CN109647404A - yolk/shell型催化剂及其制备方法与催化产氢应用 - Google Patents

yolk/shell型催化剂及其制备方法与催化产氢应用 Download PDF

Info

Publication number
CN109647404A
CN109647404A CN201811541363.0A CN201811541363A CN109647404A CN 109647404 A CN109647404 A CN 109647404A CN 201811541363 A CN201811541363 A CN 201811541363A CN 109647404 A CN109647404 A CN 109647404A
Authority
CN
China
Prior art keywords
yolk
shell type
preparation
catalyst
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811541363.0A
Other languages
English (en)
Other versions
CN109647404B (zh
Inventor
廖锦云
卢东升
李�浩
刘全兵
李俊豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhisheng Electronic Technology Co ltd
Original Assignee
Huizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou University filed Critical Huizhou University
Priority to CN201811541363.0A priority Critical patent/CN109647404B/zh
Publication of CN109647404A publication Critical patent/CN109647404A/zh
Priority to PCT/CN2019/112244 priority patent/WO2020125183A1/zh
Application granted granted Critical
Publication of CN109647404B publication Critical patent/CN109647404B/zh
Priority to US17/349,897 priority patent/US20210308656A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及催化剂技术领域,公开了一种yolk/shell型催化剂及其制备方法与催化产氢应用。所述yolk/shell型催化剂的制备方法是以六次甲基四胺为碱源,应用水热合成法利用钴盐与六次甲基四胺成功合成了[Co(C6H12N4)2](NO3)2实心球体络合物,继而通过煅烧的方法得到yolk/shell型Co3O4微球结构,并通过物理吸附的方式在表面吸附Cu2+,再次经过煅烧形成yolk/shell型CoxCu1‑xCo2O4@CoyCu1‑yCo2O4。所述制备方法简单、原料价廉易得,制备出的yolk/shell型CoxCu1‑xCo2O4@CoyCu1‑yCo2O4催化剂纯度高,催化性能好,在催化氨硼烷水解产氢方面能够表现出优越的催化活性。

