CN110937620A - 一种非化学计量比锌铝尖晶石及其制备方法 - Google Patents

一种非化学计量比锌铝尖晶石及其制备方法 Download PDF

Info

Publication number
CN110937620A
CN110937620A CN201911315396.8A CN201911315396A CN110937620A CN 110937620 A CN110937620 A CN 110937620A CN 201911315396 A CN201911315396 A CN 201911315396A CN 110937620 A CN110937620 A CN 110937620A
Authority
CN
China
Prior art keywords
zinc
aluminum
spinel
stoichiometric
hydrotalcite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911315396.8A
Other languages
English (en)
Other versions
CN110937620B (zh
Inventor
李达林
潘金花
宛春生
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201911315396.8A priority Critical patent/CN110937620B/zh
Publication of CN110937620A publication Critical patent/CN110937620A/zh
Application granted granted Critical
Publication of CN110937620B publication Critical patent/CN110937620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种非化学计量比锌铝尖晶石及其制备方法。本方法是以锌铝类水滑石为前驱体,首先通过共沉淀法合成锌铝摩尔比为1~3的锌铝类水滑石,然后将锌铝类水滑石在800℃进行氢气热处理,从而得到单一物相的非化学计量比锌铝尖晶石。所述锌铝尖晶石的平均晶粒尺寸为10~15 nm,BET比表面积可达138 m2/g,锌铝摩尔比可达2.6。本发明的制备方法简单、易操作、成本低,尖晶石的产率、纯度和结晶度较高,且晶粒尺寸小、比表面积高,具有锌铝摩尔比可调、高温抗烧结能力好等特点。

