh) 一种纳米粒子交联的聚合物驱油剂及其制备方法和应用
CN104119472B (zh) 一种活性预交联凝胶颗粒
CN114605981B (zh) 基于表面活性剂的疏水缔合聚合物速溶剂及溶解方法
Liu et al. CO2-EOR in fractured ultra-low permeability reservoirs: problems and remedial measures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200420

Address after: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610000

Applicant after: SOUTHWEST PETROLEUM University

Applicant after: Sichuan Bobang Energy Technology Co.,Ltd.

Address before: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610500

Applicant before: SOUTHWEST PETROLEUM University

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210603

Address after: Room 807a, 8th floor, Science Park building, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610000

Patentee after: Jetbeton Petroleum Technology Group Co.,Ltd.

Address before: No.8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610000

Patentee before: SOUTHWEST PETROLEUM University

Patentee before: Sichuan Bobang Energy Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221124

Address after: No. 36-307 308, Guangyuan Road, Karamay District, Karamay City, Xinjiang Uygur Autonomous Region, 834000

Patentee after: Xinjiang Erik Petroleum Technology Co.,Ltd.

Address before: Room 807a, 8th floor, Science Park building, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610000

Patentee before: Jetbeton Petroleum Technology Group Co.,Ltd.