Description

yolk/shell型催化剂及其制备方法与催化产氢应用
技术领域
本发明涉及催化剂技术领域,更具体地,涉及yolk/shell型催化剂及其制备方法与催化产氢应用。
背景技术
通过近几年的探索发现,对催化剂颗粒在纳米尺度上进行结构的设计和调控,很可能会显著改变其物理性质和化学性质,以期望得到活性更高的催化剂。其中核壳型结构(记做“核 @壳”)由于具备特殊的表面性质和电子结构而引起了研究者的极大兴趣,该结构由于有了壳层的保护,核的稳定性也得到了保障,相应地提升了催化剂的使用寿命;同时,通过对内核与壳层的元素种类、物质形态等方面的调控,从而使催化剂的形式多样,在催化等领域的应用日益受到重视。
Yolk/shell型核壳结构是一种独特的核壳结构,它是核与壳之间有空腔且核能移动的一类核壳结构材料。近年来,制备Yolk/shell型核壳结构的方法报道很多,一般包括:刻蚀法、模板法、Kirkendall效应等。早在2003年,Kaori Kamata等人(Synthesis andCharacterization of Monodispersed Core-Shell Spherical Colloids with MovableCores,J.Am.Chem.Soc.,2003, 125,2384-2385)首次利用刻蚀法合成yolk/shell结构的材料,但在制备过程中刻蚀环节使得制备工艺复杂,而且用到剧毒氢氟酸,其具有较强的腐蚀性,对于实验操作有一定危险性。 Tierui Zhang等人(Formation of Hollow SilicaColloids through a Spontaneous Dissolution– Regrowth Process,Angew.Chem.2008,120,5890-5895)利用硅壳的自发生长,并用NaBH4溶液处理壳型结构而得到yolk/shell结构;CM Cui等人(Facile One-Pot Synthesis of Multi- Yolk-Shell Bi@CNanostructures by the Nanoscale Kirkendall Effect,Chem.Commun.2015,51 (45),9276-9279)利用Kirkendall效应合成了新型Bi@C多层yolk/shell纳米结构,但凭借扩散而形成的中空纳米颗粒,导致了核壳厚度不可控。
发明内容
本发明旨在克服上述现有技术的至少一种不足,提供一种yolk/shell型 CoxCu1- xCo2O4@CoyCu1-yCo2O4(0<x<1,0<y<1)催化剂的制备方法,该制备方法简单可控,原料价廉易得,通过煅烧而形成yolk/shell型金属氧化物复合物能够充分发挥金属间的协同效应。
本发明的另一目的在于提供利用所述制备方法制备得到的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂。
本发明采取的技术方案如下:
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的制备方法,包括如下步骤:
步骤S1、取3~4.5mmol Co(NO3)2·6H2O、1.5~2.25mmol C6H12N4、1~1.5mmolNa3C6H5O7·2H2O溶于30~50mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至反应釜,80~160℃反应8~24h;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40~60℃烘干;
步骤S4、将所得样品在200~400℃煅烧1~4h,得到yolk/shell型Co3O4
步骤S5、取0.05~0.1g Co3O4、0.375~1.5mmol铜盐、0.1875~0.75mmol C7H5NaO3溶于15~25mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液在80~120℃冷凝回流6~12h,收集沉淀,洗涤,真空烘箱40~60℃烘干得到样品;
步骤S7、将样品在300~500℃煅烧2~5h,得到yolk/shell型CoxCu1-xCo2O4@
CoyCu1-yCo2O4
本发明首先以六次甲基四胺为碱源,应用水热合成法利用钴盐与六次甲基四胺成功合 [Co(C6H12N4)2](NO3)2实心球体络合物,继而通过煅烧的方法得到yolk/shell型Co3O4,并通过物理吸附的方式在表面吸附Cu2+,再经煅烧形成yolk/shell型CoxCu1-xCo2O4@CoyCu1- yCo2O4。在煅烧过程中,由于热量由外向内传递,六次甲基四胺在空气氛围煅烧过程中形成的NH3、 HCHO气体从中逃逸而形成空腔,该种制备Yolk/shell型核壳结构的方法简易,而后选用的是通过冷凝回流的方式进行热吸附,集加热搅拌于一体,优于大部分文献报道的在反应釜中实现包覆,搅拌使得反应接触的更加充分,反应的更加彻底,且最终样品仍然保持了Yolk/shell 型核壳结构。此外,热吸附属于物理吸附,能保证反应后物质的纯度,这点有别于化学包覆,化学包覆需要加沉淀剂,这就导致了在形成包覆的同时,也不能排除沉淀剂与吸附粒子之间的相互作用,从而形成杂质。
在其中一个实施例中,所述步骤S4为:将所得样品以2~10℃/min的升温速率从室温升温至200~400℃煅烧,持续1~4h,得到yolk/shell型Co3O4。升温的作用是促使化学反应发生,使得[Co(C6H12N4)2](NO3)2分解生成Co3O4
在其中一个实施例中,步骤S5所述铜盐为CuCl2
在其中一个实施例中,所述步骤S6为:将步骤S5所得溶液转移至单口烧瓶中,再置于油浴锅,80~120℃冷凝回流6~12h,收集沉淀,洗涤1~5次后,真空烘箱40~60℃烘干得到样品。
在其中一个实施例中,所述步骤S7为:将样品以1~3℃/min的升温速率从室温升温至300~500℃,持续煅烧2~5h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4。持续升温能够促使化学反应发生,使得表面吸附的铜离子变成氧化铜进入Co3O4晶格。
所述的制备方法中步骤S3制备得到的[Co(C6H12N4)2](NO3)2沉淀物。
所述的制备方法制备得到的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂。
所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂在催化氨硼烷水解制产氢中的应用。本发明所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂在催化氨硼烷水解产氢方面能够表现出优越的催化活性。