Description

一种非化学计量比锌铝尖晶石及其制备方法
技术领域
本发明属于尖晶石制备技术领域,具体涉及一种非化学计量比锌铝尖晶石及其制备方法。
背景技术
锌铝尖晶石(ZnAl2O4)是一种AB2O4型化合物,具有莫氏硬度大(8)、熔点高(1950℃)、热稳定性好、热膨胀系数低、导热性好、强度高、抗酸碱能力强等特点,是优质的耐火材料和光学材料,在化学、生物、冶金、医学、军事、航天航空等领域有广泛的应用。同时,锌铝尖晶石也是一种很有潜力的催化材料,其结构中存在着表面能很大的棱、角等缺陷和阳离子空位,且热稳定性好,因而被广泛用作催化剂或者催化剂载体。锌铝尖晶石作为催化剂可用于酯交换反应、乙酰化反应、羰基化反应、光催化降解有机污染物,作为催化剂载体用于甲烷重整、甲醇重整、乙醇重整、甲醇合成、费托合成、碳氢化合物催化燃烧、低碳烷烃脱氢制取烯烃、Suzuki-Miyaura偶联反应等。
目前锌铝尖晶石的制备方法主要有固相反应法、共沉淀法、溶胶凝胶法、水热合成法、溶剂热合成、柠檬酸法、燃烧合成法、微乳液法等。固相反应法是制备尖晶石的传统方法,一般采用氧化物如ZnO和Al2O3为原料,经过机械球磨混合和高温焙烧合成ZnAl2O4,但是该法必须在1450~1700℃以上才能得到尖晶石,产物的纯度低、均匀性差、比表面积小。共沉淀法是在金属盐溶液中加入适量沉淀剂,制备出前驱体沉淀物,再经过滤、洗涤、干燥、焙烧等步骤得到纳米粉体。共沉淀法操作简单,对设备、技术要求不高,产物纯度高、成本低,但是沉淀物洗涤、过滤较困难。溶胶凝胶法是将无机盐或金属醇盐经过溶液、溶胶、凝胶而固化,再将凝胶在低温热处理转变成氧化物固体的方法。溶胶凝胶法可降低合成温度,以金属醇盐为原料可得到粒度均匀分布的高纯纳米粉体,但是存在原料成本较高、反应过程不易控制、工艺较复杂、合成周期较长等问题。水热合成法采用氧化物或氢氧化物为原料,水为溶剂,在高温高压条件下合成粉体。通过水热合成得到的尖晶石晶粒发育完整、粒径分布均匀,但是对反应设备要求苛刻,操作要求高,难于大规模生产。此外,上述方法仍存在若干问题。首先,上述方法只适用于原料锌铝摩尔比为1:2,以得到化学计量比的锌铝尖晶石。当锌铝摩尔比大大高于化学计量比时,会出现其它氧化物如氧化锌,难于获得纯度较高的锌铝尖晶石。其次,通过上述方法所合成的锌铝尖晶石要么晶粒尺寸大、比表面积低,要么在高温条件下易发生烧结,抗烧结能力差,这些都大大限制了锌铝尖晶石的性能和应用。
发明内容
本发明的目的在于公开一种非化学计量比锌铝尖晶石及其制备方法,其以锌铝类水滑石为前驱体,首先通过共沉淀法合成锌铝摩尔比为1~3的锌铝类水滑石,然后将锌铝类水滑石在800℃进行氢气热处理,从而得到单一物相的非化学计量比锌铝尖晶石。
为实现上述目的,本发明的技术方案是:
一种非化学计量比锌铝尖晶石的制备方法,包括以下步骤:
a、锌铝类水滑石的合成:采用共沉淀法合成锌铝类水滑石,在室温和磁力搅拌下,将硝酸锌和硝酸铝的混合溶液逐滴加入到碳酸钠溶液,同时将氢氧化钠溶液缓慢滴入碳酸钠溶液,维持溶液pH = 10±0.5;滴加结束后静置老化24 h,然后将沉淀物过滤并用去离子水洗涤至 pH = 7±0.2,于100 ℃烘干12 h,得到锌铝类水滑石;
b、氢气热处理:将步骤a所得锌铝类水滑石在H2气氛下,由室温升温至800℃进行氢气热处理,即得到单一物相的非化学计量比锌铝尖晶石。
进一步地,所述步骤a中硝酸锌与硝酸铝的摩尔比为1~3,碳酸钠的摩尔用量为硝酸铝的摩尔用量的0.5倍。
进一步地,所述步骤b中氢气热处理,锌铝类水滑石100 mg,H2流速为25 mL/min,升温速率为10℃/min,升温至800℃后保温0.5 h。
上述制备方法制得的非化学计量比锌铝尖晶石,其平均晶粒尺寸为10~15 nm,BET比表面积可达138 m2/g,锌铝摩尔比可达2.6。
本发明的制备方法简单、易操作、成本低,尖晶石的产率、纯度和结晶度较高,且晶粒尺寸小、比表面积高,具有锌铝摩尔比可调、高温抗烧结能力好等特点。
附图说明
图1是实施例1制得锌铝尖晶石的X射线粉末衍射谱图;
图2是实施例2制得锌铝尖晶石的X射线粉末衍射谱图;
图3是实施例3制得锌铝尖晶石的X射线粉末衍射谱图;
图4是实施例3制得锌铝尖晶石的N2吸脱附曲线和孔径分布图;
图5是实施例3制得锌铝尖晶石的透射电镜图;
图6是实施例3制得锌铝尖晶石的高分辨透射电镜图;
图7是实施例3制得锌铝尖晶石的X射线能谱分析结果。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
按Zn:Al摩尔比为1称取6.7423g Zn(NO3)2·6H2O和8.5019g Al(NO3)3·9H2O并溶于100mL去离子水,配制锌铝混合溶液。按Na2CO3的摩尔量为Al(NO3)3·9H2O的摩尔量的0.5倍称取1.2011g无水Na2CO3,溶于100 mL去离子水,配制Na2CO3溶液。称取20g NaOH,溶于250 mL去离子水,配制2 mol/L NaOH溶液。在室温和磁力搅拌下,将锌铝混合溶液用滴液漏斗逐滴加入到Na2CO3溶液。同时,滴加NaOH溶液到Na2CO3溶液,用蠕动泵调节NaOH溶液滴加速度,保持溶液pH = 10±0.5。滴加完毕后静置老化24 h,然后抽滤,并用去离子水洗涤至滤液pH = 7±0.2。之后将得到的固体置于100℃烘箱干燥12 h,得到锌铝类水滑石。将100 mg锌铝类水滑石置于常压固定床石英反应器,通入25 mL/min H2气流,以升温速率10℃/min从室温升至800℃,并保持0.5 h,即得到非化学计量比锌铝尖晶石。
用X射线粉末衍射对上述样品进行物相分析,如图1所示,样品的物相为尖晶石,通过谢乐公式计算出尖晶石的平均晶粒尺寸为13.0 nm。
实施例2
按Zn:Al摩尔比为2称取8.3499g Zn(NO3)2·6H2O和5.2646g Al(NO3)3·9H2O并溶于100mL去离子水,配制锌铝混合溶液。按Na2CO3的摩尔量为Al(NO3)3·9H2O的摩尔量的0.5倍称取0.7437g无水Na2CO3,溶于100 mL去离子水,配制Na2CO3溶液。称取20g NaOH,溶于250 mL去离子水,配制2 mol/L NaOH溶液。在室温和磁力搅拌下,将锌铝混合溶液用滴液漏斗逐滴加入到Na2CO3溶液。同时,滴加NaOH溶液到Na2CO3溶液,用蠕动泵调节NaOH溶液滴加速度,保持溶液pH = 10±0.5。滴加完毕后静置老化24 h,然后抽滤,并用去离子水洗涤至滤液pH = 7±0.2。之后将得到的固体置于100℃烘箱干燥12 h,得到锌铝类水滑石。将100 mg锌铝类水滑石置于常压固定床石英反应器,通入25 mL/min H2气流,以升温速率10℃/min从室温升至800℃,并保持0.5 h,即得到非化学计量比锌铝尖晶石。
用X射线粉末衍射对上述样品进行物相分析,如图2所示,样品的物相为尖晶石,通过谢乐公式计算出尖晶石的平均晶粒尺寸为14.9 nm。
实施例3
按Zn:Al摩尔比为3称取9.0711g Zn(NO3)2·6H2O和3.8128g Al(NO3)3·9H2O并溶于100mL去离子水,配制锌铝混合溶液。按Na2CO3的摩尔量为Al(NO3)3·9H2O的摩尔量的0.5倍称取0.5386g无水Na2CO3,溶于100 mL去离子水,配制Na2CO3溶液。称取20g NaOH,溶于250 mL去离子水,配制2 mol/L NaOH溶液。在室温和磁力搅拌下,将锌铝混合溶液用滴液漏斗逐滴加入到Na2CO3溶液。同时,滴加NaOH溶液到Na2CO3溶液,用蠕动泵调节NaOH溶液滴加速度,保持溶液pH = 10±0.5。滴加完毕后静置老化24 h,然后抽滤,并用去离子水洗涤至滤液pH = 7±0.2。之后将得到的固体置于100℃烘箱干燥12 h,得到锌铝类水滑石。将100 mg锌铝类水滑石置于常压固定床石英反应器,通入25 mL/min H2气流,以升温速率10℃/min从室温升至800℃,并保持0.5 h,即得到非化学计量比锌铝尖晶石。
用X射线粉末衍射对上述样品进行物相分析,如图3所示,样品的物相为尖晶石,通过谢乐公式计算出尖晶石的平均晶粒尺寸为10.7 nm。
用氮气物理吸附对上述样品进行织构分析,如图4所示,吸附等温类型为Ⅱ型,BET比表面积为138 m2/g。
用透射电镜对上述样品进行形貌观察,如图5示,尖晶石主要呈近球形和不规则纳米颗粒。
用高分辨透射电镜对上述样品进行表征,如图6示,可清楚地观察到尖晶石的晶格条纹,晶面间距d = 0.285 nm,对应于尖晶石(220)晶面。
用EDS能谱对上述样品进行组成分析,如图7所示,可清楚地看到锌、铝、氧的K α 线,根据峰面积计算出锌铝摩尔比为Zn:Al = 2.6。
表1是本发明实施例3制得的锌铝尖晶石与文献报道的通过不同方法制备得到的锌铝尖晶石的物性比较。可以看出,本发明经800℃高温热处理得到的锌铝尖晶石同时具有较小的晶粒尺寸和较高的比表面积,显示了良好的高温抗烧结能力。
表1 不同方法制备得到的锌铝尖晶石的物性比较
Figure 349941DEST_PATH_IMAGE001
对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (4)

