WO2024087839A1 - Co2可逆吸附材料、组合物及其再生方法和co2捕集方法 - Google Patents

Co2可逆吸附材料、组合物及其再生方法和co2捕集方法 Download PDF

Info

Publication number
WO2024087839A1
WO2024087839A1 PCT/CN2023/114680 CN2023114680W WO2024087839A1 WO 2024087839 A1 WO2024087839 A1 WO 2024087839A1 CN 2023114680 W CN2023114680 W CN 2023114680W WO 2024087839 A1 WO2024087839 A1 WO 2024087839A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
aluminum spinel
spinel particles
adsorption material
capture
Prior art date
Application number
PCT/CN2023/114680
Other languages
English (en)
French (fr)
Inventor
徐晓颖
蒋复国
王保登
邱正璞
冯波
邢爱华
贾晶慧
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Publication of WO2024087839A1 publication Critical patent/WO2024087839A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to the field of inorganic materials, and in particular to the use of zinc aluminum spinel particles as a CO2 reversible adsorption material, and also to a CO2 reversible adsorption material and a CO2 reversible adsorption composition, a CO2 capture method, and a regeneration method of the CO2 reversible adsorption material and the CO2 reversible adsorption composition.
  • CO2 is one of the main gases that cause the greenhouse effect, among which CO2 produced by the combustion of fossil fuels is its main source.
  • CO2 is a major greenhouse gas, but it is also a precious carbon resource. Therefore, the capture of CO2 is of great significance for environmental protection and the comprehensive utilization of carbon resources.
  • adsorption is a relatively mature and widely used method.
  • the key to CO2 capture is to seek adsorbents with high adsorption capacity, high selectivity, good thermal stability and good cycle performance.
  • some porous materials such as activated carbon, zeolite molecular sieves, metal organic framework materials, porous organic polymers, melamine-based microporous polymers and other solid adsorption materials have been widely used.
  • Chinese patent CN 114989442A discloses a method for preparing a novel ultra-microporous porous coordination polymer for CO 2 adsorption and capture.
  • the chemical formula of the prepared novel ultra-microporous porous coordination polymer is [Co(htpa)(dipyg)]n, wherein Co represents metal center cobalt, htpa represents organic ligand 2-hydroxyterephthalic acid, and dipyg represents organic ligand meso- ⁇ , ⁇ -di(4-pyridine)ethylene glycol.
  • the ultra-microporous porous coordination polymer can efficiently adsorb and capture CO 2 from a variety of mixed gases containing CO 2 , CH 4 , C 2 H 2 , and N 2 , has high adsorption capacity, excellent desorption performance, and can be repeatedly recycled.
  • the preparation process of the novel ultra-microporous porous coordination polymer obtained in this patent is complicated, costly, and has low industrial scale-up potential.
  • the preparation process of the organic ligand will cause pollution to the environment, and no attention is paid to the improvement of performance such as cheapness, availability, and environmental protection in the preparation process of the adsorption material.
  • Chinese patent CN 114307992A discloses a spherical solid amine CO 2 adsorption material, which is based on polyethyleneimine and cross-linked with a cross-linking agent.
  • the matrix includes a thermosensitive group introduced by Michael addition.
  • the spherical solid amine CO 2 adsorption material has a high swelling rate and can reduce the mass transfer resistance of CO 2 in the presence of water, thereby improving the wet state.
  • the CO 2 adsorption capacity can be increased, and it can be desorbed quickly at a lower temperature, reducing the regeneration energy consumption of the adsorbent material.
  • the patent requires the introduction of organic ligands in the process of preparing the new ultra-microporous porous coordination polymer, the preparation process is complicated, and the thermal stability is not ideal.
  • an object of the present invention is to provide a use of zinc aluminum spinel particles as a CO2 reversible adsorption material, which is simple to prepare, has a fast adsorption speed and is easy to regenerate.
  • Another object of the present invention is to provide a CO2 reversible adsorption material and a CO2 reversible adsorption composition.
  • Yet another object of the present invention is to provide a CO 2 capture method.
  • Another object of the present invention is to provide a regeneration method for the CO2 reversible adsorption material and the CO2 reversible adsorption composition.
  • the present invention provides a use of zinc aluminum spinel particles as a CO2 reversible adsorption material, wherein the zinc aluminum spinel particles have a specific surface area of 190 to 380 m2 /g (for example, 195 m2 /g, 200 m2 /g, 220 m2 /g, 250 m2 /g, 300 m2 /g, 320 m2 /g, 350 m2 /g), and include, by volume percentage, 5 to 13% (for example, 6%, 8%, 10%, 12%) of micropores and 87 to 95% (for example, 88%, 90%, 92%, 94%) of mesopores.
  • the zinc aluminum spinel particles (ZnAl 2 O 4 ) of the present invention have a porous structure of "micropores (i.e., pore diameter ⁇ 2 nm)" + “mesopores (i.e., pore diameter of 2 to 50 nm)” and a high specific surface area, so they can directly react with H 2 O and CO 2 in the air to form a specific basic carbonate structure with a certain degree of crystallinity, thereby achieving the function of adsorbing and capturing CO 2.
  • Other zinc aluminum spinel particles with different microstructures (such as the product prepared in Comparative Example 1) cannot form the basic carbonate structure under the same conditions, and therefore do not have the corresponding CO 2 adsorption function.
  • the zinc-aluminum spinel particles of the present invention are easy to regenerate, and can basically restore to the original spinel structure after regeneration, so that CO2 adsorption and desorption can be repeated and performed multiple times, reducing the capture cost of CO2 and having strong practicality. Therefore, the zinc-aluminum spinel particles of the present invention can be used for direct air capture (DAC) of CO2 . It is a CO2 reversible adsorption material with great application potential.
  • the present invention also provides a CO2 reversible adsorption material, which is a zinc aluminum spinel particle, wherein the zinc aluminum spinel particle has a specific surface area of 190 to 380 m2 /g (for example, 195 m2 /g, 200 m2 /g, 220 m2 /g, 250 m2 /g, 300 m2 / g, 320 m2 /g, 350 m2 /g), and includes 5 to 13% (for example, 6%, 8%, 10%, 12%) of micropores and 87 to 95% (for example, 88%, 90%, 92%, 94%) of mesopores by volume percentage.
  • a CO2 reversible adsorption material which is a zinc aluminum spinel particle, wherein the zinc aluminum spinel particle has a specific surface area of 190 to 380 m2 /g (for example, 195 m2 /g, 200 m2 /g, 220 m2 /g
  • the present invention also provides a CO2 reversible adsorption composition, which comprises, by weight percentage, 10 to 90% (for example, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 80%) of zinc aluminum spinel particles (i.e., the CO2 reversible adsorption material described in any one of the above technical solutions) and the remainder of water, wherein the zinc aluminum spinel particles have a specific surface area of 190 to 380 m2 /g and, by volume percentage, comprise 5 to 13% of micropores and 87 to 95% of mesopores.
  • a CO2 reversible adsorption composition which comprises, by weight percentage, 10 to 90% (for example, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 80%) of zinc aluminum spinel particles (i.e., the CO2 reversible adsorption material described in any one of the above technical solutions) and the remainder of water, wherein the zinc aluminum spinel particles have a specific surface area of 190 to 380 m2
  • the inventors of the present invention also found that the zinc-aluminum spinel particles described in the present invention can significantly accelerate the adsorption and capture of CO2 in the presence of water. Under the same CO2 adsorption amount, the adsorption time can be shortened from several weeks to one day or several hours, or even to more than ten minutes.
  • the amount of water can also adjust the adsorption rate, and can be about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90% or any combination of weight percentage intervals by weight percentage.
  • the CO2 reversible adsorption composition can include 40-60% of zinc-aluminum spinel particles and the balance of water by weight percentage.
  • the zinc-aluminum spinel particles and water can be mixed in any common manner to obtain the composition.
  • the present invention also provides a CO 2 capture method, which uses the CO 2 reversible adsorption material described in any one of the above technical solutions or the CO 2 reversible adsorption composition described in any one of the above technical solutions to capture CO 2 in the air.
  • the relative humidity of the air may be 20 to 100% (e.g., 25%, 35%, 40%, 55%, 60%, 65%, 70%, 95%). In some preferred embodiments, the relative humidity of the air may be 30 to 90%. In some more preferred embodiments, the relative humidity of the air may be 50 to 80%.
  • the ambient temperature when capturing CO2 can be 15-80°C (for example, 35°C, 45°C, 60°C). In some preferred embodiments, the ambient temperature when capturing CO2 can be 20-50°C, for example, 30-40°C.
  • the CO 2 capture method provided by the present invention is preferably used for capturing CO 2 in air at room temperature, wherein the room temperature refers to a temperature of 20 to 25° C. and a relative humidity of 50 to 80%.
  • the present invention also provides a method for regenerating the CO2 reversible adsorption material or the CO2 reversible adsorption composition described in any one of the above technical solutions, which comprises heating the zinc-aluminum spinel particles after capturing CO2 at 70 to 400°C.