与现有技术相比,本发明的有益效果为:本发明制备yolk/shell型 CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的过程中使用物理吸附方式,保证了反应产物的纯度;本发明制备所述yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的工艺简单、原料价廉易得、操作安全系数高,且核壳结构较易控制;本发明所制备出的yolk/shell型 CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂催化活性高,具有较好的有应用价值,在催化氨硼烷水解产氢方面能够表现出优越的催化性能;本发明所述的制备方法对其他金属系统的多活性金属氧化物纳米/微米催化剂也就有参考意义。
附图说明
图1为实施例1所述的[Co(C6H12N4)2](NO3)2沉淀物的综合测试图。
图2为实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的SEM图。
图3为实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的TEM图。
图4为实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的XRD图。
图5为实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的 EDS-Mapping测试图。
图6为实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的元素含量随着样品深度的变化关系图。
图7为实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的催化产氢测试曲线。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
实施例1
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4.5mmol Co(NO3)2·6H2O、2.25mmol C6H12N4、1.5mmol Na3C6H5O7·2H2O 溶于35mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,100℃反应24h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以10℃/min的升温速率从室温升温至200℃,持续煅烧3h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、1.5mmol CuCl2、0.75mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在90℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧3h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例2
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取3mmol Co(NO3)2·6H2O、1.5mmol C6H12N4、1mmol Na3C6H5O7·2H2O溶于 30mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,100℃反应24h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以10℃/min的升温速率从室温升温至200℃,持续煅烧3h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、1.5mmol CuCl2、0.75mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在90℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧3h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例3
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4mmol Co(NO3)2·6H2O、2mmol C6H12N4、1.33mmol Na3C6H5O7·2H2O溶于 50mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,100℃反应24h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以10℃/min的升温速率从室温升温至200℃,持续煅烧3h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、1.5mmol CuCl2、0.75mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在90℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧3h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例4
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4.5mmol Co(NO3)2·6H2O、2.25mmol C6H12N4、1.5mmol Na3C6H5O7·2H2O 溶于35mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,160℃反应8h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱60℃烘干;
步骤S4、将所得样品在马弗炉中以5℃/min的升温速率从室温升温至300℃,持续煅烧3h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、1.5mmol CuCl2、0.75mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在120℃冷凝回流6h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以1℃/min的升温速率从室温升温至500℃,持续煅烧2h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例5
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4.5mmol Co(NO3)2·6H2O、2.25mmol C6H12N4、1.5mmol Na3C6H5O7·2H2O 溶于35mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,120℃反应20h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧1h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、1.5mmol CuCl2、0.75mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在80℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱60℃烘干得到样品;