1.一种非化学计量比锌铝尖晶石的制备方法,其特征在于:包括如下步骤:
a、锌铝类水滑石的合成:采用共沉淀法合成锌铝类水滑石,在室温和磁力搅拌下,将硝酸锌和硝酸铝的混合溶液逐滴加入到碳酸钠溶液,同时将氢氧化钠溶液缓慢滴入碳酸钠溶液,维持溶液pH = 10 ± 0.5;滴加结束后静置老化24 h,然后将沉淀物过滤并用去离子水洗涤至 pH = 7 ± 0.2,于100 ℃烘干12 h,得到锌铝类水滑石;
b、氢气热处理:将步骤a所得锌铝类水滑石在H2气氛下,由室温升温至800℃进行氢气热处理,即得到单一物相的非化学计量比锌铝尖晶石。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤a中硝酸锌与硝酸铝的摩尔比为1~3。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤b中氢气热处理,锌铝类水滑石100 mg,H2流速为25 mL/min,升温速率为10℃/min,升温至800℃后保温0.5 h。
4.一种如权利要求1-3任一项所述制备方法制得的非化学计量比锌铝尖晶石。
CN201911315396.8A 2019-12-19 2019-12-19 一种非化学计量比锌铝尖晶石及其制备方法 Active CN110937620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911315396.8A CN110937620B (zh) 2019-12-19 2019-12-19 一种非化学计量比锌铝尖晶石及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911315396.8A CN110937620B (zh) 2019-12-19 2019-12-19 一种非化学计量比锌铝尖晶石及其制备方法