  • the higher the heating temperature, the faster the CO2 desorption rate, so the heating temperature can be selected according to the amount of material to be regenerated and based on energy consumption considerations, for example, it can be about 70°C, about 100°C, about 150°C, about 200°C, about 250°C, about 300°C, about 350°C, about 400°C or any combination of temperature intervals. In some preferred embodiments, the heating temperature can be 100-300°C.
  • the heating time can be determined according to different heating temperatures and different CO2 adsorption amounts.
  • heating can make the basic carbonate structure in the zinc-aluminum spinel particles disappear, and the regeneration process is completed after the original spinel structure is basically restored.
  • the performance of the zinc-aluminum spinel particles described in the present invention remains basically unchanged after regeneration, so they can be recycled for multiple times, for example, they can withstand at least 100 "adsorption-desorption" cycles.
  • a gas recovery device can also be provided to collect and seal the CO2 gas released during the regeneration process, wherein the gas recovery device can be a common device in the art.
  • a condensation device can also be provided to remove the moisture contained in the released gas by condensation.
  • the specific surface area of the zinc aluminum spinel particles can be about 190m2 /g, about 200m2 /g, about 230m2 /g, about 250m2 /g, about 280m2 /g, about 300m2 /g, about 320m2 /g, about 350m2 /g, about 380m2 /g or any combination of specific surface area intervals.
  • the specific surface area of the zinc aluminum spinel particles can be 230-350m2 /g. In some more preferred embodiments, the specific surface area of the zinc aluminum spinel particles can be 230-280m2 /g.
  • the zinc-aluminum spinel particles may further include, by volume percentage: 5-13% micropores, 75-85% 2-10 nm mesopores and 7-12% mesopores greater than or equal to 10 nm.
  • the average particle size of the zinc aluminum spinel particles can be 2 to 10 nm, for example, about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 6 nm, about 7 nm, about 8 nm, about 9 nm, about 10 nm, or any combination of particle size intervals.
  • the zinc aluminum spinel particles have an average particle size of 3 to 6 nm.
  • the pore volume of the zinc aluminum spinel particles can be 0.3-1.2 cm 3 /g, for example, about 0.3 cm 3 /g, about 0.5 cm 3 /g, about 0.8 cm 3 /g, about 1.0 cm 3 /g, about 1.2 cm 3 /g or any combination of volume intervals.
  • the zinc-aluminum spinel particles contain almost no dispersed zinc oxide (ZnO) nanoparticles.
  • the method for preparing the zinc-aluminum spinel particles comprises the following steps:
  • the above-mentioned preparation method adopts a co-precipitation process. Under the joint action of a series of process conditions such as temperature, solution flow rate, pH value, etc., the raw materials are subjected to a co-precipitation process to form a precursor, which is then further stabilized by aging to form the microstructure morphology of the precursor. Subsequently, it is dried and low-temperature calcined to form the spinel material with a porous structure and a large specific surface area as described in the present invention.
  • the molar ratio of Zn 2+ to Al 3+ can be 0.5 to 1.5:2, for example, about 0.5:2, about 0.8:2, about 1:2, about 1.2:2, about 1.5:2 or any combination of molar ratio intervals.
  • the metal ion source used to form the salt solution can be a respective soluble salt or a hydrate thereof, for example, a nitrate, a carbonate, a chloride, a sulfate or a hydrate thereof.
  • the concentration of the salt solution containing Zn 2+ and Al 3+ can be 0.1 to 0.5 mol/L, for example, 0.15 mol/L, 0.2 mol/L, 0.25 mol/L, 0.3 mol/L, 0.4 mol/L.
  • the precipitant in the precipitant solution may be sodium carbonate, carbon
  • One or more of sodium bicarbonate, potassium carbonate, potassium bicarbonate, ammonium carbonate, and ammonium bicarbonate may have a concentration of 0.1 to 0.5 g/mL (eg, 0.2 g/mL, 0.3 g/mL, 0.4 g/mL).
  • the precipitant may be sodium carbonate.
  • the alkali solution can be an aqueous solution formed by one or more of sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, ammonium carbonate, and ammonium bicarbonate, and its concentration can be 0.05-2 mol/L (for example, 0.1 mol/L, 0.2 mol/L, 0.5 mol/L, 1 mol/L, 1.5 mol/L).
  • the type of the alkali solution can be the same as that of the precipitant solution, or it can be different.
  • the added volume of the alkali solution is 40-60% (volume ratio) of V, for example, it can be about 40%, about 45%, about 50%, about 55%, about 60% or any combination of volume ratio intervals. In some preferred embodiments, the added volume of the alkali solution is 50% of V.
  • the added volume of the alkali solution is 40-60% (volume ratio) of V"
  • those skilled in the art can understand this statement as that the added volume of the alkali solution is 40-60% of the volume V of either the salt solution or the precipitant solution.
  • the coprecipitation temperature may be 60-80°C, for example, about 60°C, about 65°C, about 70°C, about 75°C, about 80°C or any combination of temperature ranges.
  • the dripping rate of the salt solution and the precipitant solution is 0.75-1.5% (for example, 0.8%, 1%, 1.2%) of the volume V dripped per minute. Too fast or too slow dripping rate will affect the microscopic morphology of the target product, and the expected product cannot be obtained. Among them, regarding the dripping rate of the salt solution and the precipitant solution being 0.75-1.5% of the volume V dripped per minute, those skilled in the art can understand this statement as that the dripping rate of the salt solution and the precipitant solution is 0.75-1.5% of their respective volumes V dripped per minute.
  • the coprecipitation system due to the pre-added alkali solution, the coprecipitation system as a whole presents a strong alkalinity.
  • the pH value of the coprecipitation system gradually decreases.
  • the pH value is controlled to decrease within a certain range to avoid a large change that affects the microstructure of the target product.
  • the pH value is controlled to be 7 to 9 when the first 20 to 50% (for example, 25%, 30%, 40% or any combination of intervals) of V is dripped, and the pH value is controlled to decrease by 2 to 20% when the remaining solution is dripped.
  • the range may be about 2%, about 5%, about 10%, about 12%, about 15%, about 18%, about 20%, or any combination thereof.
  • the aging can be at the same temperature as the coprecipitation, or slightly higher than the coprecipitation temperature, and those skilled in the art can adjust accordingly.
  • the aging and the coprecipitation can be at the same temperature, and the aging time can be 0.5 to 24 hours (e.g., 1.0 hours, 2.0 hours, 4.0 hours, 10 hours, 20 hours), for example, the aging time can be 0.5 to 5 hours.
  • the obtained solid is separated and washed, for example, with water.
  • the degree of washing is preferably such that the conductivity of the washing liquid is less than 50 ⁇ S/cm.
  • the purpose of drying is to remove the free water remaining after washing, and the drying temperature can be 80-120° C. and the drying time can be 10-16 hours.
  • the degree of drying is such that the moisture content of the material is less than 3wt%, and more preferably, the moisture content of the material is dried to be less than 1wt%.
  • the calcination can be low-temperature calcination, which is beneficial for controlling the grain size.
  • the calcination temperature can be 300-350°C (eg, 310°C, 320°C, 340°C), and the calcination time can be 3-6h (eg, 4h, 5h).
  • the desired material can be obtained through a separation step, for example, a solid can be separated after aging.
  • the separation method can be a common method in the art, including but not limited to natural sedimentation, (normal pressure or vacuum) filtration, centrifugation, etc.
  • the present invention has discovered a new use for zinc-aluminum spinel particles with a specific microstructure.
  • the zinc-aluminum spinel particles have a porous structure of "micropores” + “mesopores” and a high specific surface area, and therefore have the function of adsorbing and capturing CO2 . They can be used as a CO2 adsorption and capture material with great application potential.
  • the zinc-aluminum spinel particles with a specific microstructure described in the present invention are easy to regenerate after adsorbing and capturing CO2 .
  • CO2 desorption can be achieved by heating only, with low energy consumption. After regeneration, they still have excellent adsorption effects, so the "adsorption-desorption" process can be performed repeatedly and multiple times, thereby significantly reducing the cost of CO2 capture.
  • the zinc-aluminum spinel particle preparation process of the present invention is simple, does not require the use of a variety of additives (such as pore-enlarging agents, sodium aluminate, etc.), has mild conditions, strong operability, good repeatability, and is suitable for large-scale industrial production.
  • additives such as pore-enlarging agents, sodium aluminate, etc.
  • the CO2 capture method of the present invention can realize direct air capture of CO2 . It can be adapted to a variety of application scenarios and has good universality. The CO2 gas after desorption can also be easily collected and stored. Therefore, it is expected to provide support for achieving the dual carbon goals. It not only has very important economic significance, but also has very important social significance.
  • Figure 1 is a TEM image of the zinc aluminum spinel particles prepared in Example 1, wherein Figure 1A is a TEM image of the zinc aluminum spinel particles (scale: 5 nm), Figure 1B is a local enlarged image of Figure 1A, and Figure 1C is a schematic diagram of the standard structure of zinc aluminum spinel.
  • FIG. 2 is a TEM image of the zinc-aluminum spinel particles prepared in Example 1 (scale bar: 20 nm).
  • FIG3 is a graph showing the nitrogen physical adsorption-desorption curves of the zinc-aluminum spinel particles prepared in Examples 1-4.
  • FIG. 4 is a TEM image of the zinc-aluminum spinel particles prepared in Comparative Example 1.
  • FIG5 is an XRD graph of the zinc-aluminum spinel particles prepared in Example 1 at different adsorption times.
  • FIG6 is an XRD diagram of the zinc-aluminum spinel particles prepared in Example 1 at different crystallinity levels.
  • the raw materials or reagents used in the examples and comparative examples of the present invention are commercially available products.
  • the specific surface area and pore structure of the obtained product can be obtained by the test results of the nitrogen physical adsorption instrument, and the pore volume of the product can be calculated.
  • the test results are shown in Figure 3 (in Figure 3, the higher the closed loop area formed by the adsorption-desorption curve, the larger the specific surface area of the product, and the hysteresis loop appearing between the relative pressure of 0.6-1 indicates that there are mesopores of 2-50nm in the structure of the obtained product).
  • the calculation method of the crystallinity used in the test examples of the present invention is as follows:
  • the diffraction peak areas of the crystalline phases of basic carbonate (characteristic diffraction peaks are near 10°, 24°, 35°, 38°, and 47°) and zinc-aluminum spinel (characteristic diffraction peaks are broad peaks between 30° and 40°) were calculated using Bruker's XRD data processing software EVA, which were recorded as S c and S mc , respectively.
  • the "background" function in EVA was used to describe the peak area of the amorphous part of the zinc-aluminum spinel phase, which was recorded as S mm .
  • air at room temperature refers to air temperature of 21-25° C. and relative humidity of 50-70%.
  • Filter wash the filter cake repeatedly until the conductivity of the washing liquid is less than 50 ⁇ S/cm, and dry at 110°C for 15h to remove the free water in the filter cake to form a precursor with a water content of less than 1%.
  • the precursor is transferred to a muffle furnace for calcination, and the calcination temperature is controlled to be 350°C. After calcination for 5h, it is taken out to obtain zinc-aluminum spinel particles, whose TEM images are shown in Figures 1A and 2.
  • the obtained particles have a zinc aluminum spinel (ZnAl 2 O 4 ) structure and do not contain dispersed ZnO particles.
  • the average size of spinel particles is 3.8nm.
  • micropores smaller than 2nm account for 9%
  • pores between 2-10nm account for 84%
  • pores between 10-50nm account for 7%
  • the specific surface area is 258.7m2 /g
  • the pore volume is 0.38cm3 /g.
  • Filter wash the filter cake repeatedly until the conductivity of the washing liquid is less than 50 ⁇ S/cm, dry at 110°C for 10 hours to remove the free water in the filter cake, and form a precursor with a water content of less than 1%. Transfer the precursor to a muffle furnace for calcination, control the calcination temperature to 300°C, and take it out after calcination for 3 hours to obtain zinc-aluminum spinel particles.
  • the average size of spinel particles is 4.8nm.
  • micropores smaller than 2nm account for 9%
  • pores between 2-10nm account for 82%
  • pores between 10-50nm account for 9%
  • the specific surface area is 264.1m2 /g
  • the pore volume is 0.48cm3 /g.
  • the filter cake was washed until the conductivity of the washing liquid was less than 50 ⁇ S/cm, and dried at 110°C for 16 hours to remove the free water in the filter cake, forming a precursor with a water content of less than 1%.
  • the precursor was transferred to a muffle furnace for calcination, and the calcination temperature was controlled to be 320°C. After calcination for 5 hours, it was taken out to obtain zinc-aluminum spinel particles.
  • the average size of spinel particles is 5.1 nm.
  • micropores smaller than 2 nm account for 6%
  • pores between 2 and 10 nm account for 82%
  • pores between 10 and 50 nm account for 12%
  • the specific surface area is 233.5 m 2 /g
  • the pore volume is 0.35 cm 3 /g.
  • the average size of spinel particles is 3.4 nm.
  • micropores smaller than 2 nm account for 12%
  • pores between 2 and 10 nm account for 76%
  • pores between 10 and 50 nm account for 12%
  • the specific surface area is 348.2 m 2 /g
  • the pore volume is 1.01 cm 3 /g.
  • the mixture is filtered and the filter cake is washed and dried to a moisture content of less than 1%.
  • the mixture is transferred to a muffle furnace for calcination at a temperature of 700°C and taken out after calcination for 5 hours to obtain zinc-aluminum spinel particles, the TEM image of which is shown in FIG4 .
  • the average size of the zinc-aluminum spinel particles is 36 nm, which is a single-pore domain material with a diameter of more than 50 nm, a specific surface area of 60 m 2 /g, and a pore volume of 0.14 cm 3 /g.
  • ZnO and Al 2 O 3 are physically mixed according to the atomic molar ratio of Zn to Al 2 O 4 (ie, the molar ratio of ZnO to Al 2 O 3 is 1:1) to obtain a mixture.
  • Basic zinc carbonate and Al 2 O 3 are physically mixed according to the atomic molar ratio of Zn to Al 2 O 4 (ie, the molar ratio of Zn 2 (OH) 2 CO 3 to Al 2 O 3 is 1:2) to obtain a mixture.
  • the test results in Table 1 show that the zinc-aluminum spinel products prepared in Examples 1-4 can directly react with moisture and CO2 in the air. After 2 weeks, the XRD test results show that at 10°, New diffraction peaks appeared near 24°, 35°, 38°, and 47°. According to the comparison with the standard spectrum (PDF48-1023), the material contained basic carbonate structure containing zinc and aluminum (expressed as (Al 0.31 Zn 0.7 )(OH) 2 (CO 3 ) 0.167 ⁇ H 2 O). When the material was placed in the air and reacted with moisture and CO 2 , the crystallinity increased further with the increase of basic carbonate structure. After 4 weeks, the crystallinity reached the range of 25-32%.
  • Example 1 The product of Example 1 was placed for 8 weeks, and XRD tests were performed on the original product and the product after each week, as shown in Figure 5 (mainly showing the characteristic diffraction peaks corresponding to 15° or more). It can be seen that the characteristic diffraction peaks near 10°, 24°, 35°, 38°, and 47° did not appear in the spectrum of the original product. After being placed in the air, the characteristic diffraction peaks of the basic carbonate began to appear, and the crystallinity gradually increased with the extension of the placement time.
  • Comparative Example 1 shows that even though the material is the same zinc-aluminum spinel, due to the differences in microstructure, especially the differences in pore structure and specific surface area, the material of Comparative Example 1 cannot achieve the function of adsorbing CO2 in the air.
  • Comparative Example 2 show that although the obtained mixture has the same elemental composition as the spinel product of the embodiment, it includes two different phases, which are different from the spinel phase structure, and therefore cannot achieve the function of adsorbing CO2 in the air.
  • test results show that the samples of Examples 1-4 all formed basic carbonate structures containing zinc and aluminum (the crystallinity was approximately 52%, 57%, 48% and 41%, respectively, and the CO 2 adsorption amount was approximately 3.2-3.7% by weight). This shows that the zinc-aluminum spinel product of the example accelerated the CO 2 adsorption rate after compounding with water.
  • test results show that no corresponding basic carbonate structure was found in the products prepared in Comparative Examples 1-3, and they were unable to achieve the function of adsorbing CO2 in the air after compounding with water.
  • Example 2 After adsorbing CO2 in Test Example 2 was placed in an oven at 110°C and dried for 4 hours. The obtained sample gained 8.3% weight relative to the original weight (the crystallinity was about 57% at this time). The sample was continued to be placed in an oven at 150°C and dried for 10 hours. The sample further lost weight until it returned to the original spinel weight, thereby achieving the regeneration of the zinc-aluminum spinel product.
  • Test Example 2 Repeat the operation of Test Example 2, add water to the regenerated spinel product again at a weight ratio of 1:1.2, stir evenly and place in air at room temperature, react the sample with CO2 in the air for 10 hours, and then perform XRD test.
  • the results show that a basic carbonate structure is found, and the crystallinity is about 48%.
  • the sample After the sample is placed in an oven at 110°C for 4 hours to remove free water from the sample, the sample gains 8.2% relative to the original weight, and continues to be placed in an oven at 150°C for 10 hours to restore to the original spinel weight.
  • XRD test shows that the original spinel structure has been restored again.
  • the spinel structure is basically unchanged. After the tenth cycle, the structure begins to have a very small loss, not exceeding 1%, from which it can be inferred that the zinc-aluminum spinel of the present invention can last at least 100 cycles of "adding water to adsorb CO 2 - heating to release CO 2 ".