步骤S7、将样品在马弗炉中以3℃/min的升温速率从室温升温至300℃,持续煅烧5h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例6
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4.5mmol Co(NO3)2·6H2O、2.25mmol C6H12N4、1.5mmol Na3C6H5O7·2H2O 溶于35mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,100℃反应24h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以10℃/min的升温速率从室温升温至200℃,持续煅烧得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、0.5mmol CuCl2、0.25mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在90℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧3h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例7
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4.5mmol Co(NO3)2·6H2O、2.25mmol C6H12N4、1.5mmol Na3C6H5O7·2H2O 溶于35mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,100℃反应24h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以10℃/min的升温速率从室温升温至200℃,持续煅烧3h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.05g Co3O4、0.375mmol CuCl2、0.1875mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在90℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧3h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
实施例8
一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂,其制备过程如下:
步骤S1、取4.5mmol Co(NO3)2·6H2O、2.25mmol C6H12N4、1.5mmol Na3C6H5O7·2H2O 溶于35mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至100mL反应釜,100℃反应24h,反应结束后冷却至室温;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40℃烘干;
步骤S4、将所得样品在马弗炉中以10℃/min的升温速率从室温升温至200℃,持续煅烧3h,得到yolk/shell型Co3O4,冷却至室温;
步骤S5、取0.1g Co3O4、0.75mmol CuCl2、0.375mmol C7H5NaO3溶于20mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液转移至100mL单口烧瓶,再置于油浴锅,在90℃冷凝回流12h,收集沉淀,洗涤3次,真空烘箱40℃烘干得到样品;
步骤S7、将样品在马弗炉中以2℃/min的升温速率从室温升温至400℃,持续煅烧3h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
对实施例1至8所制备的[Co(C6H12N4)2](NO3)2沉淀物和yolk/shell型 CoxCu1- xCo2O4@CoyCu1-yCo2O4催化剂进行分析测试,包括SEM测试分析、TEM测试分析、XRD测试分析以及FTIR测试分析。
图1中a、b、c、d分别为实施例1中[Co(C6H12N4)2](NO3)2沉淀物的XRD测试图、FTIR测试图、SEM测试图和TEM测试图。从SEM测试扫描图中看出,制备出的 [Co(C6H12N4)2](NO3)2沉淀物外貌为球形结构,从TEM测试投射电镜图可以看出,制备出的 [Co(C6H12N4)2](NO3)2沉淀物呈直径约为2um实心球体。从XRD测试可以看出,制备出的 [Co(C6H12N4)2](NO3)2沉淀物在XRD谱图中并没有出峰,表明得到的[Co(C6H12N4)2](NO3)2是无定型固体。从FTIR测试可以看出,红外谱图上可以看到在1387cm-1出现了NO3 -的特征峰,在1235cm-1、1543cm-1出现了C-N伸缩振动峰,表明得到了目标产物[Co(C6H12N4)2](NO3)2沉淀物。对于[Co(C6H12N4)2](NO3)2沉淀物的具体红外分析见表1。
表1
Label Position(cm<sup>-1</sup>) Assignment species
a 672 CNC C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>
b 823 C-H C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>
c 1235 C-N C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>
d 1387 C-H、NO<sub>3</sub><sup>-</sup> C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>,Co(NO<sub>3</sub>)<sub>2</sub>
e 1543 C-N C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>
f 3395 O-H H<sub>2</sub>O
对于yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4,从SEM测试扫描图中看出,合成的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4形貌呈直径约为5um的微球,从破损结构可得出制备的球体为空心球体。如图2所示为实施例1所述的yolk/shell型 CoxCu1-xCo2O4@CoyCu1- yCo2O4催化剂的SEM图。