Publications (2)

Publication Number Publication Date
CN110937620A true CN110937620A (zh) 2020-03-31
CN110937620B CN110937620B (zh) 2021-08-31

Family

ID=69911814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911315396.8A Active CN110937620B (zh) 2019-12-19 2019-12-19 一种非化学计量比锌铝尖晶石及其制备方法

Country Status (1)

Country Link
CN (1) CN110937620B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750950A (zh) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 一种脱除羰基金属化合物的净化剂及其制备方法和应用
CN115216277A (zh) * 2022-07-27 2022-10-21 北京世纪鑫泰科技发展有限公司 一种导热材料及其制备方法
WO2024087839A1 (zh) * 2022-10-24 2024-05-02 国家能源投资集团有限责任公司 Co2可逆吸附材料、组合物及其再生方法和co2捕集方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844492A (zh) * 2006-03-22 2006-10-11 中国科学院上海光学精密机械研究所 非化学计量比镁铝尖晶石单晶体制备方法
CN101274847A (zh) * 2008-05-21 2008-10-01 北京化工大学 一种尖晶石铁氧体磁性中空微球及其制备方法
CN102139902A (zh) * 2011-01-20 2011-08-03 桂林理工大学 低温焙烧氯离子型Mg-Al水滑石合成镁铝尖晶石的方法
CN102583467A (zh) * 2012-02-24 2012-07-18 山东大学 一种以锌铝低摩尔比类水滑石为前躯体制备锌铝尖晶石的方法
CN103449503A (zh) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 一种纳米锌铝尖晶石的制备方法
US20160207031A1 (en) * 2011-11-08 2016-07-21 Basf Se Process for producing a reforming catalyst and the reforming of methane
CN109759048A (zh) * 2019-03-14 2019-05-17 无锡市强亚耐火材料有限公司 一种镁铝尖晶石相的高性能催化剂载体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844492A (zh) * 2006-03-22 2006-10-11 中国科学院上海光学精密机械研究所 非化学计量比镁铝尖晶石单晶体制备方法
CN101274847A (zh) * 2008-05-21 2008-10-01 北京化工大学 一种尖晶石铁氧体磁性中空微球及其制备方法
CN102139902A (zh) * 2011-01-20 2011-08-03 桂林理工大学 低温焙烧氯离子型Mg-Al水滑石合成镁铝尖晶石的方法
US20160207031A1 (en) * 2011-11-08 2016-07-21 Basf Se Process for producing a reforming catalyst and the reforming of methane
CN102583467A (zh) * 2012-02-24 2012-07-18 山东大学 一种以锌铝低摩尔比类水滑石为前躯体制备锌铝尖晶石的方法
CN103449503A (zh) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 一种纳米锌铝尖晶石的制备方法
CN109759048A (zh) * 2019-03-14 2019-05-17 无锡市强亚耐火材料有限公司 一种镁铝尖晶石相的高性能催化剂载体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DALIN LI: "Synthesis of high surface area MgAl2O4spinel as catalyst support via layered double hydroxides-containing precursor", 《APPLIED CLAY SCIENCE》 *
范沐旭: "非化学计量对镁铝尖晶石的影响", 《耐火材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113750950A (zh) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 一种脱除羰基金属化合物的净化剂及其制备方法和应用
CN113750950B (zh) * 2020-06-05 2024-03-26 中国石油化工股份有限公司 一种脱除羰基金属化合物的净化剂及其制备方法和应用
CN115216277A (zh) * 2022-07-27 2022-10-21 北京世纪鑫泰科技发展有限公司 一种导热材料及其制备方法
WO2024087839A1 (zh) * 2022-10-24 2024-05-02 国家能源投资集团有限责任公司 Co2可逆吸附材料、组合物及其再生方法和co2捕集方法

