CN113816432B - 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用 - Google Patents

一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用 Download PDF

Info

Publication number
CN113816432B
CN113816432B CN202111036031.9A CN202111036031A CN113816432B CN 113816432 B CN113816432 B CN 113816432B CN 202111036031 A CN202111036031 A CN 202111036031A CN 113816432 B CN113816432 B CN 113816432B
Authority
CN
China
Prior art keywords
ferrous
reaction
molybdate
assembled spherical
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111036031.9A
Other languages
English (en)
Other versions
CN113816432A (zh
Inventor
钟远红
陈锦锋
任礼
许静怡
陈金旭
余林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202111036031.9A priority Critical patent/CN113816432B/zh
Publication of CN113816432A publication Critical patent/CN113816432A/zh
Application granted granted Critical
Publication of CN113816432B publication Critical patent/CN113816432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明属于无机功能材料的合成技术领域,公开了一种纳米片自组装球状钼酸亚铁(FeMoO4)材料及其制备方法和应用。该方法是将亚铁源、钼源和硫脲按比例溶解于去离子水中,经搅拌和超声充分溶解后,将反应物料转移到微波水热特制反应釜中,于微波反应器中进行水热反应,反应结束后冷却至室温,产物经洗涤、干燥,即可制得纳米片自组装球状钼酸铁。与现有技术相比,本发明提供的技术路线简单、快速,无需调节pH值,反应速率高,产物形貌规整。本发明提供的纳米片自组装球状钼酸亚铁材料作为异相催化剂用于催化降解水中有机污染物,具有优异的催化活性和稳定性,以及制备工艺简单、成本低廉的优点。