从TEM测试扫描图也可以看出,合成的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4形貌呈直径约为5um的微球。如图3所示为实施例1所述的yolk/shell型 CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的TEM图。
从XRD测试可以看出,合成的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4的特征峰与Co3O4和CuCo2O4标准卡片一一对应,表明得到了目标产物yolk/shell型 CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂。如图4所示为实施例1所述的yolk/shell型 CoxCu1-xCo2O4@CoyCu1-yO催化剂的XRD图。
对实施例1-8所制备的CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂单个球体进行EDS测试,从EDS测试可知,铜、钴、氧三种元素均匀地分布在球中,表明球体是CuCo2O4和Co3O4的复合物,故本发明可简单地将这种复合物表示为CoxCu1-xCo2O4,如图5为实施例1所述的 CoxCu1- xCo2O4@CoyCu1-yCo2O4催化剂单个球体的EDS-Mapping测试图。对实施例1-8所制备的CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂进行XPS测试,从XPS测试可知,随着样品深度的增加,钴的含量上升、铜的含量下降,表明yolk和shell的组成不一样,故所得产物可用 CoxCu1- xCo2O4@CoyCu1-yCo2O4表示,如图6为实施例1所述的CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的元素含量随着样品深度的变化关系图。
对实施例1至8所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂进行催化产氢性能测试分析,NH3BH3用量为3mmol,NaOH用量为20mmol,yolk/shell型 CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂用量为10mg。测得25℃下 CoxCu1-xCo2O4@CoyCu1-yCo2O4作为催化剂每分钟产氢60~80mL。如图7为实施例1所述的 yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的催化产氢测试曲线,从图7可知,实施例1所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂每分钟产氢约为75mL。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂的制备方法,其特征在于,包括如下步骤:
步骤S1、取3~4.5mmol Co(NO3)2·6H2O、1.5~2.25mmol C6H12N4、1~1.5mmolNa3C6H5O7·2H2O溶于30~50mL水中,持续搅拌直至溶解得到混合液;
步骤S2、将上述混合液移至反应釜,80~160℃反应8~24h;
步骤S3、抽滤水洗,得到中间体[Co(C6H12N4)2](NO3)2沉淀物,真空烘箱40~60℃烘干;
步骤S4、将所得样品在200~400℃煅烧1~4h,得到yolk/shell型Co3O4
步骤S5、取0.05~0.1g Co3O4、0.375~1.5mmol铜盐、0.1875~0.75mmol C7H5NaO3溶于15~25mL去离子水中,持续搅拌直至溶解;
步骤S6、将步骤S5所得溶液在80~120℃冷凝回流6~12h,收集沉淀,洗涤,真空烘箱40~60℃烘干得到样品;
步骤S7、将样品在300~500℃煅烧2~5h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1- yCo2O4
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S4为:将所得样品以2~10℃/min的升温速率从室温升温至200~400℃,持续煅烧1~4h,得到yolk/shell型Co3O4
3.根据权利要求1所述的制备方法,其特征在于,步骤S5所述铜盐为CuCl2
4.根据权利要求1所述的制备方法,其特征在于,所述步骤S6为:将步骤S5所得溶液转移至单口烧瓶中,再置于油浴锅,80~120℃冷凝回流6~12h,收集沉淀,洗涤1~5次后,真空烘箱40~60℃烘干得到样品。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤S7为:将样品以1~3℃/min的升温速率从室温升温至300~500℃,持续煅烧2~5h,得到yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4
6.权利要求1-5任一权利要求所述的制备方法中步骤S3制备得到的[Co(C6H12N4)2](NO3)2沉淀物。
7.权利要求1-5任一权利要求所述的制备方法制备得到的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂。
8.权利要求6所述的yolk/shell型CoxCu1-xCo2O4@CoyCu1-yCo2O4催化剂在催化氨硼烷水解产氢中的应用。
CN201811541363.0A 2018-12-17 2018-12-17 yolk/shell型催化剂及其制备方法与催化产氢应用 Active CN109647404B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811541363.0A CN109647404B (zh) 2018-12-17 2018-12-17 yolk/shell型催化剂及其制备方法与催化产氢应用
PCT/CN2019/112244 WO2020125183A1 (zh) 2018-12-17 2019-10-21 yolk/shell型催化剂及其制备方法与催化产氢应用
US17/349,897 US20210308656A1 (en) 2018-12-17 2021-06-16 Yolk/Shell-Type CoxCu1-xCo2O4@CoyCu1-yCo2O4 Catalyst as well as Preparation Method and Application thereof to Catalytic Hydrogen Generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811541363.0A CN109647404B (zh) 2018-12-17 2018-12-17 yolk/shell型催化剂及其制备方法与催化产氢应用