Also Published As

Publication number Publication date
CN110937620B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US11345608B2 (en) Method for prepareing copper-nickel cobaltate nanowire
CN110937620B (zh) 一种非化学计量比锌铝尖晶石及其制备方法
Liu et al. A facile hydrothermal synthesis of 3D flowerlike CeO 2 via a cerium oxalate precursor
US4663137A (en) Process for producing cerium oxide particulates
KR20160133490A (ko) 고온 이산화탄소 수소화, 조합된 고온 이산화탄소 수소화 및 개질, 및/또는 개질을 위한 이트륨 함유 촉매, 및 고온 이산화탄소 수소화, 조합된 고온 이산화탄소 수소화 및 개질, 및/또는 개질을 위한 방법
WO2007029933A1 (en) Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
Ksapabutr et al. Sol–gel derived porous ceria powders using cerium glycolate complex as precursor
CN103449503B (zh) 一种纳米锌铝尖晶石的制备方法
CN106563437A (zh) 一种含Dy纳米片层结构配合物光催化剂及其制备方法
CN112517016A (zh) 一种一氧化碳催化氧化催化剂及其制备方法与应用
Park et al. Preparation of aluminum oxide particles using ammonium acetate as precipitating agent
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
CN108217702A (zh) 一种超微孔碱式碳酸铝铵的合成及其热解制备氧化铝的方法
CN112723409B (zh) 一种SrTiO3多面体的制备方法
Du et al. Synthesis of MgAl 2 O 4 spinel nanoparticles via polymer-gel and isolation-medium-assisted calcination
CN111054425A (zh) 一种水滑石/mcm-41介孔硅复合固体碱催化剂及其原位制备方法和应用
CN102838145B (zh) 一种合成高比表面镁铝尖晶石的方法
CN113860341A (zh) 一种高纯片状勃姆石及其制备方法
CN112221509B (zh) 一种高稳定性甲醇合成催化剂的制备方法
CN113292097A (zh) 一种制备高四方性钛酸钡粉体的方法
Djoudi et al. Synthesis and characterization of lanthanum monoaluminate by co-precipitation method
Chen et al. Low-temperature preparation of α-Al2O3 with the assistance of seeding a novel hydroxyl aluminum oxalate
KR100815050B1 (ko) 산화세륨 나노 분말의 제조방법
Li et al. Monodispersed Sc2O3 precursor particles via homogeneous precipitation: Synthesis, thermal decomposition, and the effects of supporting anions on powder properties
CN114988498B (zh) 一种羟基氯化镍微米花及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant