WO2019109830A1 - 一种复合钼酸盐空心微球的制备方法及其应用 - Google Patents

一种复合钼酸盐空心微球的制备方法及其应用 Download PDF

Info

Publication number
WO2019109830A1
WO2019109830A1 PCT/CN2018/117564 CN2018117564W WO2019109830A1 WO 2019109830 A1 WO2019109830 A1 WO 2019109830A1 CN 2018117564 W CN2018117564 W CN 2018117564W WO 2019109830 A1 WO2019109830 A1 WO 2019109830A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
water
mmol
hollow microspheres
preparing
Prior art date
Application number
PCT/CN2018/117564
Other languages
English (en)
French (fr)
Inventor
廖锦云
卢东升
李�浩
肖定书
Original Assignee
惠州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州学院 filed Critical 惠州学院
Publication of WO2019109830A1 publication Critical patent/WO2019109830A1/zh
Priority to US16/747,048 priority Critical patent/US11027259B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of compound preparation, in particular to a preparation method of composite molybdate hollow microspheres and an application thereof for catalyzing hydrogen production by ammonia borane hydrolysis.
  • molybdate compound is combined with one or more cations to form molybdate having different properties, for example, with La, Eu, etc., which can constitute a phosphor powder material; and Co, Ni, Cu can be composed A catalyst with superior catalytic properties.
  • Molybdate can be used in the field of optics, electricity, catalysis, and medical fields through different combinations. Therefore, molybdate is an important member of inorganic functional materials.
  • Liangjun Wang et al. Liangjun Wang et al. Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li-O2 battery and superior anode for a Li-ion battery.
  • CoMoO4 nanorods were synthesized by using a mixture of ultrapure water, ethanol and ethylene glycol as solvent to obtain CoMoO4 nanorods.
  • the preparation process was simple, but the organic solvent and rare The use of gas is costly; Xiaoqin Yan et al. (3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures. J. Colloid Interface Sci., 2017, 493, 42-50) Graphene as a template, two-step hydrothermal synthesis of CoMoO4 nanosheets, and The use of argon as a shielding gas in the calcination stage still makes the preparation costly.
  • the morphology of the products of cobalt molybdate and copper molybdate is mostly nano-sheets and nanoparticles.
  • the micro-hollow spheres have not been reported.
  • the hollow spheres have high effective contact. The area and porosity are therefore a boost to the activity of the catalyst.
  • the technical problem to be solved by the invention is to provide a preparation method of multi-molybdate hollow microspheres, which uses urea as a precipitant, for the key problems of high preparation cost and uncontrollable morphology in the above preparation process.
  • the multi-molybdate hollow microsphere structure was successfully synthesized by hydrothermal synthesis method.
  • the synthesis method provides technical support for systematically studying the structure-activity relationship between the microstructure and properties of multi-molybdate nanomaterials, and also promotes the material. Low-cost and large-scale production has taken an important step.
  • the technical solution adopted by the present invention is: a method for preparing a composite molybdate hollow microsphere, comprising the following steps:
  • the muffle furnace is calcined at 350 to 500 ° C for 2 to 4 hours.
  • the ratio of the total mass of the soluble nickel salt, the cobalt salt and the copper salt in the step (1) to the mass ratio of the molybdic acid is 1:1.
  • the stirring time is 0.5-1 h.
  • the vacuum oven temperature is 40 to 60 °C.
  • the unique nano hollow sphere prepared by the invention has high effective contact area and porosity
  • the preparation process does not use a surfactant or the like as a structure directing agent to control the morphology;
  • the synthesized multi-molybdate hollow microspheres are expected to be highly active catalysts due to their microstructural characteristics, such as superior catalytic activity in catalyzing the hydrolysis of ammonia borane to hydrogen production.
  • Figure 1 is an SEM image of Co0.8Cu0.2MoO4 prepared according to the present invention.
  • Figure 5 is a catalytic hydrogen production test curve of Co 0.8 Cu 0.2 MoO 4 prepared according to the present invention.
  • Figure 1 is an SEM image of Co 0.8 Cu 0.2 MoO 4 prepared according to the present invention. It can be seen from the scanning chart that the morphology of Co 0.8 Cu 0.2 MoO 4 synthesized by hydrothermal formation is nano hollow microspheres having a diameter of about 0.5 to 0.8 um.
  • the catalyst performance of the hollow microspheres can be further confirmed from the projection chart.
  • Figure 3 is an XRD test of Co 0.8 Cu 0.2 MoO 4 prepared according to the present invention. The characteristic peaks of the crystal faces corresponding to CuMoO 4 and CoMoO 4 are indicated in the figure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种复合钼酸盐空心微球的制备方法,包括以下步骤:(1)取MCl2 1-4mmol溶于20ml水,得溶液A;再取钼酸1-4mmol溶于20ml水,得溶液B;将二者混合;其中M表示Co、Ni、Cu;(2)取10-40mmol尿素溶于40ml水,加入上述溶液,搅拌均匀;(3)将上述混合液移至反应釜,120-160℃反应6-12h;(4)抽滤水洗,真空烘箱40-60℃烘干;(5)马弗炉350-500℃煅烧2-4h。制备得到的复合钼酸盐空心微球具备较高的有效接触面积及孔隙率,工艺简单,原料廉价易得,制备过程未使用表面活性剂等作为结构导向剂来控制形貌,合成的多元钼酸盐空心微球在催化氨硼烷水解产氢方面表现出优越的催化活性。