Publications (2)

Publication Number Publication Date
CN109647404A true CN109647404A (zh) 2019-04-19
CN109647404B CN109647404B (zh) 2020-10-13

Family

ID=66113743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811541363.0A Active CN109647404B (zh) 2018-12-17 2018-12-17 yolk/shell型催化剂及其制备方法与催化产氢应用

Country Status (3)

Country Link
US (1) US20210308656A1 (zh)
CN (1) CN109647404B (zh)
WO (1) WO2020125183A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125183A1 (zh) * 2018-12-17 2020-06-25 惠州学院 yolk/shell型催化剂及其制备方法与催化产氢应用
WO2021022988A1 (zh) * 2019-08-07 2021-02-11 惠州学院 一种Co 3O 4/CuMoO 4复合物及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264014A (zh) * 2020-11-11 2021-01-26 中南大学 一种耐酸碱型铜钴氧化物的合成及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863518A (zh) * 2010-07-01 2010-10-20 上海应用技术学院 一种Co3O4纳米空心球材料及其制备方法和应用
US20110034328A1 (en) * 2009-08-05 2011-02-10 Jeung-Ku Kang Double Metal-Carbon Nanotube Hybrid Catalyst and Method for Preparation Thereof
CN102909028A (zh) * 2012-10-12 2013-02-06 南京大学 一种硼氨络合物水解制氢的核壳结构三元金属催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900420A (zh) * 2015-04-03 2015-09-09 中南大学 一种中空核壳结构的NiCo2O4@MOx材料及其制备和应用方法
CN109647404B (zh) * 2018-12-17 2020-10-13 惠州学院 yolk/shell型催化剂及其制备方法与催化产氢应用
CN111545193B (zh) * 2020-05-30 2021-07-09 西安交通大学 一种用于催化氧化氮氧化物的中空核壳结构催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034328A1 (en) * 2009-08-05 2011-02-10 Jeung-Ku Kang Double Metal-Carbon Nanotube Hybrid Catalyst and Method for Preparation Thereof
CN101863518A (zh) * 2010-07-01 2010-10-20 上海应用技术学院 一种Co3O4纳米空心球材料及其制备方法和应用
CN102909028A (zh) * 2012-10-12 2013-02-06 南京大学 一种硼氨络合物水解制氢的核壳结构三元金属催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125183A1 (zh) * 2018-12-17 2020-06-25 惠州学院 yolk/shell型催化剂及其制备方法与催化产氢应用
WO2021022988A1 (zh) * 2019-08-07 2021-02-11 惠州学院 一种Co 3O 4/CuMoO 4复合物及其制备方法和应用

Also Published As

Publication number Publication date
CN109647404B (zh) 2020-10-13
WO2020125183A9 (zh) 2020-07-23
WO2020125183A1 (zh) 2020-06-25
US20210308656A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
CN107867725B (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
WO2012156080A1 (en) Method for preparing a supported ruthenium catalyst
CN109647404A (zh) yolk/shell型催化剂及其制备方法与催化产氢应用
CN107469855A (zh) 一种氮掺杂石墨烯负载金属单原子催化剂的制备方法
WO2019109830A1 (zh) 一种复合钼酸盐空心微球的制备方法及其应用
CN104368374B (zh) 一种用于双氧水合成的高分散整体催化剂及其制备方法和应用
CN106512999B (zh) 一种甲烷干气重整催化剂及其制备方法
CN110201680B (zh) 一种用于α,β-不饱和醛/酮选择性加氢的催化剂、制备方法及催化方法
CN101311119A (zh) 网状纳米孔氧化锌微米空心球及其制备方法
CN108435177A (zh) 一种多孔碳包覆纳米金属钴复合催化剂及其制备和应用
CN108380238A (zh) 一种用于硼氢化钠水解的钴酸镍催化剂及其制备方法
CN109647459B (zh) 一种组成可控的镍基磷化物的制备方法
CN108855197A (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109675543B (zh) 一种海泡石-氧化铝复合载体及使用其的抗高温烧结型甲烷化催化剂
CN109999902A (zh) 封装型铂族亚纳米金属负载多孔级钛硅分子筛催化剂及其制备和应用
CN110586117A (zh) 一种Co3O4/CuMoO4复合物及其制备方法和应用
CN106881096A (zh) 介孔LaFeO3钙钛矿型复合氧化物催化剂材料的制备方法
CN109569607A (zh) 一种新型钴基复合材料的制备方法
CN109160544A (zh) 一种稀土-过渡金属复合氧化物多孔空心球的制备方法
CN102909034B (zh) 一种担载型金镍合金纳米催化剂的制备
CN106699550B (zh) 纳米Cu-CuBTC型金属有机骨架材料的制备方法
CN105879873A (zh) 一种纳米级催化剂氧化亚钴的制备方法
CN111054419A (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN108722486A (zh) 一种窄带氮化碳修饰铁基金属有机骨架复合光催化剂的制备方法
CN110937620A (zh) 一种非化学计量比锌铝尖晶石及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230313

Address after: 314400 Room 116, 1st Floor, Investment Promotion Center, No. 28 Chaoqi Road, Jianshan New District, Haining City, Jiaxing City, Zhejiang Province

Patentee after: Zhejiang Zhisheng Electronic Technology Co.,Ltd.

Address before: 516007 Da Dao Da Avenue, Huicheng District, Huizhou City, Guangdong Province, No. 46

Patentee before: HUIZHOU University