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种锌铝尖晶石颗粒作为CO 2可逆吸附材料的用途,一种CO 2可逆吸附材料以及一种CO 2可逆吸附组合物,一种CO 2捕集方法以及CO 2可逆吸附材料或CO 2可逆吸附组合物的再生方法。特定微观结构的锌铝尖晶石颗粒具有"微孔"+"介孔"的多孔结构以及较高的比表面积,因此具有吸附、捕集CO 2的作用,而且便于再生,可以作为一种非常具有应用潜力的CO 2吸附、捕集材料。该CO 2捕集方法可以实现CO 2直接空气捕集,能够适应于多种应用场景,普适性好。

Description

CO2可逆吸附材料、组合物及其再生方法和CO2捕集方法 技术领域
本发明涉及无机材料领域,具体涉及一种锌铝尖晶石颗粒作为CO2可逆吸附材料的用途,还涉及一种CO2可逆吸附材料及CO2可逆吸附组合物、一种CO2捕集方法以及所述CO2可逆吸附材料及CO2可逆吸附组合物的再生方法。
背景技术
温室气体的大量排放导致了全球气候变暖问题。CO2是引起温室效应的主要气体之一,其中,石化燃料燃烧产生的CO2是其主要来源。CO2是主要的温室气体,但同时也是一种珍贵的碳资源,因此,CO2的捕集对于环境保护和碳资源综合利用都具有重要的意义。在现有的众多CO2捕集方法中,吸附法是技术相对成熟而应用最多的一种方法。CO2捕集的关键是寻求高吸附量、高选择性、热稳定性好且循环性能良好的吸附剂。近些年来,一些多孔材料如活性炭、沸石分子筛、金属有机骨架材料、多孔有机聚合物、密胺基微孔聚合物等固体吸附材料得到了广泛的应用。
例如,中国专利CN 114989442A公开了一种用于CO2吸附捕获的新型超微孔多孔配位聚合物的制备方法,制备得到的新型超微孔多孔配位聚合物的化学式为[Co(htpa)(dipyg)]n,其中,Co表示金属中心钴,htpa表示有机配体2-羟基对苯二甲酸,dipyg表示有机配体内消旋-α,β-二(4-吡啶)乙二醇,该超微孔多孔配位聚合物可以从含有CO2与CH4、C2H2、N2的多种混合气中高效吸附捕获CO2,吸附容量高,解吸性能优良,可反复再生利用。但是,该专利获得新型超微孔多孔配位聚合物的制备工艺复杂,成本高、工业放大潜力低,有机配体制备过程会对环境造成污染,并未关注吸附材料制备过程中的价廉易得及环保等性能改善。
中国专利CN 114307992A公开了一种球状固态胺CO2吸附材料,其是以聚乙烯亚胺为基体,再与交联剂交联固化而成,所述基体包括经Michael加成引入的温敏性基团。该球状固态胺CO2吸附材料有较高溶胀率,能够在有水的存在下减少CO2的传质阻力,进而提高湿态 CO2吸附能力,且能够在较低温度下快速脱附,降低了吸附材料的再生能耗。但是,该专利制备新型超微孔多孔配位聚合物的过程中需引入有机配体,制备工艺复杂,热稳定性能不理想。
目前,虽然CO2吸附材料得到了快速发展,但鉴于减少CO2气体排放的迫切性,仍需要寻找一种制备简便、成本低廉、容易再生且应用场景广泛的CO2吸附材料。
发明内容
为解决现有技术存在的问题,本发明的一个目的是提供一种锌铝尖晶石颗粒作为CO2可逆吸附材料的用途,该吸附材料制备简便、吸附速度快且易于再生。
本发明的另一个目的是提供一种CO2可逆吸附材料及CO2可逆吸附组合物。
本发明的又一个目的是提供一种CO2捕集方法。
本发明的还一个目的是提供所述CO2可逆吸附材料及所述CO2可逆吸附组合物的再生方法。
本发明提供了一种锌铝尖晶石颗粒作为CO2可逆吸附材料的用途,其中,所述锌铝尖晶石颗粒的比表面积为190~380m2/g(例如,195m2/g、200m2/g、220m2/g、250m2/g、300m2/g、320m2/g、350m2/g),按体积百分比计,包括5~13%(例如,6%、8%、10%、12%)的微孔以及87~95%(例如,88%、90%、92%、94%)的介孔。
本发明的发明人发现,本发明所述的锌铝尖晶石颗粒(ZnAl2O4)具有“微孔(即孔径<2nm)”+“介孔(即孔径为2~50nm)”的多孔结构,并具有较高的比表面积,因此能够直接与空气中的H2O和CO2作用而形成具有一定结晶度的特定的碱式碳酸盐结构,由此达到吸附、捕集CO2的作用。其他不同微观结构的锌铝尖晶石颗粒(如对比例1制备的产品)在相同的条件下则无法形成该碱式碳酸盐结构,因而不具有相应的CO2吸附功能。
此外,本发明所述的锌铝尖晶石颗粒便于再生,再生处理后能够基本恢复至原有的尖晶石结构,因而能够反复、多次进行CO2的吸附和脱附,降低了CO2的捕集成本,实用性强。因此,本发明所述的锌铝尖晶石颗粒能够用于CO2直接空气捕集(DAC,direct air capture), 是一种非常具有应用潜力的CO2可逆吸附材料。
本发明还提供了一种CO2可逆吸附材料,其为一种锌铝尖晶石颗粒,其中,所述锌铝尖晶石颗粒的比表面积为190~380m2/g(例如,195m2/g、200m2/g、220m2/g、250m2/g、300m2/g、320m2/g、350m2/g),按体积百分比计,包括5~13%(例如,6%、8%、10%、12%)的微孔以及87~95%(例如,88%、90%、、92%、94%)的介孔。
本发明还提供了一种CO2可逆吸附组合物,按重量百分比计,其包括10~90%(例如,15%、20%、25%、30%、40%、50%、60%、80%)的锌铝尖晶石颗粒(即上述技术方案任一项所述的CO2可逆吸附材料)以及余量的水,其中,所述锌铝尖晶石颗粒的比表面积为190~380m2/g,按体积百分比计,包括5~13%的微孔以及87~95%的介孔。
本发明的发明人还发现,本发明所述的锌铝尖晶石颗粒在水的存在下能够明显加速CO2的吸附和捕集,相同的CO2吸附量下,能够将吸附时间由几周缩短至一天或几个小时、甚至缩短至十几分钟。
本发明提供的CO2可逆吸附组合物中,水的用量还可以调节吸附速度,按重量百分比计,可以为约10%、约20%、约30%、约40%、约50%、约60%、约70%、约80%、约90%或可以为任意组合的重量百分比区间。在一些优选的实施方式中,按重量百分比计,所述CO2可逆吸附组合物可以包括40~60%的锌铝尖晶石颗粒以及余量的水。
本发明提供的CO2可逆吸附组合物中,锌铝尖晶石颗粒和水可以以常见的任意方式进行混匀,由此得到所述组合物。
本发明还提供了一种CO2捕集方法,所述捕集方法使用上述技术方案任一项所述的CO2可逆吸附材料或上述技术方案任一项所述的CO2可逆吸附组合物捕集空气中的CO2
本发明提供的CO2捕集方法中,所述空气的相对湿度可以为20~100%(例如,25%、35%、40%、55%、60%、65%、70%、95%)。在一些优选的实施方式中,所述空气的相对湿度可以为30~90%。在一些更优选的实施方式中,所述空气的相对湿度可以为50~80%。
本发明提供的CO2捕集方法中,捕集CO2时的环境温度可以为15~80℃(例如,35℃、45℃、60℃)。在一些优选的实施方式中,捕集CO2时的环境温度可以为20~50℃,例如可以为30~40℃。
本发明提供的CO2捕集方法优选用于室温下空气中的CO2捕集,所述室温是指温度为20~25℃,空气的相对湿度为50~80%。