Description

一种复合钼酸盐空心微球的制备方法及其应用 技术领域
本发明涉及化合物制备技术领域,尤其涉及一种复合钼酸盐空心微球的制备方法及其在催化氨硼烷水解产氢上的应用。
背景技术
钼酸盐化合物通过(MoO4)2-与一种或一种以上阳离子组合成具有不同性质的钼酸盐,例如,与La、Eu等可以组成荧光粉体材料;与Co、Ni、Cu可以组成具有优越催化性能的催化剂。通过不同组合的钼酸盐能在光学领域,电学领域,催化领域,医疗领域都有不俗的表现,因此钼酸盐是无机功能材料中的重要成员。
近年来,钼酸盐纳米材料的制备方法一直是研究热点,传统的高温固相法需要较高温度,而且不能保证得到形貌较好的晶体,因此,一些低温合成方法,如水热合成法、模板法、微乳液法、沉淀法应运而生。如L.Zhen等人(L.Zhen et al.High photocatalytic activity and photoluminescence property of hollow CdMoO4 microspheres.Scripta Materialia,2008,58,461–464)用沉淀法在室温水溶液中合成了中空的CdMoO4微球。在反应过程中加入的可溶性的无机盐NaCl虽然没有参加反应,但作为配合助剂而影响CdMoO4的沉淀速度;但此制备方法需要将悬浮液静置5天,周期较长,不利于工业化生产;Liangjun Wang等人(Liangjun Wang et al.Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li–O2 battery and superior anode for a Li-ion battery.Nanoscale,2017,9,3898–3904)采用溶剂热合成法合成CoMoO4纳米棒,在反应过程中用超纯水、乙醇、乙二醇的混合液为溶剂制备前驱体,经氩气氛围煅烧得到CoMoO4纳米棒,该方法制备工艺简单,但有机溶剂与稀有气体的使用,成本较高;Xiaoqin Yan等人(Xiaoqin Yan et al.3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures.J.Colloid Interface Sci.,2017,493,42–50)以石墨烯作为模板,两步水热法合成了CoMoO4纳米片,而且煅烧阶段以氩气作为保护气体,仍然使得制备成本不菲;钼酸钴及钼酸铜合成产物形貌多为纳米片、纳米颗粒,微米空心球未见报道,空心球具有较高的有效接触面积及孔隙率,因此对于催化剂的活性而言是一种促进。
发明内容
本发明所要解决的技术问题是,针对上述制备过程中存在的制备成本高、形貌不可控等关键问题,而提供一种多元钼酸盐空心微球的制备方法,其以尿素为沉淀剂,应用水热合成法成功合成了多元钼酸盐空心微球结构;该合成方法为系统研究多元钼酸盐纳米材料微观结 构与性能之间的构效关系提供了技术支持,同时也为推动材料的低成本规模化生产迈出了重要一步。
为解决以上技术问题,本发明采用的技术方案是:一种复合钼酸盐空心微球的制备方法,包括以下步骤:
(1)、取MCl2 1~4mmol溶于20mL水,得溶液A;再取钼酸1~4mmol溶于20mL水,得溶液B;将二者混合;其中M表示Co、Ni、Cu;
(2)、取10~40mmol尿素溶于40mL水,加入上述溶液;搅拌均匀;
(3)、将上述混合液移至反应釜,120~160℃反应6~12h;
(4)、抽滤水洗,真空烘箱40~60℃烘干;
(5)马弗炉350~500℃煅烧2~4h。
优选的,步骤(1)中可溶性镍盐、钴盐、铜盐总物质量与钼酸的物质量比值1:1。
优选的,步骤(2)中,搅拌时间为0.5-1h。
优选的,步骤(3)中,真空烘箱温度为40~60℃。
综上所述,运用本发明的技术方案,具有如下有益效果:
1.本发明制备的独特纳米空心球,具有较高的有效接触面积及孔隙率;
2.工艺简单,原料价廉易得;
3.制备过程并未使用表面活性剂等作为结构导向剂来控制形貌;
合成的多元钼酸盐空心微球因微观结构特点有望作为高活性催化剂,如在催化氨硼烷水解产氢方面表现出优越的催化活性。
附图说明
图1为本发明制备的Co0.8Cu0.2MoO4的SEM图;
图2为本发明制备的Co0.8Cu0.2MoO4的TEM图;
图3为本发明制备的Co0.8Cu0.2MoO4的BET测试曲线;
图4为本发明制备的Co 0.8Cu 0.2MoO 4的XRD测试曲线;
图5为本发明制备的Co 0.8Cu 0.2MoO 4的催化产氢测试曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,但不构成对本发明保护范围的限制。
实施例1
1、取CuCl 2 1mmol溶于20mL水,得溶液A;再取钼酸1mmol溶于20mL水,得溶液B;将二者混合;
2、取10mmol尿素溶于40mL水,加入上述溶液;搅拌30min后移至反应釜,160℃反应8h;抽滤水洗,真空烘箱40℃烘干;马弗炉500℃煅烧2h;该样品组成为CuMoO 4
实施例2
1、取CuCl 2x mmol、NiCl 2y mmol、CoCl 2(1-x-y)mmol溶于20mL水,得溶液A;再取钼酸2mmol溶于20mL水,得溶液B;将二者混合;
2、取20mmol尿素溶于40mL水,加入上述溶液;搅拌30min后移至反应釜,120℃反应12h;抽滤水洗,真空烘箱60℃烘干;马弗炉500℃煅烧2h;该样品组成为Cu xCo yNi 1-x-yMoO 4
实施例3
1、取CuCl 2x mmol、NiCl 2y mmol、CoCl 2(1-x-y)mmol溶于20mL水,得溶液A;再取钼酸2mmol溶于20mL水,得溶液B;将二者混合;
2、取30mmol尿素溶于40mL水,加入上述溶液;搅拌30min后移至反应釜,160℃反应8h;抽滤水洗,真空烘箱40℃烘干;马弗炉350℃煅烧2h;该样品组成为Cu xCo yNi 1-x-yMoO 4
实施例4
1、取CuCl 2x mmol、NiCl 2y mmol、CoCl 2(1-x-y)mmol溶于20mL水,得溶液A;再取钼酸2mmol溶于20mL水,得溶液B;将二者混合;
2、取40mmol尿素溶于40mL水,加入上述溶液;搅拌30min后移至反应釜,160℃反应12h;抽滤水洗,真空烘箱40℃烘干;马弗炉500℃煅烧4h;该样品组成为Cu xCo yNi 1-x-yMoO 4
实施例5
1、取CuCl 2x mmol、NiCl 2y mmol、CoCl 2(1-x-y)mmol溶于20mL水,得溶液A;再取钼酸4mmol溶于20mL水,得溶液B;将二者混合;
2、取40mmol尿素溶于40mL水,加入上述溶液;搅拌1h后移至反应釜,160℃反应12h;抽滤水洗,真空烘箱60℃烘干;马弗炉500℃煅烧4h;该样品组成为Cu xCo yNi 1-x-yMoO 4
1、SEM分析
图1为本发明制备的Co 0.8Cu 0.2MoO 4的SEM图。从扫描图中可以看出,通过水热合成的Co 0.8Cu 0.2MoO 4形貌呈直径约为0.5~0.8um的纳米空心微球。
2、TEM测试
为本发明制备的Co 0.8Cu 0.2MoO 4的TEM图,从投射图中可以进一步证实空心微球的催化剂性能。
3、BET测试
图2为本发明制备的Co 0.8Cu 0.2MoO 4的氮气吸附脱附等温曲线,比表面积为30.01m 2/g。
4、XRD
图3为本发明制备的Co 0.8Cu 0.2MoO 4的XRD测试。图中所标示出的为CuMoO 4与CoMoO 4对应晶面的特征峰。
5、催化产氢性能的测试
图4为本发明制备的Co 0.8Cu 0.2MoO 4作为催化剂催化氨硼烷水解产氢的性能测试,NH 3BH 3用量3mmol,NaOH 20mmol,催化剂10mg。测得25℃下Co 0.8Cu 0.2MoO 4作为催化剂每分钟产氢56mL。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (5)

  1. 一种复合钼酸盐空心微球的制备方法,其特征在于,包括以下步骤:
    (1)、取MCl2 1~4mmol溶于20mL水,得溶液A;再取钼酸1~4mmol溶于20mL水,得溶液B;将二者混合;其中M表示Co、Ni、Cu;
    (2)、取10~40mmol尿素溶于40mL水,加入上述溶液;搅拌均匀;
    (3)、将上述混合液移至反应釜,120~160℃反应6~12h;
    (4)、抽滤水洗,真空烘箱40~60℃烘干;
    (5)马弗炉350~500℃煅烧2~4h。
  2. 根据权利要求1所述的一种复合钼酸盐空心微球的制备方法,其特征在于:步骤(1)中可溶性镍盐、钴盐、铜盐总物质量与钼酸的物质量比值1:1。
  3. 根据权利要求1所述的一种复合钼酸盐空心微球的制备方法,其特征在于:步骤(2)中,搅拌时间为0.5-1h。
  4. 根据权利要求1所述的一种复合钼酸盐空心微球的制备方法,其特征在于:步骤(3)中,真空烘箱温度为40~60℃。
  5. 如权利要求1~4任一项所述的制备方法所制备的复合钼酸盐空心微球作为催化剂在催化氨硼烷水解产氢上的应用。
PCT/CN2018/117564 2017-12-05 2018-11-27 一种复合钼酸盐空心微球的制备方法及其应用 WO2019109830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/747,048 US11027259B2 (en) 2017-12-05 2020-01-20 Preparation method for hollow molybdate composite microspheres and method for catalyzing ammonia borane hydrolysis to produce hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711266864.8 2017-12-05
CN201711266864.8A CN107970944B (zh) 2017-12-05 2017-12-05 一种复合钼酸盐空心微球的制备方法及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/747,048 Continuation US11027259B2 (en) 2017-12-05 2020-01-20 Preparation method for hollow molybdate composite microspheres and method for catalyzing ammonia borane hydrolysis to produce hydrogen

Publications (1)

Publication Number Publication Date
WO2019109830A1 true WO2019109830A1 (zh) 2019-06-13

Family

ID=62009304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117564 WO2019109830A1 (zh) 2017-12-05 2018-11-27 一种复合钼酸盐空心微球的制备方法及其应用

Country Status (3)

Country Link
US (1) US11027259B2 (zh)
CN (1) CN107970944B (zh)
WO (1) WO2019109830A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264014A (zh) * 2020-11-11 2021-01-26 中南大学 一种耐酸碱型铜钴氧化物的合成及应用
CN113511688B (zh) * 2021-08-25 2023-05-26 杭州恒毅智创科技有限公司 一种FeVO4空心球的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107970944B (zh) 2017-12-05 2019-10-11 惠州学院 一种复合钼酸盐空心微球的制备方法及其应用
CN109012683B (zh) * 2018-08-09 2021-05-14 扬州大学 一种钼酸钴空心微球电催化剂的制备方法
CN109174108A (zh) * 2018-08-28 2019-01-11 茆振斌 一种制备尿囊素衍生物咪唑烷基脲的催化剂组合物及其制备方法
CN109046469A (zh) * 2018-08-28 2018-12-21 茆振斌 制备尿囊素衍生物咪唑烷基脲的催化剂组合物及其制备方法
CN109174109A (zh) * 2018-08-28 2019-01-11 茆振斌 制备尿囊素衍生物咪唑烷基脲的催化剂及其制备方法
CN109092318A (zh) * 2018-08-28 2018-12-28 茆振斌 一种制备尿囊素衍生物咪唑烷基脲的催化剂及其制备方法
CN110586117B (zh) * 2019-08-07 2022-03-11 惠州学院 一种Co3O4/CuMoO4复合物及其制备方法和应用
CN113213540A (zh) * 2021-05-08 2021-08-06 广东工业大学 一种铜基钼酸盐纳米材料及其制备方法与应用
CN113549456B (zh) * 2021-08-18 2023-08-04 北京工业大学 一种无稀土掺杂室温可发光的多相钼酸镧混合的发光材料的制备方法
CN113838684B (zh) * 2021-09-27 2023-09-15 太原理工大学 一种CoMo2S4/泡沫镍超级电容器电极材料的制备方法
CN115536079B (zh) * 2022-11-21 2023-08-11 齐鲁工业大学 自模板法合成中空球形多级结构钼酸盐微纳米材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1153648A1 (de) * 2000-05-10 2001-11-14 OMG AG & Co. KG Strukturierter Katalysator für die selektive Reduktion von Stickoxiden mittels Ammoniak unter Verwendung einer zu Ammoniak hydrolysierbaren Verbindung
CN103466721A (zh) * 2013-08-19 2013-12-25 长安大学 钼酸钴空心球粉体材料制备方法及钼酸钴空心球粉体材料
CN103663560A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 钼酸盐及其制备方法
CN104148084A (zh) * 2014-07-22 2014-11-19 桂林电子科技大学 一种纳米多孔四元合金催化剂的制备及其在氨硼烷水解制氢中的应用
CN104275204A (zh) * 2014-09-15 2015-01-14 河南科技大学 用于氨硼烷水解释氢的负载型催化剂及其制备方法
CN107970944A (zh) * 2017-12-05 2018-05-01 惠州学院 一种复合钼酸盐空心微球的制备方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377416B2 (en) * 2008-08-20 2013-02-19 Purdue Research Foundation Method for releasing hydrogen from ammonia borane
CN104258847A (zh) * 2014-08-15 2015-01-07 华东理工大学 一种铂-碳复合物纳米催化剂及其制备方法和用途
CN108057446A (zh) * 2017-12-14 2018-05-22 沈阳师范大学 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1153648A1 (de) * 2000-05-10 2001-11-14 OMG AG & Co. KG Strukturierter Katalysator für die selektive Reduktion von Stickoxiden mittels Ammoniak unter Verwendung einer zu Ammoniak hydrolysierbaren Verbindung
CN103663560A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 钼酸盐及其制备方法
CN103466721A (zh) * 2013-08-19 2013-12-25 长安大学 钼酸钴空心球粉体材料制备方法及钼酸钴空心球粉体材料
CN104148084A (zh) * 2014-07-22 2014-11-19 桂林电子科技大学 一种纳米多孔四元合金催化剂的制备及其在氨硼烷水解制氢中的应用
CN104275204A (zh) * 2014-09-15 2015-01-14 河南科技大学 用于氨硼烷水解释氢的负载型催化剂及其制备方法
CN107970944A (zh) * 2017-12-05 2018-05-01 惠州学院 一种复合钼酸盐空心微球的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, HUAN ET AL., HYDROTHERMAL SYNTHESIS OF NI-MO UNSUPPORTED CATALYST AND THEIR CATALYTIC PERFORMANCE, vol. 44, no. 9, 30 September 2013 (2013-09-30), pages 19 - 21, ISSN: 1005-2399 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264014A (zh) * 2020-11-11 2021-01-26 中南大学 一种耐酸碱型铜钴氧化物的合成及应用
CN113511688B (zh) * 2021-08-25 2023-05-26 杭州恒毅智创科技有限公司 一种FeVO4空心球的制备方法

Also Published As

Publication number Publication date
US20200147591A1 (en) 2020-05-14
CN107970944B (zh) 2019-10-11
US11027259B2 (en) 2021-06-08
CN107970944A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2019109830A1 (zh) 一种复合钼酸盐空心微球的制备方法及其应用
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN103785859B (zh) 一种纳米介孔材料的制备方法
Zhang et al. Atomically dispersed iron cathode catalysts derived from binary ligand-based zeolitic imidazolate frameworks with enhanced stability for PEM fuel cells
CN112038648A (zh) 一种中空结构过渡金属钴、氮共掺杂炭氧还原催化剂及其制备方法和应用
CN111659401A (zh) 一种三维多孔碳纳米管石墨烯复合膜及其制备方法
CN106057490A (zh) 一种基于金属‑有机框架物的纳米氧化物及其制备方法
WO2021022988A1 (zh) 一种Co 3O 4/CuMoO 4复合物及其制备方法和应用
CN111005034B (zh) 一种3d打印高强度石墨烯-酸化碳纳米管电极的方法、石墨烯-酸化碳纳米管电极及其应用
Xu et al. Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds
CN113649045B (zh) 一种以Ni-MOF为前驱体的改性氮化钛纳米管及其制备方法和应用
Qiu et al. Hydrogen generation from ammonia borane hydrolysis catalyzed by ruthenium nanoparticles supported on Co–Ni layered double oxides
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN111875546B (zh) 一种海胆状钴基光催化剂在转化co2合成苯并咪唑酮类化合物中的应用
CN106699550B (zh) 纳米Cu-CuBTC型金属有机骨架材料的制备方法
CN112246244A (zh) 一种氧空位含量可调铜-氧化铜-钴酸铜催化剂的制备方法及应用
CN113816432B (zh) 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用
WO2020125183A9 (zh) yolk/shell型催化剂及其制备方法与催化产氢应用
CN111137927A (zh) 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN113981489A (zh) 一种碳化钼/碳复合材料及基于熔融盐法的制备方法和应用
CN115646500B (zh) 一种氨分解制氢催化剂及其制备方法与应用
CN109616626B (zh) 一种碳包覆四氧化三铁纳米晶的低温宏量制备方法
CN114917932B (zh) 一种用于co2光还原合成co和h2的催化剂、制备方法及应用
CN114522708B (zh) 一种多孔氮杂碳材料负载钴基催化剂制备方法及其在co加氢制备高碳醇反应中的应用
CN115555031A (zh) 一种氢氧化镍负载钯单原子催化剂的制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886017

Country of ref document: EP

Kind code of ref document: A1