Description

一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用
技术领域
本发明属于无机功能材料的合成技术领域,特别涉及一种纳米片自组装球状钼酸亚铁(FeMoO4)材料及其制备方法和应用。
背景技术
由于过渡金属钼酸盐具有良好的化学稳定性、环境友好和特殊结构等优点,在催化、磁性、气敏、水处理及能源领域都受到了广泛的关注。钼酸亚铁(FeMoO4)是一类含二价铁的化合物,是一类颇具应用前景的异相催化剂。然而,由于二价铁的不稳定性,且钼酸亚铁为对称性较低的单斜晶系,热力学稳定性较低,合成形貌可控的纯相钼酸亚铁面临巨大的挑战。目前,只有少数研究报道了分级空心球(CrystEngComm,2012,14,7025–7030)、纳米棒(Chemcomm,2020,56,6834-6837)和纳米立方体(Small,2015,36,4753-4761)形貌的钼酸亚铁。
发明内容
为了克服现有钼酸亚铁合成材料技术中存在的缺点和不足,本发明的首要目的在于提供一种纳米片自组装球状钼酸亚铁材料的制备方法。
本发明的另一目的在于提供上述方法制备得到的纳米片自组装球状钼酸亚铁材料。
本发明的再一目的在于提供上述纳米片自组装球状钼酸亚铁材料的应用。该钼酸亚铁材料可以作为活化过硫酸盐(过硫酸钾、过一硫酸氢钾)的异相催化剂用于降解有机污染物具有优异的催化活性。
本发明的目的通过下述技术方案实现:
一种纳米片自组装球状钼酸亚铁材料的制备方法,所包括以下步骤:
(1)将钼源与硫脲(CH4N2S)按摩尔比1:(15~40)充分溶解于去离子水中形成溶液;
(2)以亚铁盐为铁源,将亚铁盐溶于去离子水中,加入步骤(1)所得溶液中,得到反应混合液;
(3)将反应混合液充分搅拌,超声混匀后,转移到微波水热反应釜中,并在微波反应器中进行微波反应;
(4)反应结束后冷却,离心收集冷却后的产物,用无水乙醇和去离子水多次循环清洗,干燥后得到纳米片自组装球状钼酸亚铁材料。
步骤(1)中所述钼源为七钼酸铵((NH4)6Mo7O24)、钼酸钠(Na2MoO4)或钼酸(H2MoO4·H2O)。
步骤(2)中所述亚铁盐为水合硫酸亚铁(FeSO4·7H2O)、水合氯化亚铁(FeCl2·4H2O)、水合硝酸亚铁(Fe(NO3)2·6H2O)或水合乙酸亚铁(Fe(CH3COO)2·4H2O)。
步骤(1)中所述钼源与步骤(2)中所述铁源的摩尔比例为1:(0.8~1.5)。
步骤(1)中所述钼源的摩尔量为0.5~2.0mmol;
步骤(3)中所述搅拌的时间为15~30min;所述超声的时间10~15min;所述微波反应的温度为220~240℃,微波反应的时间为30~60min,微波功率是500~700W。
步骤(4)中所述循环清洗的次数是3次;所述干燥是在烘箱中60℃条件下进行干燥。
一种由上述的制备方法制备得到的纳米片自组装球状钼酸亚铁材料,其特征在于:所述球状钼酸亚铁材料为尺寸1.3~1.8μm的微米颗粒。
上述的纳米片自组装球状钼酸亚铁材料作为活化过硫酸盐(过硫酸钾或过一硫酸氢钾)的异相催化剂在催化降解水中有机污染物中的应用。例如可以将氯咪巴唑快速地(10min以内)完全去除
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明采用微波水热法简单的方法,高效快速制备了一种纳米片自组装球状钼酸亚铁材料,所提供的技术路线操作简单、快速,无需调节pH值,产物形貌规整、纯度高、催化性能优异,为钼酸亚铁材料的高效简便合成提供了一定的技术支持。
(2)本发明提供的纳米片自组装球状钼酸亚铁材料作为异相催化剂应用于催化降解水中有机污染物(如氯咪巴唑),具有良好的吸附性能、优异的催化活性和稳定性,以及制备工艺简单、成本低廉的优点。
附图说明
图1为纳米片自组装球状钼酸亚铁的X射线衍射(XRD)图谱。
图2为纳米片自组装球状钼酸亚铁的扫描电子显微镜图(SEM)。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明提供一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,下面结合附图和实施例对本发明进行详细的说明,但本发明的实施方式不限于此。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:
本实施例提供了一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,包括以下步骤:
首先,以七钼酸铵((NH4)6Mo7O24)为钼源,称取1.0mmol的量溶解于20mL去离子水中进行溶解,此时加入硫脲(30mmol)不断搅拌充分混合均匀;同时,将1.0mmol水合硫酸亚铁(FeSO4·7H2O)溶于15mL去离子水中(钼源与铁源的摩尔比为1:1),并缓慢加入到钼盐与硫脲的混合溶液中;将反应液于室温下充分搅拌20min,超声5min后,将反应前驱体反应液转移到微波水热特制反应釜中,并置于微波反应器中反应,微波反应温度为220℃,反应时间为60min;微波功率是600W;待反应结束后冷却,离心收集冷却后的产物,用去离子水和无水乙醇反复清洗多次,最后于烘箱中60℃干燥得到所述纳米片自组装球状钼酸亚铁,其XRD如图1所示,扫镜电子显微镜图像如图2所示。
使用本实施例制备的钼酸亚铁材料,将其作为异相催化剂应用于催化降解水中有机污染物氯咪巴唑,具有良好的吸附性能,加入过硫酸盐(过硫酸钾或过一硫酸氢钾)后,表现出优越的异相催化性能,2min内可将浓度为2μmol L-1的氯咪巴唑迅速去除,其去除率达100%。
实施例2:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,钼源使用Na2MoO4
实施例3:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,亚铁盐使用水合氯化亚铁(FeCl2·4H2O)。
实施例4:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,亚铁盐使用水合硝酸亚铁(Fe(NO3)2·6H2O)。
实施例5:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,亚铁盐使用水合乙酸亚铁(Fe(CH3COO)2·4H2O)。
实施例6:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,(NH4)6Mo7O24的摩尔浓度为0.5mmol。
实施例7:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,(NH4)6Mo7O24的摩尔量为2mmol。
实施例8:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,钼源与铁源的摩尔比例1:0.8。
实施例9:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,钼源与铁源的摩尔比例1:1.5。
实施例10:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,微波反应温度为230℃。
实施例11:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,微波反应温度为240℃。
实施例12:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,微波反应时间为30min。
实施例13:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,微波功率为500W。
实施例14:
本实施例一种纳米片自组装球状钼酸亚铁(FeMoO4)材料的制备方法,其制备方法同实施例1的制备方法,不同的是,微波功率为700W。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种纳米片自组装球状钼酸亚铁材料的制备方法,其特征在于所包括以下步骤:
(1)将钼源与硫脲按摩尔比1:(15~40)充分溶解于去离子水中形成溶液;
(2)以亚铁盐为铁源,将亚铁盐溶于去离子水中,加入步骤(1)所得溶液中,得到反应混合液;
所述钼源与所述铁源的摩尔比例为1:(0.8~1.5);
(3)将反应混合液充分搅拌,超声混匀后,转移到微波水热反应釜中,并在微波反应器中进行微波反应;所述微波反应的温度为220~240 ℃,微波反应的时间为30~60 min,微波功率是500~700 W;
(4)反应结束后冷却,离心收集冷却后的产物,用无水乙醇和去离子水多次循环清洗,干燥后得到纳米片自组装球状钼酸亚铁材料。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述钼源为七钼酸铵、钼酸钠或钼酸。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中所述亚铁盐为水合硫酸亚铁、水合氯化亚铁、水合硝酸亚铁或水合乙酸亚铁。
4.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述钼源的摩尔量为0.5~2.0 mmol。
5.根据权利要求1所述的制备方法,其特征在于:步骤(3)中所述搅拌的时间为15~30min;所述超声的时间10~15 min。
6.根据权利要求1所述的制备方法,其特征在于:步骤(4)中所述循环清洗的次数是3次;所述干燥是在烘箱中60 ℃条件下进行干燥。
7.一种由权利要求1-6任一项所述的制备方法制备得到的纳米片自组装球状钼酸亚铁材料,其特征在于:所述球状钼酸亚铁材料为尺寸1.3~1.8 μm的微米颗粒。
8.根据权利要求7所述的纳米片自组装球状钼酸亚铁材料作为活化过硫酸盐的异相催化剂在催化降解水中有机污染物氯咪巴唑中的应用。
CN202111036031.9A 2021-09-06 2021-09-06 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用 Active CN113816432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111036031.9A CN113816432B (zh) 2021-09-06 2021-09-06 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111036031.9A CN113816432B (zh) 2021-09-06 2021-09-06 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113816432A CN113816432A (zh) 2021-12-21
CN113816432B true CN113816432B (zh) 2023-06-16