本发明还提供了上述技术方案任一项所述的CO2可逆吸附材料或上述技术方案任一项所述的CO2可逆吸附组合物的再生方法,其为将捕集CO2后的所述锌铝尖晶石颗粒置于70~400℃下加热。
本发明提供的再生方法中,加热的温度越高,CO2脱吸附的速度越快,因此可以根据所要再生的材料的量并基于能耗的考虑来选择加热温度,例如可以为约70℃、约100℃、约150℃、约200℃、约250℃、约300℃、约350℃、约400℃或可以为任意组合的温度区间。在一些优选的实施方式中,加热温度可以为100~300℃。
本发明提供的再生方法中,加热的时间可以根据不同的加热温度、不同的CO2吸附量来确定。通常,加热能够使锌铝尖晶石颗粒中的碱式碳酸盐结构消失,待基本恢复至原有的尖晶石结构后表明再生过程完成。本发明所述的锌铝尖晶石颗粒再生后的性能基本保持不变,因而能够多次循环使用,例如至少可经受100次“吸附-脱附”循环过程。
本发明提供的再生方法中,还可同时设置气体回收装置用于收集、封存再生过程中释放出的CO2气体,其中,气体回收装置可以为本领域的常见设备。在一些优选的实施方式中,还可同时设置冷凝装置,通过冷凝除去释放气体中所含的水分。
本发明提供的上述技术方案(例如,锌铝尖晶石颗粒作为CO2可逆吸附材料的用途,CO2可逆吸附材料及CO2可逆吸附组合物,CO2捕集方法,CO2可逆吸附材料及CO2可逆吸附组合物的再生方法,等)中,所述锌铝尖晶石颗粒的比表面积可以为约190m2/g、约200m2/g、约230m2/g、约250m2/g、约280m2/g、约300m2/g、约320m2/g、约350m2/g、约380m2/g或可以为任意组合的比表面积区间。在一些优选的实施方式中,所述锌铝尖晶石颗粒的比表面积可以为230~350m2/g。在一些更优选的实施方式中,所述锌铝尖晶石颗粒的比表面积可以为230~280m2/g。
本发明提供的上述技术方案中,按体积百分比计,所述锌铝尖晶石颗粒可以进一步包括:5~13%的微孔、75~85%的2~10nm介孔以及7~12%的大于或等于10nm介孔。
本发明提供的上述技术方案中,所述锌铝尖晶石颗粒的平均粒径可以为2~10nm,例如约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm、约10nm或可以为任意组合的粒径区间。在一些优选的实施方式中,所述锌铝尖晶石颗粒具有3~6nm的平均粒径。
本发明提供的上述技术方案中,所述锌铝尖晶石颗粒的孔容积可以为0.3~1.2cm3/g,例如约0.3cm3/g、约0.5cm3/g、约0.8cm3/g、约1.0cm3/g、约1.2cm3/g或可以为任意组合的容积区间。
本发明提供的上述技术方案中,通过XRD、透射电镜(TEM)分析可知,所述锌铝尖晶石颗粒中几乎不含有分散的氧化锌(ZnO)纳米颗粒。
本发明提供的上述技术方案中,所述锌铝尖晶石颗粒的制备方法包括以下步骤:
S1:分别配制体积为V的含Zn2+和Al3+的盐溶液以及沉淀剂溶液;
S2:在反应容器内加入pH值为9~10的碱液,然后将所述盐溶液和所述沉淀剂溶液以相同的速度并流滴入所述反应容器进行共沉淀,按体积计,滴入V的前20~50%时控制pH值为7~9,滴入剩余的溶液时控制pH值的下降幅度为1~20%;以及
S3:所述共沉淀结束之后进行老化,得到的固体物经干燥后在300~400℃下焙烧即得所述锌铝尖晶石颗粒。
上述制备方法采用共沉淀工艺,在温度、溶液流速、pH值等一系列工艺条件的共同作用下,原料经过共沉淀工艺形成前驱体,后经老化进一步稳定前驱体的微观结构形貌,随后经过干燥、低温焙烧形成本发明所述的具有多孔结构且比表面积较大的尖晶石材料。
上述制备方法中,所述含Zn2+和Al3+的盐溶液中,Zn2+与Al3+的摩尔比可以为0.5~1.5:2,例如可以为约0.5:2、约0.8:2、约1:2、约1.2:2、约1.5:2或可以为任意组合的摩尔比区间。用于形成盐溶液的金属离子来源可以为各自的可溶性盐或其水合物,例如可以为硝酸盐、碳酸盐、氯化物、硫酸盐或它们各自的水合物。
含Zn2+和Al3+的盐溶液,其浓度可以为0.1~0.5mol/L,例如,0.15mol/L、0.2mol/L、0.25mol/L、0.3mol/L、0.4mol/L。
上述制备方法中,所述沉淀剂溶液中,沉淀剂可以为碳酸钠、碳 酸氢钠、碳酸钾、碳酸氢钾、碳酸铵、碳酸氢铵中的一种或多种,其浓度可以为0.1~0.5g/mL(例如,0.2g/mL、0.3g/mL、0.4g/mL)。在一些优选的实施方式中,沉淀剂可以为碳酸钠。
上述制备方法中,所述碱液可以为碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铵、碳酸氢铵中的一种或多种所形成的水溶液,其浓度可以为0.05~2mol/L(例如,0.1mol/L、0.2mol/L、0.5mol/L、1mol/L、1.5mol/L)。碱液的种类可以和沉淀剂溶液相同,也可以不同。
上述制备方法中,关于“滴入V的前20~50%时控制pH值为7~9”,本领域技术人员可以将这一表述理解为,并流滴入所述盐溶液、所述沉淀剂溶液的各自体积V的前20~50%时控制pH值为7~9。
上述制备方法中,所述碱液的加入体积为V的40~60%(体积比),例如可以为约40%、约45%、约50%、约55%、约60%或可以为任意组合的体积比区间。在一些优选的实施方式中,所述碱液的加入体积为V的50%。其中,关于“所述碱液的加入体积为V的40~60%(体积比)”,本领域技术人员可以将这一表述理解为,所述碱液的加入体积为所述盐溶液或者所述沉淀剂溶液中任一体积V的40~60%。
上述制备方法中,所述共沉淀的温度可以为60~80℃,例如可以为约60℃、约65℃、约70℃、约75℃、约80℃或可以为任意组合的温度区间。
上述制备方法中,所述盐溶液和所述沉淀剂溶液的滴入速度为每分钟滴入的体积为V的0.75~1.5%(例如,0.8%、1%、1.2%)。过快或过慢的滴入速度都会对目标产品的微观形貌产生影响,而无法得到预期的产品。其中,关于所述盐溶液和所述沉淀剂溶液的滴入速度为每分钟滴入的体积为V的0.75~1.5%,本领域技术人员可以将这一表述理解为,所述盐溶液和所述沉淀剂溶液的滴入速度为每分钟滴入的体积为其各自体积V的0.75~1.5%。
上述制备方法中,由于预先加入的碱液,共沉淀体系整体呈现较强的碱性,随着盐溶液和沉淀剂溶液的并流滴入,共沉淀体系的pH值逐渐下降,此时控制pH值的下降幅度在一定的区间,避免大幅变化影响目标产品的微观结构。在一些优选的实施方式中,滴入V的前20~50%(例如,25%、30%、40%或可以为任意组合的区间)时控制pH值为7~9,滴入剩余的溶液时控制pH值的下降幅度为2~20%, 例如可以为约2%、约5%、约10%、约12%、约15%、约18%、约20%或可以为任意组合的区间。
上述制备方法中,所述老化可以与共沉淀同温度,也可以略高于共沉淀的温度,本领域技术人员能够相应调节。在一些优选的实施方式中,所述老化与所述共沉淀可以为相同温度,老化时间可以为0.5~24h(如,1.0h、2.0h、4.0h、10h、20h),例如老化时间可以为0.5~5h。
上述制备方法中,老化结束后分离出所得的固体物并洗涤,例如水洗,洗涤的程度优选为洗出液电导率小于50μS/cm。
上述制备方法中,干燥的目的是除去洗涤后残留的自由水,干燥的温度可以为80~120℃,干燥时间可以为10~16h。在一些优选的实施方式中,干燥的程度为物料的含水率低于3wt%,更优选干燥至物料的含水率低于1wt%。
上述制备方法中,焙烧可以为低温焙烧,低温焙烧有利于控制晶粒尺寸,焙烧温度可以为300~350℃(如,310℃、320℃、340℃),焙烧时间可以为3~6h(如,4h、5h)。
上述制备方法中,可以通过分离步骤得到所需的物料,例如老化后分离得到固体物,分离的方式可以为本领域中的常见方式,包括但不限于自然沉降、(常压或真空)过滤、离心等。
本发明提供的技术方案具有以下优点:
1)本发明发现了特定微观结构的锌铝尖晶石颗粒的新用途,其具有“微孔”+“介孔”的多孔结构以及较高的比表面积,因此具有吸附、捕集CO2的作用,可以作为一种非常具有应用潜力的CO2吸附、捕集材料。
2)本发明所述的特定微观结构的锌铝尖晶石颗粒在吸附、捕集CO2之后便于再生,仅需加热即可实现CO2脱吸附,能耗低,再生后仍具有优异的吸附作用,因而可以反复、多次执行“吸附-脱附”的过程,由此可显著降低CO2捕集成本。
3)本发明所述的锌铝尖晶石颗粒制备工艺简便,无需使用多种助剂(如扩孔剂、偏铝酸钠等),条件温和,可操作性强,重复性好,适宜大规模的工业化生产。
4)本发明所述的CO2捕集方法可以实现CO2直接空气捕集,能 够适应于多种应用场景,普适性好,脱吸附后的CO2气体也可以方便地进行收集和封存,因此有望为实现双碳目标提供助力,不仅具有十分重要的经济意义,还具有十分重要的社会意义。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对本发明范围的限定。
图1为实施例1制备的锌铝尖晶石颗粒的TEM图像,其中,图1A为锌铝尖晶石颗粒的TEM图像(比例尺:5nm),图1B为图1A的局部放大图像,图1C为锌铝尖晶石的标准结构示意图。
图2为实施例1制备的锌铝尖晶石颗粒的TEM图像(比例尺:20nm)。
图3为实施例1-4制备的锌铝尖晶石颗粒的氮气物理吸附脱附曲线图。
图4为对比例1制备的锌铝尖晶石颗粒的TEM图像。
图5为实施例1制备的锌铝尖晶石颗粒在不同的吸附时间下的XRD图。
图6为实施例1制备的锌铝尖晶石颗粒在不同的结晶度下的XRD图。
具体实施方式
下面将结合具体实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明的实施例和对比例中所使用的原料或试剂如无特别说明均为商购产品。
本发明的实施例和对比例中所使用的百分数如无特别说明均为质量百分数。
本发明的实施例和对比例中,通过氮气物理吸附仪测试结果可以获得所得产品的比表面积和孔结构,并计算得出产品的孔容,测试结果如图3所示(图3中,吸脱附曲线形成的闭环面积越高,则产品比表面越大,相对压力0.6-1之间出现的滞后环表明,所得产品结构中有2-50nm的介孔)。
本发明的测试例中所使用的结晶度的计算方法如下:
利用Bruker公司的XRD数据处理软件EVA分别计算碱式碳酸盐(特征衍射峰在10°、24°、35°、38°、47°附近)和锌铝尖晶石(特征衍射峰为30-40°间的宽峰)晶相的衍射峰峰面积,分别记为Sc和Smc,并使用EVA中的“background”功能描述锌铝尖晶石物相中的非晶部分的峰面积记为Smm,以(Sc+Smc)/(Sc+Smc+Smm)的比值表示样品中晶相的相对含量,用以评价锌铝尖晶石吸收CO2后晶相的结晶度。即:结晶度%=(Sc+Smc)/(Sc+Smc+Smm)×100%。
本发明的测试例中所述的“室温下的空气”是指空气温度为21-25℃,相对湿度为50-70%。
实施例1
称取828g六水合硝酸锌、2087g九水合硝酸铝,加水配制成4L水溶液备用,计做沉淀剂A;称取1200g碳酸钠加水配置成4L水溶液备用,计做沉淀剂B。在10L反应釜内,釜底首先加入2L浓度为0.1mol/L的碳酸氢钾,然后开始并流滴入沉淀剂A和沉淀剂B,保持A和B以40mL/min的速度匀速沉淀,控制反应釜温度为70℃,沉淀过程中滴入前30%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的前30%)时控制pH值为8,滴入后70%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的后70%)时控制pH值为7。沉淀结束后在同温下继续搅拌0.5h后降温。过滤,反复洗涤滤饼直至洗出液电导率检测小于50μS/cm,在110℃下干燥15h除去滤饼中的自由水,形成含水量低于1%的前驱体。将前驱体转移至马弗炉内焙烧,控制焙烧温度为350℃,焙烧5h后取出,得到锌铝尖晶石颗粒,其TEM图像如图1A和图2所示。
如图1所示,通过图1B和图1C对比可知,所得的颗粒为锌铝尖晶石(ZnAl2O4)结构,且其中不含分散的ZnO颗粒。
尖晶石颗粒平均尺寸为3.8nm。尖晶石颗粒中,小于2nm微孔占比为9%,2-10nm孔占比为84%,10-50nm孔占比为7%,比表面积为258.7m2/g,孔容为0.38cm3/g。
实施例2
称取828g六水合硝酸锌、2087g九水合硝酸铝,加水配制成4L水溶液备用,计做沉淀剂A;称取1000g碳酸钠加水配置成4L水溶液备用,计做沉淀剂B。在10L反应釜内,釜底首先加入2L浓度为0.05mol/L的碳酸氢钠,然后开始并流滴入沉淀剂A和沉淀剂B,保持A和B以50mL/min的速度匀速沉淀,控制反应釜温度为80℃,沉淀过程中滴入前20%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的前20%)时控制pH值为8,滴入后80%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的后80%)时控制pH值为6.5。沉淀结束后在同温下继续搅拌1h后降温。过滤,反复洗涤滤饼直至洗出液电导率检测小于50μS/cm,在110℃下干燥10h除去滤饼中的自由水,形成含水量低于1%的前驱体。将前驱体转移至马弗炉内焙烧,控制焙烧温度为300℃,焙烧3h后取出,得到锌铝尖晶石颗粒。
尖晶石颗粒平均尺寸为4.8nm。尖晶石颗粒中,小于2nm微孔占比为9%,2-10nm孔占比为82%,10-50nm孔占比为9%,比表面积为264.1m2/g,孔容为0.48cm3/g。
实施例3
称取828g六水合硝酸锌、2087g九水合硝酸铝,加水配制成4L水溶液备用,计做沉淀剂A;称取1300g碳酸钠加水配置成4L水溶液备用,计做沉淀剂B。在10L反应釜内,釜底首先加入2L浓度为1.5mol/L的碳酸氢氨,然后开始并流滴入沉淀剂A和沉淀剂B,保持A和B以60mL/min的速度匀速沉淀,控制反应釜温度为75℃,沉淀过程中滴入前50%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的前50%)时控制pH值为9,滴入后50%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的后50%)时控制pH值为8。沉淀结束后在同温下继续搅拌1h后降温。过滤,反复洗 涤滤饼直至洗出液电导率检测小于50μS/cm,在110℃下干燥16h除去滤饼中的自由水,形成含水量低于1%的前驱体。将前驱体转移至马弗炉内焙烧,控制焙烧温度为320℃,焙烧5h后取出,得到锌铝尖晶石颗粒。
尖晶石颗粒平均尺寸为5.1nm。尖晶石颗粒中,小于2nm微孔占比为6%,2-10nm孔占比为82%,10-50nm孔占比为12%,比表面积为233.5m2/g,孔容为0.35cm3/g。
实施例4
称取828g六水合硝酸锌、2087g九水合硝酸铝,加水配制成4L水溶液备用,计做沉淀剂A;称取1200g碳酸钠加水配置成4L水溶液备用,计做沉淀剂B。在10L反应釜内,釜底首先加入2L浓度为0.01mol/L的碱液(碳酸氢钠与碳酸氢钾按质量比为1:1的混合物),然后开始并流滴入沉淀剂A和沉淀剂B,保持A和B以30mL/min的速度匀速沉淀,控制反应釜温度为60℃,沉淀过程中滴入前30%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的的前30%)时控制pH值为7,滴入后70%(体积比)溶液(即,并流滴入沉淀剂A和沉淀剂B的各自体积的后70%)时控制pH值为6.8。沉淀结束后在同温下继续搅拌1h后降温。过滤,反复洗涤滤饼直至洗出液电导率检测小于50μS/cm,在110℃下干燥14h除去滤饼中的自由水,形成含水量低于3%的前驱体。将前驱体转移至马弗炉内焙烧,控制焙烧温度为320℃,焙烧5h后取出,得到锌铝尖晶石颗粒。
尖晶石颗粒平均尺寸为3.4nm。尖晶石颗粒中,小于2nm微孔占比为12%,2-10nm孔占比为76%,10-50nm孔占比为12%,比表面积为348.2m2/g,孔容为1.01cm3/g。
对比例1
称取828g六水合硝酸锌、2087g九水合硝酸铝,加水配制成4L水溶液备用,计做沉淀剂A;称取1200g碳酸钠加水配置成4L水溶液备用,计做沉淀剂B。在10L反应釜内并流滴入沉淀剂A和沉淀剂B,保持A和B匀速沉淀,控制反应釜温度为80℃,控制反应釜内的溶液pH值为8,沉淀剂A和沉淀剂B的流速为100mL/min,沉淀结 束后在同温下继续搅拌2-3h后降温。过滤,滤饼经洗涤干燥后使其中含水量<1%。转移至马弗炉内焙烧,控制焙烧温度为700℃,焙烧5h后取出,获得锌铝尖晶石颗粒,其TEM图像如图4所示。
锌铝尖晶石颗粒的平均尺寸为36nm,为50nm以上单孔域材料,比表面积为60m2/g,孔容为0.14cm3/g。
对比例2
将ZnO和Al2O3按照ZnAl2O4的原子摩尔比(即ZnO和Al2O3的摩尔比为1:1)进行物理混合,得到混合物。
对比例3
将碱式碳酸锌与Al2O3按照ZnAl2O4的原子摩尔比(即Zn2(OH)2CO3和Al2O3的摩尔比为1:2)进行物理混合,得到混合物。
测试例1
将实施例1-4和对比例1-3制备的产品样品直接放到室温下的空气中放置2周,XRD测试一次,继续放置至4周,再进行XRD测试一次,结果如表1所示。
表1
表1的测试结果显示,实施例1-4制备的锌铝尖晶石产品能够直接与空气中的水分和CO2反应,经过2周后,XRD测试结果显示,在10°、 24°、35°、38°、47°附近出现了新的衍射峰,根据与标准谱图(PDF48-1023)对比的结果可知,材料中出现了含有锌铝的碱式碳酸盐结构(表示为(Al0.31Zn0.7)(OH)2(CO3)0.167·H2O)。继续放置在空气中与水分和CO2反应,随着碱式碳酸盐结构的增加,结晶度进一步增加,经过4周后,结晶度达到了25-32%的范围。
将实施例1的产品继续放置直至8周,分别对原始态的产品、每周后的产品进行XRD测试,如图5(主要示出了大于等于15°对应的特征衍射峰)所示。可以看出,原始态产品的谱图中没有出现10°、24°、35°、38°、47°附近的特征衍射峰。在空气中放置后,碱式碳酸盐的特征衍射峰开始出现,结晶度也随着放置时间的延长而逐渐增加。
放置了8周后的实施例1的产品的结晶度达到了27.7%。将其置于125℃的烘箱内干燥10h,直至其XRD图中的特征衍射峰消失;然后向得到的再生尖晶石产品中按重量加入1.2倍的水,搅拌均匀继续放置在室温下的空气中一段时间,XRD图显示碱式碳酸盐的特征衍射峰再次出现,此时结晶度达到了53.1%。如图6所示。
相对的是,对比例1-3制备的产品经过2周放置后,XRD结果显示未发现碱式碳酸盐的特征衍射峰,说明未形成相应的含有锌铝的碱式碳酸盐结构。经过4周后仍未发现碱式碳酸盐结构的形成。
对比例1的测试结果表明,即使同为锌铝尖晶石材料,由于微观结构的差异、尤其是孔结构和比表面积的差异,对比例1的材料也无法实现吸附空气中的CO2的功能。
对比例2的测试结果表明,其所得的混合物虽然与实施例的尖晶石产品具有相同的元素组成,但其包括了两种不同的物相,与尖晶石物相结构不同,因此也无法达到吸附空气中的CO2的功能。
将对比例3制备的混合物产品在125℃下加热,使其中的碱式碳酸锌转化为ZnO,室温下的空气中放置2周后,再经XRD测试,结果显示仍未发现碱式碳酸盐结构的形成,这也从侧面说明了实施例的锌铝尖晶石产品在吸附CO2后形成的碱式碳酸盐(即,一定结晶度的特定的碱式碳酸盐结构)并不是常规的碱式碳酸锌。
测试例2
称取实施例1-4和对比例1-3制备的产品样品10g,按重量加入1.2倍的水,搅拌均匀放置在室温下的空气中,样品与空气中的CO2反应15h后进行XRD测试并计算结晶度。
测试结果显示,实施例1-4的样品中均形成了含有锌铝的碱式碳酸盐结构(结晶度分别约为:52%、57%、48%和41%,换算可得,CO2吸附量按重量计约为3.2-3.7%)。由此说明,实施例的锌铝尖晶石产品和水复配后加快了吸附CO2的速度。
测试结果显示,对比例1-3制备的产品中均未发现相应的碱式碳酸盐结构,与水复配后也无法达到吸附空气中的CO2的功能。
测试例3
将测试例2中吸附CO2后的实施例2产品放置于110℃的烘箱内干燥4h,得到的样品相对于原始重量增重8.3%(此时结晶度约为57%),将样品继续放置于150℃的烘箱内干燥10h,样品进一步失重直至恢复到原始的尖晶石重量,由此实现锌铝尖晶石产品的再生。
重复测试例2的操作,向再生后的尖晶石产品中再次按照1:1.2的重量比加入水,搅拌均匀放置在室温下的空气中,样品与空气中的CO2反应10h后进行XRD测试,结果显示发现碱式碳酸盐结构,结晶度约为48%。将样品放置于110℃的烘箱内干燥4h后去除样品中的自由水,样品相对于原始重量增重8.2%,继续放置于150℃的烘箱内干燥10h,恢复到原始的尖晶石重量,XRD测试显示再次恢复到了原始的尖晶石结构。
重复上述“加水吸附CO2-加热释放CO2”的循环,直至第十个循环尖晶石结构都基本无变化。第十个循环之后,结构开始有非常微小的减损,不超过1%,由此可推断,本发明的锌铝尖晶石至少可持续100个“加水吸附CO2-加热释放CO2”的循环。
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要 求限定。

Claims (10)

  1. 一种锌铝尖晶石颗粒作为CO2可逆吸附材料的用途,其中,所述锌铝尖晶石颗粒的比表面积为190~380m2/g,按体积百分比计,包括5~13%的微孔以及87~95%的介孔。
  2. 一种CO2可逆吸附材料,其为锌铝尖晶石颗粒,其中,所述锌铝尖晶石颗粒的比表面积为190~380m2/g,按体积百分比计,包括5~13%的微孔以及87~95%的介孔。
  3. 一种CO2可逆吸附组合物,按重量百分比计,包括10~90%的权利要求2所述的CO2可逆吸附材料以及余量的水;
    优选地,按重量百分比计,所述CO2可逆吸附组合物包括40~60%的权利要求2所述的CO2可逆吸附材料以及余量的水。
  4. 一种CO2捕集方法,其使用权利要求2所述的CO2可逆吸附材料或权利要求3所述的CO2可逆吸附组合物捕集空气中的CO2
    优选地,所述空气的相对湿度为20~100%,优选为30~90%,更优选为50~80%;和/或
    所述捕集时的环境温度为15~80℃,优选为20~50℃。
  5. 权利要求2所述的CO2可逆吸附材料或权利要求3所述的CO2可逆吸附组合物的再生方法,其为将捕集CO2后的所述锌铝尖晶石颗粒置于70~400℃下加热;
    优选地,所述再生方法为将捕集CO2后的所述锌铝尖晶石颗粒置于100~300℃下加热。
  6. 根据权利要求1-5任一项所述的用途、吸附材料、吸附组合物、捕集方法或再生方法,其中,所述锌铝尖晶石颗粒的比表面积为230~350m2/g;和/或
    按体积百分比计,所述锌铝尖晶石颗粒包括:5~13%的微孔、75~85%的2~10nm介孔以及7~12%的大于或等于10nm介孔。
  7. 根据权利要求1-6任一项所述的用途、吸附材料、吸附组合物、捕集方法或再生方法,其中,所述锌铝尖晶石颗粒的平均粒径为2~10nm,优选为3~6nm;和/或
    所述锌铝尖晶石颗粒的孔容积为0.3~1.2cm3/g。
  8. 根据权利要求1-7任一项所述的用途、吸附材料、吸附组合物、捕集方法或再生方法,其中,所述锌铝尖晶石颗粒的制备方法包括以下步骤:
    S1:分别配制体积为V的含Zn2+和Al3+的盐溶液以及沉淀剂溶液;
    S2:在反应容器内加入pH值为9~10的碱液,然后将所述盐溶液和所述沉淀剂溶液以相同的速度并流滴入所述反应容器进行共沉淀,按体积计,滴入V的前20~50%时控制pH值为7~9,滴入剩余的溶液时控制pH值的下降幅度为1~20%;以及
    S3:所述共沉淀结束之后进行老化,得到的固体物经干燥后在300~400℃下焙烧即得所述锌铝尖晶石颗粒;
    优选地,所述含Zn2+和Al3+的盐溶液中,Zn2+与Al3+的摩尔比为0.5~1.5:2;和/或
    所述沉淀剂溶液中,沉淀剂为碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铵、碳酸氢铵中的一种或多种,其浓度为0.1~0.5g/mL。
  9. 根据权利要求8所述的用途、吸附材料、吸附组合物、捕集方法或再生方法,其中,所述碱液为碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铵、碳酸氢铵中的一种或多种所形成的水溶液,其浓度为0.05~2mol/L;和/或
    所述碱液的加入体积为V的40~60%;和/或
    所述步骤S2中,所述共沉淀的温度为60~80℃。
  10. 根据权利要求8或9所述的用途、吸附材料、吸附组合物、捕集方法或再生方法,其中,所述步骤S3中,所述老化与所述共沉淀为相同温度,老化时间为0.5~24h;和/或
    所述干燥为80~120℃下干燥10~16h;和/或
    所述焙烧为300~350℃下焙烧3~6h。
PCT/CN2023/114680 2022-10-24 2023-08-24 Co2可逆吸附材料、组合物及其再生方法和co2捕集方法 WO2024087839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211303835.5A CN117959875A (zh) 2022-10-24 2022-10-24 一种co2可逆吸附材料以及再生方法
CN202211303835.5 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024087839A1 true WO2024087839A1 (zh) 2024-05-02

Family

ID=90829980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114680 WO2024087839A1 (zh) 2022-10-24 2023-08-24 Co2可逆吸附材料、组合物及其再生方法和co2捕集方法

Country Status (2)

Country Link
CN (1) CN117959875A (zh)
WO (1) WO2024087839A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357373A (zh) * 2012-03-26 2013-10-23 三星电子株式会社 二氧化碳吸附剂、其制法、二氧化碳捕获方法和捕获模块
CN103449503A (zh) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 一种纳米锌铝尖晶石的制备方法
WO2014012963A1 (en) * 2012-07-17 2014-01-23 Antecy B.V. Materials and process for reversible adsorption of carbon dioxide
US20150056116A1 (en) * 2012-01-11 2015-02-26 William Marsh Rice University Composites for carbon dioxide capture
CN104986785A (zh) * 2015-06-17 2015-10-21 中国石油天然气集团公司 大比表面积介孔二价金属铝基尖晶石及其制备方法与应用
CN110937620A (zh) * 2019-12-19 2020-03-31 福州大学 一种非化学计量比锌铝尖晶石及其制备方法
CN114735730A (zh) * 2022-03-09 2022-07-12 广东石油化工学院 一种高纯度锌铝尖晶石及其制备方法
CN115646434A (zh) * 2022-11-09 2023-01-31 上海纳米技术及应用国家工程研究中心有限公司 一种高性能二氧化碳吸附材料的制备方法及其产品和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150056116A1 (en) * 2012-01-11 2015-02-26 William Marsh Rice University Composites for carbon dioxide capture
CN103357373A (zh) * 2012-03-26 2013-10-23 三星电子株式会社 二氧化碳吸附剂、其制法、二氧化碳捕获方法和捕获模块
CN103449503A (zh) * 2012-06-01 2013-12-18 中国石油天然气股份有限公司 一种纳米锌铝尖晶石的制备方法
WO2014012963A1 (en) * 2012-07-17 2014-01-23 Antecy B.V. Materials and process for reversible adsorption of carbon dioxide
CN104986785A (zh) * 2015-06-17 2015-10-21 中国石油天然气集团公司 大比表面积介孔二价金属铝基尖晶石及其制备方法与应用
CN110937620A (zh) * 2019-12-19 2020-03-31 福州大学 一种非化学计量比锌铝尖晶石及其制备方法
CN114735730A (zh) * 2022-03-09 2022-07-12 广东石油化工学院 一种高纯度锌铝尖晶石及其制备方法
CN115646434A (zh) * 2022-11-09 2023-01-31 上海纳米技术及应用国家工程研究中心有限公司 一种高性能二氧化碳吸附材料的制备方法及其产品和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 15 November 2008, BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, CN, ISSN: 1674-022X, article ZOU, LU: "Spinel Type Complex Metal Oxide Functional Materials: Preparation, Characterization And Their Properties", pages: 1 - 192, XP009554029 *
CHUNLING XIN: "Research progress of solid adsorbent for CO2 capture", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 36, no. S1, 1 January 2017 (2017-01-01), pages 278 - 290, XP093161387, DOI: 10.16085/j.issn.1000-6613.2017-0196 *
WEI JIANWEN; LIN ZHIFENG; HE ZEYU; GENG LINLIN; LIAO LEI;: "Progress in micro-mesoporous materials for CO2 adsorption", HUAGONG XINXING CAILIAO - NEW CHEMICAL MATERIALS, ZHONGGUO HUAGONG XINXI ZHONGXIN, CN, vol. 45, no. 07, 15 July 2017 (2017-07-15), CN , pages 4 - 6, XP009554028, ISSN: 1006-3536 *

Also Published As

Publication number Publication date
CN117959875A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
Zhou et al. Molten K2CO3-promoted high-performance Li4SiO4 sorbents at low CO2 concentrations
JP4002054B2 (ja) 二酸化炭素吸着のための圧力スイング吸着方法
CA2459496C (en) Ceric oxide, method for preparation thereof, and catalyst for purifying exhaust gas
US6514317B2 (en) Method for purifying hydrogen-based gas mixture
Wang et al. Synthesis of macroporous Li4SiO4 via a citric acid-based sol–gel route coupled with carbon coating and its CO2 chemisorption properties
CN111905719B (zh) 锰基催化剂及其制备方法
US6537348B1 (en) Method of adsorptive separation of carbon dioxide
JP4765072B2 (ja) ケミカルヒートポンプ
JP6846344B2 (ja) 酸化セリウム粒子およびそれらの製造方法
TWI394612B (zh) 中高溫捕碳劑之吸碳奈米微層狀材料Ca-A1-CO3及其製造與使用方法
WO2019042158A1 (zh) 氧化钙基高温co 2吸附剂及其制备方法
Kou et al. CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated coprecipitation
CN113231009B (zh) 一种氨气吸附剂及其制备方法
CN109476495A (zh) 氧化铈颗粒及其生产方法
CN103785347A (zh) 用于吸附中高温co2 的复合氧化物吸附剂
Subha et al. Wet chemically derived Li4SiO4 nanowires as efficient CO2 sorbents at intermediate temperatures
CN114272892A (zh) 一种co2捕集吸附剂及其制备方法和应用
CN107670632B (zh) 一种中温二氧化碳吸附剂及其制备和使用方法
JP3270463B2 (ja) アルミナ含有酸吸着剤及びその製造方法
CN110841628B (zh) 臭氧分解催化剂及其制备方法与应用
Hu et al. Scalable synthesis of Li4SiO4 sorbent from novel low-cost orthoclase mineral for CO2 capture
CN113845127A (zh) 一种金属离子改性y型分子筛及其制备方法和应用
WO2024087839A1 (zh) Co2可逆吸附材料、组合物及其再生方法和co2捕集方法
CN103611491A (zh) 一种碱金属功能化介孔氧化铝基低温co2吸附剂的制备方法
CN109012573A (zh) 一种焙烧镁铝水滑石薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881422

Country of ref document: EP

Kind code of ref document: A1