Family

ID=78914124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111036031.9A Active CN113816432B (zh) 2021-09-06 2021-09-06 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113816432B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536079B (zh) * 2022-11-21 2023-08-11 齐鲁工业大学 自模板法合成中空球形多级结构钼酸盐微纳米材料及其制备方法
CN116239153A (zh) * 2022-12-15 2023-06-09 浙江大学杭州国际科创中心 一种FeMoO4酸响应声动力材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821394B (zh) * 2018-06-27 2021-10-15 大连理工大学 一种钼酸铁(ii)/氧化石墨烯催化电极的制备方法

Also Published As

Publication number Publication date
CN113816432A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN113816432B (zh) 一种纳米片自组装球状钼酸亚铁材料及其制备方法和应用
CN109208030B (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
WO2019109830A1 (zh) 一种复合钼酸盐空心微球的制备方法及其应用
CN110272035B (zh) 一种以金属离子催化有机配体制备碳纳米笼的方法及其制备的碳纳米笼和应用
CN106564868B (zh) 一种氮掺杂多孔碳材料的制备方法
CN102502770B (zh) 一种花状氧化铜催化剂、其制备方法及其用途
CN110813296B (zh) 一种纳米多孔Ni-Fe合金催化剂的制备方法
CN109663611B (zh) 一种单层氮化碳复合铁酸锌z型催化剂的制备方法及其固氮应用
CN113477270B (zh) 一种铜铁双金属限域氮掺杂碳纳米管复合材料的制备方法
CN109665525B (zh) 一种“哑铃型”铁氮双掺杂多孔碳的制备方法
CN109950563B (zh) 一种金属活性位高分散的非贵金属氧还原反应催化剂及其制备方法
CN110918097B (zh) 一种光热催化一氧化碳加氢制备高碳烃用钴基催化剂及其制备方法和应用
CN112264110A (zh) 负载型制氢用镍金属催化剂及其制备方法和用途
CN114797916A (zh) 一种Ni-ZIF衍生的磷化镍-碳材料及其制备方法和应用
CN110813303A (zh) 一种具有多孔结构的花状铁掺杂二氧化铈的制备及其脱硫应用
CN108404926B (zh) 一种无定形的钒酸铁/钒酸铋/石墨烯复合光催化剂及其制备方法和应用
CN115090289A (zh) 一种新型钙钛矿原位生长FeCo-MOFs衍生纳米碳微波催化剂及其制备方法和应用
CN114452989A (zh) 一种多孔结构氮化碳复合催化剂及其制备方法和应用
CN114289047A (zh) 一种氢氧化钴/氮化碳光催化材料及其制备方法和应用
CN106637517A (zh) 一种利用化学气相沉积法制备纳米炭纤维块体的方法
CN111905737A (zh) 单一铁催化剂和碱金属改性催化剂的制备方法、应用
CN110327937A (zh) 用于合成气一步法制备低碳醇的活性组分与载体协同作用催化剂及其制备方法和应用
CN115475643B (zh) 一种双位点反应耦合复合催化剂及其制备方法与应用
CN111659454B (zh) 一种g-C3N4/Ni@C/NiP光催化剂的制备方法及应用
CN111203254A (zh) 一种Co-N高活性物种修饰的硫化钒产氢电催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant